
Hierarchical Controller Learning in a First-Person Shooter

Niels van Hoorn, Julian Togelius and Jürgen Schmidhuber

Abstract— We describe the architecture of a hierarchical
learning-based controller for bots in the First-Person Shooter
(FPS) game Unreal Tournament 2004. The controller is inspired
by the subsumption architecture commonly used in behaviour-
based robotics. A behaviour selector decides which of three
sub-controllers gets to control the bot at each time step. Each
controller is implemented as a recurrent neural network, and
trained with artificial evolution to perform respectively combat,
exploration and path following. The behaviour selector is
trained with a multiobjective evolutionary algorithm to achieve
an effective balancing of the lower-level behaviours. We argue
that FPS games provide good environments for studying the
learning of complex behaviours, and that the methods proposed
here can help developing interesting opponents for games.

Keywords: First-person shooters, FPS, evolutionary algo-
rithms, neural networks, behaviour-based robotics, subsump-
tion architecture, action selection

I. INTRODUCTION

First-person shooter games are three-dimensional combat
simulation games which are viewed from a first-person
perspective, and where the player is tasked with surviving in
an adversarial environment through winning firefights with
other agents. In many FPS games the player takes control
of an armed soldier on a battlefield, which might simulate
aspects of historical battles (e.g. the Call of Duty series)
or science fiction scenarios (e.g. the Halo series), fighting
against enemies such as other soldiers or monsters.

Playing an FPS well requires mastering a number of
related but distinct skills. To begin with, there are the lower
level perceptual and motor skills, such as quickly identifying
that something moved on a part of the screen, identifying
what it was (friend or foe?) and reacting appropriately (e.g.
aiming at the moving object, or backing away). Intermediate
level skills require simple planning and include deciding in
what order to attack enemies when several are present in a
room, selecting appropriate weapons for the current battle,
and finding and moving to good positions from where the
player can take aim at enemies without needing to worry
about being attacked from behind. Higher level “cognitive”
skills are concerned with creating a complex representation
of the environment and include mapping the area the player
is moving in, keeping track of the positions of health-packs,
ammunition supplies and enemies, and planning where to
explore and what resources to gather before particular battles.

In other words, playing an FPS well requires many of the
capabilities that have traditionally been studied within com-
putational and artificial intelligence (in team-based combat
communication skills become relevant as well). FPS games

JT is with the IT University of Copenhagen, Rued Langgaards Vej 7, 2300
Copenhagen S, Denmark. NvH and JS are with IDSIA, Galleria 2, 6928
Manno-Lugano, Switzerland. Emails: {niels, julian, juergen}@idsia.ch

Fig. 1. A scene from Unreal Tournament 2004

are vastly cheaper, simpler to handle and faster to run than
physical robots, but also more complex and demanding than
the toy problems traditionally used in CI research. We argue
that such games are good testbeds for research on learning or
otherwise developing controllers that perform complex tasks,
in the sense of being composed of several simpler tasks.

A. Game AI and CI in first-person shooters

All FPS games that feature computer controlled non-
player characters (NPCs), also known as bots, come with
some form of game AI. These bots are usually controlled
by algorithms that, while sometimes very sophisticated and
frequently very appropriate for their purpose (entertaining
the human player of the game), do not include any form of
learning and do not play the game under the same conditions
as a human does. Traditionally, bots are controlled by finite
state machines built out of a number of hard-coded rules that
define reactions to particular stimuli and transitions to other
states; recently, behaviour trees have started to replace finite
state machines as the controller representation of choice. The
higher-level navigation is usually done through the A∗ path
finding algorithm with predefined navigation points. Often,
the algorithm controlling the bot has access to considerably
more information than the human player has (e.g. can see
through walls), and (equally important) this information is
usually represented from a third-person perspective. e.g. as
navigation points in a map instead of first-person sensors.

The above description is rather coarse and there are many
important exceptions (e.g. the use of probabilistic techniques
by enemies searching for the player in Halo 2 [1]). However,
current commercial game AI has little to do with current aca-
demic research in the AI and CI communities. On the other
hand, such games have been used for academic research.



Previous applications of CI to FPS games can be divided in
two dimensions. The first being if the controller has learned
to perform only a partial task of the gameplay or the full one,
and the second dimension makes the distinction if hardcoded
elements are used in the controller or the controller only used
primitive (player-centered) inputs and actions (e.g. moving,
turning and shooting).

We plan to include a full survey of previous applications in
a forthcoming paper, here we are limited to references due to
spatial constraints. For learning partial gameplay, Overholtzer
and Levy [2] used hardcoded elements, while Kadlec et
al. [3], Karpov et al. [4], Parker and Bryant [5], Priester-
jahn [6] and Thurau et al. [7] addressed different parts of
the controller using primitive actions. Cole et al. [8] learned
controllers for the full gameplay task using some hardcoded
elements, like Small and Congdon [9] and Westra [10], while
McPartland and Gallagher [11] used only primitive actions,
though in a purpose-built FPS.

As far as we are aware, all attempts at learning FPS
bot behaviour that have resulted in human-level playing
performance have built on heavily preprocessed environment
representations which have little in common with human
visual input and with sensors that could be fitted on a robot.
Most of the attempts above also treat the bot controller as a
monolithic (non-differentiated) system, which is learnt at the
same time during the execution of a single task.

B. Learning hierarchical controllers

Behaviour-based robotics has been a dominant paradigm
in robotics for the last two decades [12]. In this paradigm,
the robot is controlled by a layered or hierarchical control
system. Each layer performs a well-defined subtask (e.g. in
the case of a traffic rule abiding robot: keeping a desired
speed, staying on the road, avoiding pedestrians, stopping
in front of red lights), and the breakdown of the robot
task into subtasks is performed so as to allow each layer
to be as simple as possible, and thus respond as quickly
as possible to changes in the robot’s environment. Many
different types of behaviour-based architectures exist, and
the dominance relations between layers vary considerably.
In most cases, however, the lower layers implement more
“primitive” behaviours and the higher layers balance or
organize the contributions of the lower layers.

Some behaviour-based architectures are completely hard-
coded, others incorporate learning as part of some layers. A
few attempts have been made to learn the functionality of the
layers themselves. Togelius proposed the layered evolution
method, where each layer is represented as a neural network
and evolved separately, starting from the lowest layers and
keeping the weights of lower (already evolved) networks
frozen while evolving higher layers [13]. Each time a higher
layer is added, the complexity of the task is incremented [14].
Thompson and Levine recently used a similar method to
develop a layered controller for the EvoTanks game [15].

C. Using FPS games for evolutionary robotics research

Evolutionary robotics is concerned with evolving robot
controllers, usually represented as neural networks, that allow
robots to solve specific predefined tasks [16]. While seeming
to hold great promise initially, this research direction has
seen only limited progress in evolving solutions to complex
control problems, especially those that require sequential
execution of diverse behaviour and the handling of multidi-
mensional environment representations. We venture that this
is partly because of the difficulty of using physical robots
for evolutionary experiments. Modern FPS games provide
experimental environments that have several advantages over
robots used in the real world.

Experiments in an FPS game require no specific hardware,
and can be sped up and/or parallelized through distribution
over several cores in a computer or several computers in a
cluster. Modern games provide advanced physics, elaborate
and varying environments with predefined tasks (requiring
an array of diverse cognitive capacities, as discussed above)
complete with accurate reinforcements (i.e. score). Sophisti-
cated graphics allow for high-dimensional simulated sensing.
As a commercial computer game is typically the result of a
hundred or more people working for a year or more, and
has been tested by many thousands of players, such games
are usually also bug-tested and detail-rich to an extent not
possible in typical robotics simulators.

Another reason for the apparent partial stagnation of
evolutionary robotics could be that not much effort has
been spent on learning hierarchical architectures with task-
switching (but see exceptions discussed above), something
which probably is the key to solving complex tasks.

In this paper, we try to address both of these concerns,
evolving a hierarchical controller for an agent in a modern
FPS game.

D. Aims and scope of this paper

This paper describes the architecture of a hierarchical
controller, where each layer is based on a neural network
and trained separately with an evolutionary algorithm, for
bots in a modern FPS game. The aim af this paper is to
show that such an architecture and development method can
result in relatively high-performing FPS bots, using only
low-level first person environment representations as inputs.
We emphasize that we are not trying to outperform the best
hard-coded bots that make use of environment information
that is hidden and/or represented in a third-person format.
Indeed, manually developing a bot that outperforms most
human players would be relatively easy using the high-level
behavioural primitives available in the game, such as auto-
matic aiming, but this would not be very interesting. Instead
we are seeing the FPS game as an environment in which to
perform evolutionary robotics-style experiments to demon-
strate the power of our particular controller architecture given
a realistically restricted environment representation.

The secondary aims of the paper are to elucidate the
most successful design choices for hierarchical agents and to



compare the performance of hierarchical agents and agents
based on undifferentiated (monolithic) neural networks.

In the following we first describe the methods used:
the FPS game, sensor representation and action space, the
neural networks and evolutionary algorithms used and the
hierarchical architecture. We then describe the training of
the individual sub-controllers and of the behaviour selector.

II. METHODS

A. Unreal Tournament 2004 and Pogamut

Unreal Tournament 2004 (in the following frequently
abbreviated UT2004 or just UT) is a popular commercial
FPS game (see figure 1) which is particularly noteworthy for
its multiplayer features, and for the fact that the underlying
game engine has been reused in a number of other commer-
cial computer games. Part of the long-running Unreal series
of FPS games, it’s a mature and thoroughly tested game,
ensuring that it contains few of the type of bugs that are often
discovered and exploited by evolutionary algorithms [17].

For this game, there has been a concerted effort to make it
possible to control all the agents in the game from external
applications. On the server side, GameBots [18] is a mod-
ification of the Unreal environment written in UnrealScript
that makes it possible to get information about a bot and its
environment through a TCP/IP connection. This information
can be used to send controlling commands back to the bot,
thus completing the sensorimotor loop.

Originally developed at the University of Southern Califor-
nia and continued by a team from the Technical University of
Prague, Pogamut [19] provides a wrapper for the GameBots
environment in the form of a java package, complete with a
rich API containing high and low-level functions to access
the sensors and affect the controls of UT2004 agent. Pogamut
has been used several times as a learning environment for
AI research, most notably by Kadlec [3], who also created a
system to distribute experiments over a cluster.

In UT lengths and distances are measured in UT units1.
One UT unit roughly maps to 0.75 inches, so 1 meter
relates to roughly 52.5 units. Unless otherwise mentioned, all
measurements concerning distances are given in UT units.

B. Sensing

The agent is supplied with a suite of sensors designed to
operate from a first-person perspective, and not provide the
agent with any information that a human player would not
have had access to. The following sensors are used:
• Ray-tracing wall sensors The agent is equipped with

12 sensors to detect the walls around it. Each wall
sensor has an angle, relative to the direction the agent is
facing. The wall sensor returns a value between 0 and
1, proportional to how far away a wall is encountered in
that direction (similar to the laser range finding sensors
used in robotics). If no wall is encountered within 1000
UT units, the sensor returns the value 1; if the agent is

1See http://wiki.beyondunreal.com/Legacy:Unreal Unit for more info

Fig. 2. An abstract representation of the pie-slice enemy sensor. The arrow
is indicating the direction of the agent is facing, and the red and blue dots
symbolize enemies that get mapped onto their respective slices.

standing next to a wall in the probed direction it returns
a value close to 0.

• Pie-slice enemy sensors The enemy sensors work sim-
ilarly to the wall sensors, with the exception that they
each cover a “pie-slice” (the area defined by a circle
segment centered on the agent and with a given angle)
of the environment. This is because enemy agents are
smaller than wall segments, and thus harder to detect
through ray-tracing. The closer the enemy is, the higher
the value of the slice. The sensors are divided into 12
slices of unequal size; see figure 2. The front slices
cover an angle of π/128 radians, where the sensor at
the back covers π/2 radians. This gives the agent a
high precision in the front with a modest total number
of inputs.

• Direction to next way point To facilitate path following
the bot is given the relative angle and distance to the
next waypoint of the path it needs to travel. The path is
calculated by UT and the bot always goes to the nearest
known item of the specified kind. When a new item is
discovered it is added to the list of known items.

• Health The current health level divided by 100 (to
normalize the sensor input; health can reach 199).

• Being damaged 1 if the bot is currently taking damage,
0 otherwise.

C. Actuating

There are several actions the GameBots interface allows
to be sent to the bot. Unfortunately these actions are better
suited to more traditional scripting than robot-like control
of the bot. For example, it is possible to let the bot walk
to a specific location given by euclidean coordinates and
simultaneously look another coordinate in space using a
Strafe command, but Pogamut does not offer the possibility
to steer the bot by more primitive “turn” and “move”
actions; if “turn” and “move” were both sent to the bot,
the latter command would cancel out the former. Because
of these restrictions we implemented robot-like moving and
turning with the use of the Strafe command. However, as



Fig. 3. Overview of the hierarchical structure

the directions of the bot are calculated relative to its current
position and the bot might be at a different position when
the action is performed, this method is slightly inaccurate.

Each time step, the controller outputs values for the
following actions:
• Moving is defined within a range of [−2, 2] where

a negative value means moving backwards, a positive
value forward, and normal speed is 1.

• Turning values range between [−π, π] and are inter-
preted as the number of radians the bot should turn.

• Shooting can be true or false.
Notice that there is no way for the bot to look up or

down; instead we modified maps so as to only have one
floor. Relatedly, the bot always crouches when shooting, so
as to be able to hit crouching opponents.

D. Hierarchical architecture

Based on experience from late-night gaming sessions, we
decomposed the skill necessary for playing UT2004 well (in
deathmatch mode) into the following sub-skills:
• Shooting is arguably the most important skill for playing

any FPS. The challenge here is to detect when enemies
are nearby, select which enemy to attack and, for a given
weapon, inflict as much damage as possible within a
given time. This involves aiming well, taking the char-
acteristics of the weapon into account, and repositioning
the bot relative to its target.

• Exploration is a crucial skill for any environment except
a small room with complete visibility. The challenge is
to chart out as much as possible of the environment
in as short time as possible, finding any health packs,
ammo stashes and enemies.

• Path-following becomes important in environments
where vital resources such as health and ammunition
regularly run low but can be replenished at locations
scattered around the environment. The challenge is to
get to a given location (e.g. a health pack) as quickly
as possible, preferably moving in such a way as to
minimize the risk of getting shot.

Behaviour selection or action selection means switching
between the three sub-skills listed above. The challenge here
is to choose when to shoot, when to explore, and when to

run for the next health pack, depending on the agent’s current
resource levels, immediate environment, and history.

The architecture used to learn the behavior is depicted
in Figure 3. The sensors displayed on the left side are the
sensors described in section II-B. These sensors are fed into 3
different controllers that are trained in separate experiments
with separate fitness functions. Each controller is intended
to implement one of the key sub-skills discussed above, and
the fitness functions used to train that controller are intended
to measure its proficiency at the particular skill. When these
controllers reach good fitness on their separate tasks, they are
frozen (the weights of the neural network are not allowed to
change further). Then the best individuals for each task are
selected and used in a different experiment where the action
selector is trained.

E. Neural networks and evolutionary algorithms

All sub-controllers are implemented as recurrent neural
networks and trained with evolutionary algorithms.

Some controllers were implemented as Simple Recurrent
Networks (SRN), also known as an Elman Networks, with
tanh activation functions. An SRN is the same as a stan-
dard Multi-Layer Perceptron, except that each neuron in
the hidden layer also has inputs from all neurons of the
hidden layer of the previous time step (the last time values
were propagated through the network) [20]. Other controllers
were implemented as Long-Short Term Memory (LSTM)
networks. LSTM is an architecture especially designed to
capture long-term time dependencies that has previously ex-
hibited world-class performance on sequence learning tasks
such as speech recognition [21].

We used two different evolutionary algorithms. Some
controllers were evolved with single objective each; in these
experiments, a standard µ + λ Evolution Strategy (ES) was
used with µ = λ = 25. The ES was stopped as soon
as the fitness of the best individual had not improved for
20 generations. Other controllers were evolved with multi-
objective evolution, and here the NSGA-II [22] algorithm
was used, being one of the most widely used multiobjective
evolutionary algorithms with a reputation for robustness, with
a population size of 100 for 100 generations.

The weights of the SRNs were initially set to random
numbers drawn from [−1, 1] and mutation was performed
by adding a normally distributed value X ∼ N(0, 0.1). The
weights of the LSTM networks were initialized with random
numbers from [−0.1, 0.1]. During mutation a number drawn
from a Cauchy distribution with location x0 = 0 and scale
γ = 0.01 is added to each weight. Because the Cauchy
distribution has a so called ‘fat tail’ compared to the normal
distribution, it can be advantageous to use it to escape local
minima. No crossover was used in any of the experiments.
All networks were fed a constant bias input in addition to
the sensory inputs described in section II-B.

F. Maps

For the experiments we used three different maps to test
the bots’ performance. We used existing UT maps, but



modified them to be able to handle our simplifications of
the full UT game. We decided to remove armor and only
use a ShockRifle2 for our experiments, to eliminate the need
for item and weapon selection. We also only used one floor
in each level to reduce input and control dimensionality.
• DM-TrainingDay-Shock is a modified version of the

map DM-TrainingDay, an 8-shaped map that is shipped
with Unreal Tournament. We removed the adrenaline
and replaced all weapons and ammo with ShockRifles
and ShockRifle ammo respectively. All removed items
were replaced with path nodes, to keep the graph of
nodes identical to the original map.

• DM-1on1-Trite-Floorlevel is a modified version of
the map DM-1on1-Trite that is shipped with Unreal
Tournament. This map contains the same modifications
as DM-TrainingDay-Shock plus some others. The ramps
and elevators going from the ground floor to the upper
floors are removed and only four spawning positions
are placed on the ground floor, thus making the upper
floors inaccessible and reducing the map to a single
floor. Additionally, the Armor shield on the ground floor
was removed and replaced by a Big Keg O’ Health and
the 4 Health Vials surrounding it were removed.

• DM-Bigroom is a map we created ourself consisting of
a single square room with a side of 1000 UT units.

III. EXPERIMENTS

In this section we first describe our attempts at evolving
each of the three sub-controllers independently, and how the
action selection controller was evolved on top of the already
evolved and frozen sub-controllers. We then compare those
results with the evolution of a monolithic controller evolved
under the same conditions as the action selector.

A. Evolving exploration

For these experiments a bot was spawned in DM-
TrainingDay-Shock or DM-1on1-Trite-Floorlevel and was
given the 12 distance sensors and a bias of 1 as input. The
SRN contained 8 hidden nodes and 2 outputs, that mapped
to move and turn actions. Its task was to explore the map
by visiting as many pathnodes of the map as possible in
30 seconds, after which the experiment was terminated. A
pathnode was considered visited if the bot at some timestep
had a distance of 100 or less to the pathnode. When the
agent visits a node, the node value is set to 1, but it slowly
decays every timestep. The fitness is the average value of
all pathnodes at the end of the experiment. This was used
in a weighted sum with a value proportional to the negative
number of wall collisions. A formal representation of this
fitness function is given in equation (1).

Fexplore = 0.8 ·
∑k

i=0 ni · f (T−tni
)

k
+ 0.2 · e(−w/5) (1)

2For those not familiar with UT2004 and its terminology,
http://liandri.beyondunreal.com/Deathmatch contains links to the different
items and weapons used in the game.

Fig. 4. Fitness of exploring in DM-TraingDay-Shock

Fig. 5. Fitness of exploring in DM-1on1-Trite-Floorlevel

Where k is the number of pathnodes, ni is 1 if node ni

is visited and 0 otherwise, f is the forget factor where
0 ≤ f ≤ 1, T is the number of timesteps of the experiment
and tni is the timestep when the node ni was visited last.
Finally, w is the number of times the agent hit against a wall.

The exact value of the forget factor turned out to be
unexpectedly important. We tried the same experiment with
values f = 0.99 and f = 0.999, and with the former the
decay of node values was too high so the agent only evolved a
local exploring behaviour; we therefore used the latter value.

The result of exploration in DM-TrainingDay-Shock is
shown in figure 4. The fitness increases a lot in the first
generations and makes a final jump in generation 23, after
which the fitness still increases, but only moderately. This
is probably caused by the high regularity of the 8-shaped
map. First the agent learns to cover only one loop of the 8,
but suddenly it learns to explore both loops, and the found
solution is close to optimal and doesn’t improve much more.

In the other map, DM-1on1-Trite-Floorlevel, fitness in-
creased much slower and more gradually, as can be seen
in figure 5. This is probably because the latter map is bigger
and structured with more rooms and passages between them.

Notice that the fitness reached in DM-1on1-Trite-
Floorlevel is lower than in DM-TrainingDay-Shock. This is
mainly because around 32% of the pathnodes is at some
higher floor in the map, and thus unreachable by the bot (as
described in section II-F).

The best evolved controllers explore the complete map



Fig. 6. Fitness of path following in DM-TraingDay-Shock

Fig. 7. Fitness of path following in DM-1on1-Trite-Floorlevel

they learned on, while only seldom running into walls. The
behaviour is a rather non-intuitive pattern of the bot “feeling”
its way around a map, a pattern that would be unlikely to be
programmed by a human, especially given these inputs.

B. Evolving path-following

The path following controller gets 12 distance sensors to
the walls as well as the distance and the angle to the next
path node and a bias of 1 as inputs. The SRN used had
8 hidden nodes and 2 outputs, that map to move and turn
actions. Paths are created by selecting the nearest item in the
map that has not been visited for 27.5 seconds (the respawn
time of most items in UT) and let UT find a path to that item.
When the item is reached (i.e. the bot is within distance of
60 or less), a new nearest item is selected. In the small maps
we used, this creates an infinite path that visits all items.
The fitness of the agent is given by the length of the path
travelled by the agent, plus the distance already travelled in
the direction of the next node on the path; see equation (2).

Fpath =
k−1∑
i=1

d(ni, ni+1)− d(l, nk) (2)

Where k is the number nodes in the path, the kth one being
the pathnode that is next to be visited, d(n, n) is the metric
distance function, ni is the ith visited node by the agent
(n1 being the node starting node of the agent) and l is the
location of the agent when the experiment was terminated.

Fig. 8. Pareto front of evolving shooting

The results of the path following evolution is shown in
figures 6 and 7. As can be seen form these graphs, the agent
learns rather quickly to follow the path in both maps, and
does not improve a lot after that.

C. Evolving shooting

The shooting experiments were performed in DM-
Bigroom. The bot was given a ShockRifle with infinite ammo
and placed at a random position in the map. As inputs it
received a bias and the values of the 20 pie-slice enemy
sensors. The SRN had 14 hidden nodes and 3 outputs, that
map to move, turn and shoot actions.

In this experiment the opponent would never move or
shoot at the agent. The goal of the agent was to kill as
many opponents as possible within 30 seconds. Whenever an
opponent was killed, it immediately respawned at a random
position. Because we found it hard to find a good balance
between the number of opponents killed and the accuracy
of the shooting in a single fitness function, we evolved the
controller multiobjectively. One fitness function measured
the amount of damage the agent caused, while the other
measured the proportion of bullets that hit their target. These
fitness functions are given in equations (3) and (4).

Fdamage = kills+
damage

100
(3)

Fhitratio =
hitShots

firedShots
(4)

Where kills is the number of times the agent killed an
opponent, damage is the damage the opponent has received
since his last respawn, hitShots is the number of shots that
hit their target and firedShots the number of shots fired.

The results of this experiment is shown in figure 8. The
pareto front only consists of four points, probably because
of the noisiness of the fitness function. As we evaluate each
individual only three times, the individuals that achieve good
values in all runs dominate the other individuals. When
looking at the behaviour, there are two distinguishable groups
in the pareto front. The three controllers in the top left of
the graph run around in circles until they encounter the
opponent, place a well aimed shot and run another circle. The
remaining controller turns around on the spot until it sees the



Fig. 9. Pareto fronts of hierarchical (+) and monolithic (×) controllers.

opponent. It then walks towards the opponent while aiming
and shooting. The behaviour of the last controller is in our
eyes much more human-like. It was also the most proficient
at the main task: killing the opponent. We therefore chose
this controller for use in the behaviour selection experiment.

D. Evolving behaviour selection

As noted in section II-D the hierarchical controller was
evolved in stages. First the sub-controllers were evolved on
their separate tasks (described above), and then the sub-
controllers were frozen and the action selector was evolved.

This action selector is implemented as an LSTM network
that receives 4 inputs: a bias, the health level of the agent,
the sum of the player pie-slice sensors and whether the
agent is currently taking damage. The size of the hidden
layer was 5 and the 3 outputs represented the three different
behaviours. Each time step the action produced by the
controller corresponding to the highest output is used. Only
one action is sent to the agent at any one time.

The experiments were performed in DM-1on1-Trite-
Floorlevel, where the agent played against the lowest level
UT bot. Multiobjective evolution was used with three ob-
jectives: to cause as much damage as possible, to take as
little damage as possible and to explore the environment.
These fitness functions are given by equations (3), (5) and (1)
respectively. The first two fitness functions are a continuous
version of the score in UT. The third objective was added to
increase the diversity in the population; initial experiments
showed that evolution with only two objectives got stuck in
the local optimum of stationary bots. Standing still seems to
be a good strategy when playing against a single opponent.

Fsurvival = −deaths−
(

1− health

100

)
(5)

Where deaths is the number of times the agent died and
health is the health of the agent at the end of the experiment.

The results of evolving the behaviour selection module
are shown with + in figure 9. In this graph fitness values

of the three objectives are shown. There is a tradeoff for
the agent between doing more damage to his opponent and
taking less damage itself. And although the variation in
exploration fitness is small, there is an apparent tradeoff
between exploration and the other objectives.

Looking at the behaviour of the evolved controllers, some
show quite natural playing behaviour: running around the
items in the map and engaging in firefights with the opponent,
but the discrete switching between sub-controllers is clearly
visible in the emerged behaviour. The reason for this is that
these subcontrollers have distinctively different behaviour on
both micro and macro scales.

Although the agent is able to win some firefights against
the UT bot, it often runs recklessly towards the opponent
without avoiding incoming fire. This is understandable, as
the sub-controllers were not trained against bots that shot
back.

The controllers in the upper-left part of the graph in fig-
ure 9 survive well through avoiding the opponent and rarely
returning fire. Instead, they run around the map and often
ignore the opponent completely. Although this cowardly is
understandable and works quite well, it is not the kind of
behaviour we were aiming for with our experiments.

E. Combined evolution from scratch

To show the benefits of our hierarchical architecture we
ran an experiment with one single SRN. The inputs were all
the sensors described in section (II-B), the network had a
hidden layer of 15 neurons and 3 outputs described in II-
C. Setup of the test and the fitness functions used were the
same as described in section III-D. Our results so for are
shown with × in figure 9. Although we would like to repeat
the experiments and give them more evaluation time to make
this statement stronger, it can be seen that all the controllers
implemented as monolithic networks are dominated by hi-
erarchical controllers. The evolved controllers show a pretty
simple behaviour of turning or circling. This behaviour does
not seem to change much in the presence of an opponent.
The bots do not explore the map, usually staying in the room
as they spawned in.

IV. DISCUSSION

One can look at the proposed architecture and the pre-
sented results in this paper from the computational intelli-
gence perspective and the games perspective.

From the computational intelligence perspective, we have
provided another demonstration of the power of a relatively
under-explored technique for creating controllers for embod-
ied agents: representing the components of a hierarchical
controller architecture as neural networks and evolving them
separately. In our opinion, the task solved is at least as com-
plex as any that has been successfully solved in evolutionary
robotics; consider the number of different skills needed (and
the need to coordinate them sequentially), the relatively high-
dimensional input space, and the complexity of the environ-
ment itself. We believe this shows that using hierarchical
architectures rather than monolithic networks and video game



environments rather than traditional tabletop robotics are
plausible design choices for scaling up evolutionary robotics.

From the games perspective, creating a better performing
bot (in the sense of killing better and scoring higher) is not
a very interesting target as the currently available controllers
are already able to outperform human players. Our controller
is not by any means the best bot available for UT2004, but it
was never meant to be, and considering the purposely limited
input representation the result is still satisfying. A bot with
access to the full game state can easy outperform our results,
but our experiments show that FPS games can be a good
testbed for system where the full representation of the world
is not available, such as robotics.

We also believe that the architecture used can achieve more
interesting and human-like behaviour compared to hardcoded
bots using third-person environment representations; learning
can be used to model human playing styles, the agent-
centered inputs can let it react to the environment more
believably. For example, the approach proposed in [23]
could be used to imitate human playing styles, and the
one proposed in [24] to create populations of interestingly
different strategies.

While we have done many more experiments than would
have been possible had we used physical robots, the com-
plexity of UT2004 means that we have nevertheless been
constrained by available computer power. Given more time,
there’s a number of obvious extensions to the current work:

• Execute runs of both the hierarchical and the monolithic
controller evolution to prove the superiority of the
former with statistical significance.

• Unfreeze the sub-controllers and continue the evolution
of all parts of the controller simultaneously after obtain-
ing a good behaviour selector, as was done in [13].

• Test the generalisation capabilities of our controllers
by evaluating them on more maps and/or use several
opponent bots.

In recent work, which will be soon be submitted for
publication, we have slightly changed the representation of
the sensors, tuned the learning process and redesigned the
behaviour selector. Thus, we have been able to evolve con-
trollers that significantly outperform the entry level UT2004
bot in death match score.

V. CONCLUSIONS

We described a hierarchical architecture for a bot in the
modern FPS game Unreal Tournament 2004, and how the
individual sub-controllers of this architecture were trained
incrementally. In our experiments we showed that the evolved
hierarchical controller solved the task better than a mono-
lithic approach used as comparison. Furthermore, the hierar-
chical controller played the game quite well even though it
was restricted to the type of agent-centered sensors that could
theoretically be mounted on a robot. The proposed method
could also be useful for automatically generating believable
and interestingly different NPCs.

REFERENCES

[1] D. Isla, “Probabilistic target tracking and search using occupancy
maps,” in AI Game Programming Wisdom 3. Charles River Media,
2006.

[2] C. Overholtzer and S. Levy, “Adding smart opponents to a first-
person shooter video game through evolutionary design,” aaai.org,
2005. [Online]. Available: http://www.aaai.org/Papers/AIIDE/2005/
AIIDE05-028.pdf

[3] R. Kadlec, “Evolution of intelligent agent behaviour in computer
games,” Master’s thesis, Charles University in Prague, p. 75, Sep
2008.

[4] I. Karpov, T. D’Silva, C. Varrichio, K. Stanley, and R. Miikkulainen,
“Integration and evaluation of exploration-based learning in games,”
Proceedings of the IEEE Symposium on Computational Intelligence
and Games, 2006.

[5] M. Parker and B. D. Bryant, “Neuro-visual control in the quake
ii game engine,” Neural Networks, Jan 2008. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4634348

[6] S. Priesterjahn, Kramer, A. Weimer, and A. Goebels, “Evolution of
human-competitive agents in modern computer games,” in Proceedings
of the IEEE Congress on Evolutionary Computation (CEC), 2007.

[7] C. Thurau, C. Bauckhage, and G. Sagerer, “Learning human-like
movement behavior for computer games,” Proceedings of the 8th
International Conference on the Simulation of Adaptive Behavior
(SAB’04), 2004.

[8] N. Cole, S. J. Louis, and C. Miles, “Using a genetic algorithm to tune
first-person shooter bots,” in Proceedings of the IEEE Congress on
Evolutionary Computation, 2004, pp. 139–145.

[9] R. Small and C. B. Congdon, “Agent smith: Towards an evolutionary
rule-based agent for real-time strategy games,” pp. 1–7, Nov 2008.

[10] J. Westra, “Evolutionary neural networks applied in first person
shooters,” Master’s thesis, Utrecht University, Jan 2007. [Online].
Available: http://people.cs.uu.nl/westra/articles/scriptie.pdf

[11] M. McPartland and M. Gallagher, “Creating a multi-purpose first
person shooter bot with reinforcement learning,” IEEE Symposium on
Computational Intellegence and Games, 2008. [Online]. Available:
http://www.csse.uwa.edu.au/cig08/Proceedings/papers/8017.pdf

[12] R. Arkin, Behavior-based robotics. The MIT Press, 1998.
[13] J. Togelius, “Evolution of a subsumption architecture neurocontroller,”

Journal of Intelligent and Fuzzy Systems, vol. 15, pp. 15–20, 2004.
[14] F. Gomez and R. Miikkulainen, “Incremental evolution of complex

general behavior,” Adaptive Behavior, vol. 5, pp. 317–342, 1997.
[15] T. Thompson and J. Levine, “Scaling-up behaviours in evotanks:

Applying subsumption principles to artificial neural networks,” in
Proceedings of the IEEE Symposium Computational Intelligence and
Games (CIG), 2008.

[16] S. Nolfi and D. Floreano, Evolutionary robotics. Cambridge, MA:
MIT Press, 2000.

[17] J. Denzinger, K. Loose, D. Gates, and J. Buchanan, “Dealing with
parameterized actions in behavior testing of commercial computer
games,” Proceedings of the IEEE 2005 Symposium on Computational
Intelligence and Games CIG05, pp. 37–43, 2005.

[18] R. Adobbati, A. Marshall, A. Scholer, and S. Tejada, “Gamebots: A
3d virtual world test-bed for multi-agent research,” Proceedings of the
Second International Workshop on . . . , Jan 2001. [Online]. Available:
http://ironman.srv.cs.cmu.edu/∼galk/Publications/01/gamebots.pdf

[19] R. Kadlec, J. Gemrot, O. Burkert, M. Bida, J. Havlicek, and C. Brom,
“Pogamut 2 - a platform for fast development of virtual agents’
behavior,” CGames07, pp. 1–5, Oct 2007.

[20] J. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp.
179–211, 1990.

[21] F. A. Gers and J. Schmidhuber, “Lstm recurrent networks learn simple
context free and context sensitive languages,” IEEE Transactions on
Neural Networks, vol. 12, pp. 1333–1340, 2001.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions
on Evolutionary Computation, vol. 6, pp. 182–197, 2002.

[23] N. van Hoorn, J. Togelius, D. Wierstra, and J. Schmidhuber, “Robust
player imitation using multiobjective evolution,” in Proceedings of the
IEEE Congress on Evolutionary Computation (in press), 2009.

[24] A. Agapitos, J. Togelius, S. M. Lucas, J. Schmidhuber, and A. Kon-
stantinides, “Generating diverse opponents with multiobjective evo-
lution,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2008.


