
Mario AI Competition
@ ICE-GIC 2009

Sergey Karakovskiy and Julian Togelius

Thursday, August 27, 2009

Develop a controller/agent
(based on AI/machine learning?)
for “Super Mario Bros”

Thursday, August 27, 2009

• by Markus Persson

• quite faithful SMB 1/3
clone

• in Java

• random level generation

• open source

Infinite Mario Bros

Thursday, August 27, 2009

Our changes

• Rewrite the control loop

• Allow for 1000 times speed-up in headless
mode

• Create an interface for controllers

Thursday, August 27, 2009

Interface

• Each time step (24 fps), the agent gets a
representation of the environment

• Enemies and “blocks” around Mario

• Fine position, jumping state

• And returns an action

• 5 bits: left, right, down, A, B

Thursday, August 27, 2009

Interface

Thursday, August 27, 2009

Interface

Another interesting feature is that different sets of be-
haviours and different levels of coordination between those
behaviours are necessary in order to play levels of differ-
ent difficulty, and complete these with different degrees of
success. In other words, there is a smooth learning curve
between levels, both in terms of which behaviours are nec-
essary and their necessary degree of refinement. For example,
to complete a very simple Mario level (with no enemies and
only small and few holes and obstacles) it might be enough to
keep walking right and jumping whenever there is something
(hole or obstacle) immediately in front of Mario. A controller
that does this should be easy to learn. To complete the same
level while collecting as many as possible of the coins present
on the same level likely demands some planning skills, such
as smashing a power-up block to retrieve a mushroom that
makes Mario Big so that he can retrieve the coins hidden
behind a brick block, and jumping up on a platform to collect
the coins there and then going back to collect the coins
hidden under it. More advanced levels, including most of
those in the original Super Mario Bros game, require a varied
behaviour repertoire just to complete. These levels might
include concentrations of enemies of different kinds which
can only be passed by observing their behaviour pattern and
timing Mario’s passage precisely; arrangements of holes and
platforms that require complicated sequences of jumps to
pass; dead ends that require backtracking; and so on. How to
complete Super Mario Bros in minimal time while collecting
the highest score is still the subject of intense competition
among human players3.

III. HOW?

Much of the work that went into this paper consisted in
transforming the Infinite Mario Bros game into a piece of
benchmarking software that can be interfaced with reinforce-
ment learning algorithms. This included removing the real-
time element of the game so that it can be “stepped” forward
by the learning algorithm, removing the dependency on
graphical output, and substantial refactoring (as the developer
of the game did not anticipate that the game would be turned
into an RL benchmark). Each time step, which corresponds to
40 milliseconds of simulated time (an update frequency of 25
fps), the controller receives a description of the environment,
and outputs an action. The resulting software is a single-
threaded Java application that can easily be run on any major
hardware architecture and operating system, with the key
methods that a controller needs to implement specified in
a single Java interface file (see figures 2 and 3). On an
iMac from 2007, 5−20 full levels can be played per second
(several thousand times faster than real-time) depending on
the level type and controller architecture. A TCP interface
for controllers is also provided, along with an example
Python client. However, using TCP introduces a significant
connection overhead, limiting the speed to about one game
per minute (three times real-time speed).

3Search for “super mario speedrun” on YouTube to gauge the interest in
this subject.

public enum AGENT_TYPE
{AI, HUMAN, TCP_SERVER}

public void reset();
public boolean[] getAction

(Environment observation);
public AGENT_TYPE getType();
public String getName();
public void setName(String name);

Fig. 2. The Agent Java interface, which must be implemented by all
controllers. Called by the game each time step.

// always the same dimensionality 22x22
// always centered on the agent
public byte[][] getCompleteObservation();
public byte[][] getEnemiesObservation();
public byte[][] getLevelSceneObservation();
public float[] getMarioFloatPos();
public float[] getEnemiesFloatPos();
public boolean isMarioOnGround();
public boolean mayMarioJump();

Fig. 3. The Environment Java interface, which contains the observation,
i.e the information the controller can use to decide which action to take.

We devised a number of variations on a simple neural-
network based controller architecture, varying in whether
we allowed internal state in the network or not, and how
many of the “blocks” around Mario were used as inputs.
The controllers had the following inputs; the value for each
input can be either 0 (on) or 1 (off).

• A bias input, with the constant value of 1.
• One input indicating whether Mario is currently on the

ground.
• One input indicating whether Mario can currently jump.
• A number of input indicating the presence of environ-

mental obstacles around Mario.
• A number of input indicating the presence of enemies

Fig. 4. Visualization of the environment and enemy sensors. Using the
smallest number of sensors, the top six environment sensors would output
0 and the lower three input 1. All of the enemy sensors would output 0, as
even if all 49 enemy sensors were consulted none of them would reach all
the way to the body of the turtle, which is four blocks below Mario. None
of the sensors register the coins.

Another interesting feature is that different sets of be-
haviours and different levels of coordination between those
behaviours are necessary in order to play levels of differ-
ent difficulty, and complete these with different degrees of
success. In other words, there is a smooth learning curve
between levels, both in terms of which behaviours are nec-
essary and their necessary degree of refinement. For example,
to complete a very simple Mario level (with no enemies and
only small and few holes and obstacles) it might be enough to
keep walking right and jumping whenever there is something
(hole or obstacle) immediately in front of Mario. A controller
that does this should be easy to learn. To complete the same
level while collecting as many as possible of the coins present
on the same level likely demands some planning skills, such
as smashing a power-up block to retrieve a mushroom that
makes Mario Big so that he can retrieve the coins hidden
behind a brick block, and jumping up on a platform to collect
the coins there and then going back to collect the coins
hidden under it. More advanced levels, including most of
those in the original Super Mario Bros game, require a varied
behaviour repertoire just to complete. These levels might
include concentrations of enemies of different kinds which
can only be passed by observing their behaviour pattern and
timing Mario’s passage precisely; arrangements of holes and
platforms that require complicated sequences of jumps to
pass; dead ends that require backtracking; and so on. How to
complete Super Mario Bros in minimal time while collecting
the highest score is still the subject of intense competition
among human players3.

III. HOW?

Much of the work that went into this paper consisted in
transforming the Infinite Mario Bros game into a piece of
benchmarking software that can be interfaced with reinforce-
ment learning algorithms. This included removing the real-
time element of the game so that it can be “stepped” forward
by the learning algorithm, removing the dependency on
graphical output, and substantial refactoring (as the developer
of the game did not anticipate that the game would be turned
into an RL benchmark). Each time step, which corresponds to
40 milliseconds of simulated time (an update frequency of 25
fps), the controller receives a description of the environment,
and outputs an action. The resulting software is a single-
threaded Java application that can easily be run on any major
hardware architecture and operating system, with the key
methods that a controller needs to implement specified in
a single Java interface file (see figures 2 and 3). On an
iMac from 2007, 5−20 full levels can be played per second
(several thousand times faster than real-time) depending on
the level type and controller architecture. A TCP interface
for controllers is also provided, along with an example
Python client. However, using TCP introduces a significant
connection overhead, limiting the speed to about one game
per minute (three times real-time speed).

3Search for “super mario speedrun” on YouTube to gauge the interest in
this subject.

public enum AGENT_TYPE
{AI, HUMAN, TCP_SERVER}

public void reset();
public boolean[] getAction

(Environment observation);
public AGENT_TYPE getType();
public String getName();
public void setName(String name);

Fig. 2. The Agent Java interface, which must be implemented by all
controllers. Called by the game each time step.

// always the same dimensionality 22x22
// always centered on the agent
public byte[][] getCompleteObservation();
public byte[][] getEnemiesObservation();
public byte[][] getLevelSceneObservation();
public float[] getMarioFloatPos();
public float[] getEnemiesFloatPos();
public boolean isMarioOnGround();
public boolean mayMarioJump();

Fig. 3. The Environment Java interface, which contains the observation,
i.e the information the controller can use to decide which action to take.

We devised a number of variations on a simple neural-
network based controller architecture, varying in whether
we allowed internal state in the network or not, and how
many of the “blocks” around Mario were used as inputs.
The controllers had the following inputs; the value for each
input can be either 0 (on) or 1 (off).

• A bias input, with the constant value of 1.
• One input indicating whether Mario is currently on the

ground.
• One input indicating whether Mario can currently jump.
• A number of input indicating the presence of environ-

mental obstacles around Mario.
• A number of input indicating the presence of enemies

Fig. 4. Visualization of the environment and enemy sensors. Using the
smallest number of sensors, the top six environment sensors would output
0 and the lower three input 1. All of the enemy sensors would output 0, as
even if all 49 enemy sensors were consulted none of them would reach all
the way to the body of the turtle, which is four blocks below Mario. None
of the sensors register the coins.

En
vi

ro
nm

en
t.j

av
a

A
ge

nt
.ja

va

Thursday, August 27, 2009

A very simple agent

public boolean[] getAction(Environment
observation) {

action[Mario.KEY_SPEED] =
action[Mario.KEY_JUMP] =
observation.mayMarioJump() || !
observation.isMarioOnGround();

return action;}

Thursday, August 27, 2009

Neural network agent
for (int i = -3; i < 4; i++) {
 for (int j = -3; j < 4; j++) {
 inputs[which++] = probe(i, j, scene);}}
inputs[inputs.length - 3] =
 observation.isMarioOnGround() ? 1 : 0;
inputs[inputs.length - 2] =
 observation.mayMarioJump() ? 1 : 0;
inputs[inputs.length - 1] = 1;
double[] outputs = mlp.propagate (inputs);
for (int i = 0; i < action.length; i++) {
 action[i] = outputs[i] > 0;
return action;

Thursday, August 27, 2009

Goal of the
competition

• Develop an agent that gets as far as
possible...

• ...on as many levels as possible...

• ...which are previously unseen

• Scoring: progress on 40 randomly
generated levels

Thursday, August 27, 2009

Main rules

• Implement the Agent interface (or connect
to the TCPAgent)

• Use only information from the
Environment interface

• Don’t take more than 40 ms per time step

• Follow the submission instructions...

Thursday, August 27, 2009

Challenges

• Handle a large state/observation space

• Handle very different situations (unlike e.g.
car racing)

• Tactical tradeoffs (go back and get the
power-up?)

Thursday, August 27, 2009

What we thought
would work

• Rule-based systems, with handcrafted
complicated feature detectors

• To handle the large observation space

• Tuned by e.g. artificial evolution

• To handle the large parameter space

• Or TD-learning

Thursday, August 27, 2009

Presentations of
competitors

Thursday, August 27, 2009

Robin Baumgarten

Thursday, August 27, 2009

AN A* MARIO AI

Using path-finding to find the optimal jump

Thursday, August 27, 2009

IDEA
Analyse Mario’s physics engine to obtain

movement equations for all objects
Create our own physics engine that can predict

next world state
Plug engine into an A* algorithm to evaluate

fitness of each node
Heuristic: How long before Mario reaches goal?
Penalty for falling into gaps or being hurt
Ignore coins, enemies, power-ups (for now!)

Thursday, August 27, 2009

A* ALGORITHM
Best-first graph search algorithm
Need heuristic that estimates remaining

distance
Keep set of “open” nodes (initially: start node)
While open set not empty:

 Pick node in open set with lowest estimated total
distance from start to goal

 If node == goal: finish. Create path by backtracking
through ancestors.

 Generate child nodes, put them into open list (only if
better than existing nodes for that location)

If heuristic admissible (always underestimating),
we then have the shortest path to goal.

Thursday, August 27, 2009

A* IN MARIO: CURRENT POSITION

current node

Goal:
right border

of screen

Thursday, August 27, 2009

A* IN MARIO: CHILD NODES

current node right, speed

left, jump, speed

right, jumpjump

Thursday, August 27, 2009

A* IN MARIO: BEST FIRST

current node right, speed

Thursday, August 27, 2009

A* IN MARIO: EVALUATE NODE

current node right, speed

Thursday, August 27, 2009

A* IN MARIO: BACKTRACK

current node right, speed

right, jump, speed

Thursday, August 27, 2009

A* IN MARIO: BEST FIRST

current node right, speed

right, jump, speed

Thursday, August 27, 2009

A* IN MARIO: EVALUATE

current node

Thursday, August 27, 2009

A* IN MARIO: CREATE CHILDS

current node

Thursday, August 27, 2009

A* IN MARIO: BEST FIRST

current node

Thursday, August 27, 2009

HEURISTIC
Using Mario’s current speed and acceleration,

how long does it take to reach the goal?
Assume maximum acceleration and no

obstacles (admissible heuristic!)

xa = xa+1.2
x = x+xa

xa = xa * 0.89

Optimisation: Find a closed form for this.

Thursday, August 27, 2009

HANDLING NEW EVENTS
Plan ahead for two ticks (=1/12 sec)
Synchronise internal world-state with received

enemies and object positions.

Possible Improvements:
Keep & update old plan instead of starting from

scratch each time
Collect coins & power-ups (e.g., using a high-

level planner that pans out the route between
power-ups)

Thursday, August 27, 2009

VIDEO

Thursday, August 27, 2009

Glenn Hartmann

• Modified version of one of the heuristic
agents that came with the software

• Move forward

• Jump if in danger of falling

• Jump over enemies if safe

• Shoot continuously

Thursday, August 27, 2009

Rafael Oliveira

• Did not submit any documentation

• Seems to be an elaborate heuristic

Thursday, August 27, 2009

Peter Lawford

• A-star search to maximize x position

• Partial simulation to anticipate future
positions (recalculated if simulation goes
out of sync)

• Some pruning of search tree

Thursday, August 27, 2009

Sergio Lopez
• Rule-based system, to answer 2 questions:

“should I jump?” and “which type of jump?”

• Evaluates possible landing points based on
environment info and heuristics (no
simulation)

• Calculates “danger value” for each action,
and “need to jump”

• Special situations, e.g. waiting for flowers
and bullets to go away, climbing “stairs”

Thursday, August 27, 2009

Mario Pérez

• Subsumption-type controller: later layers
can override the action of earlier layers

• Each layer either a method or a state
machine

Thursday, August 27, 2009

• avanzar() -> makes Mario going forward

• saltarParedes() -> makes Mario jump when necessary for
advance

• subirEscaleras() -> makes Mario climb "stairs" (these
mean of rocks)

• saltarPozos() -> makes Mario jump over gaps

• saltarEnemigos() -> makes Mario jump over enemies

• dispararEnemigos() -> makes Mario shoot enemies

• evitarArrollarEnemigos() -> makes Mario going back to
avoid enemies while in air

Thursday, August 27, 2009

Andy Sloane
• Joint work with Caleb Anderson and Peter

Burns

• Based on A star

• Separate simulation of the game physics
(not using the game engine)

• (imperfect) prediction of enemies’
movements

• Working towards propagating penalties in
the tree

Thursday, August 27, 2009

Erek Speed
• Rule-based system

• Maps the whole observation space to the
action space

• antecedent: 22x22 array, consequent: 6
bits action

• put in hash table

• Evolved with a GA

• Genome as > 100 Mb XML file!

Thursday, August 27, 2009

Michal Tuláček

• State machine with 4 states: walk_forward,
walk_backward, jump, jump_hole

Thursday, August 27, 2009

Results

Thursday, August 27, 2009

Name Score Time

Robin Baumgarten 17264 5.62

Peter Lawford 17261 6.99

Andy Sloane 16219 15.19

Sergio Lopez 12439 0.04

Mario Pérez 8952 0.03

Rafael Oliveira 8251 ?

Michal Tuláček 6668 0.03

Erek Speed 2896 0.03

Glenn Hartmann 1170 0.06

our evolved neural net 7805 0.04

ForwardJumpingAgent 9361 0.0007

Thursday, August 27, 2009

• The best-performing controllers take much
longer time per time step (frame)

• This is because they use A star search!

• ...and these work well because of the lack
of blind alleys (should be fixed)

• But some heuristic controllers do very well

• Not a lot of learning/optimization
techniques (though many competitors claim
to be working on it)

Observations

Thursday, August 27, 2009

Next phase: CIG 2009
• Milan, Italy, 7-11 September

• Submission deadline: 3 sept.

• Minor additions to the interface

• Fully backward-compatible: all agents
submitted for this phase will work...

• ...and will be automatically entered

• Still time for you to submit your agent!

Thursday, August 27, 2009

After the competition

• Competition web page will remain,
complete with competition software

• ...which you can use in your teaching or
research!

• Complete source code of all submitted
controllers

Thursday, August 27, 2009

The future of the
Mario Competition

• Mario AI Championship 2010

• Run at 2 to 4 different conferences?

• More than one track, ideas include:

• Agent time-budget track

• Online learning of unseen level track

• Personalized level generation track

• (your idea here)

Thursday, August 27, 2009

