
How to run a successful game-based AI competition

Julian Togelius

Abstract— Game-based competitions are commonly used
within the Computational Intelligence (CI) and Artificial In-
telligence (AI) in games community to benchmark algorithms
and to attract new researchers. While many competitions have
been organised based on different games, the success of these
competitions is highly varied. This short paper is a self-help
paper for competition organisers and aspiring competition
organisers. After analysing the fate of a number of recent
competitions, some factors likely to contribute to the success
or failure of a competition are laid out, and a set of concrete
recommendations is offered. There is also a discussion of how
to write up game-based AI competitions and what we can
ultimately learn from them.

Keywords: Competitions, benchmarking

I. INTRODUCTION

In the research field of artificial and computational intel-
ligence in games, game-based competitions have come to
assume a central place. Competitions are held each year in
conjunction with the two main conferences IEEE Computa-
tional Intelligence and Games (CIG) and AAAI Artificial
Intelligence in Interactive Digital Entertainment (AIIDE),
as well as at major conferences dedicated to evolutionary
computation, game design, machine learning etc. These com-
petitions are based on games (computer games as well as
digital versions of board games), and submissions to these
competitions are in the form of either some CI/AI based
software or the output of this software. The winner is the
submission that best solves some problem posed by the game;
often, the problem is to play the game as well as possible,
but it could also be to generate fun levels for the game,
accurately analyse player data or imitate human players.

In August 2013, I held a tutorial at CIG where I discussed
what game-based AI competitions are, what we can learn
from them and how we can make them better. The tutorial
was based on my experience of running several such com-
petitions and of being competitions chair for conferences.
In the ensuing vigorous discussion it was suggested that the
tutorial be written up and published. Thus this short paper.

II. WHY DO IT?

First of all, let us motivate why we organise and participate
in game-based AI competitions at all. One of the most impor-
tant reasons, and probably the most academically respectable
reason, is that competitions provide fair, transparent and
reusable means of benchmarking algorithms. For example,
variants of Pac-Man had been used several times in the
past to test or demonstrate AI algorithms, such as genetic
programming [1]. However, since different implementations

The author is with the Center for Computer Games Research, IT Univer-
sity of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark.
e-mail: julian@togelius.com

of the game and different experimental conditions were used,
there was no meaningful way to compare the results. After
the introduction of the Ms. Pac-Man competition, however,
researchers seeking to use some version of Pac-Man for their
research have had access to (and generally used) software and
experimental conditions as specified by the competition [2].
Anyone can check the league tables on the competition
website, and compare their own algorithm with the results
published there. Even after the competition has ceased to run
officially, researchers have continued to use the competition
software and rules to benchmark their solutions.

A strongly related benefit for researchers is that there is
a benchmark available at all. Many researchers wishing to
do research on problems relevant for games have in the past
faced the problem of having to develop the game (or an API
for an existing game) themselves. The existence of games
already equipped with interfaces and in other ways prepared
for AI research (such as being able to run in “headless”
mode without graphics and with faster execution) allows
researchers to focus on research. This has during the last few
years allowed many researchers from other fields to enter the
AI/CI in games field. It has also allowed many researchers
already in the field to get more research done faster.

Game-based AI competitions are useful not only for
research, but also for teaching. Universities now organise
their own local competitions based on the software and rules
used in the global competitions, and base course assignments
on the competition software. The prospect of being able to
work with a “real” game and benchmark the performance of
their implementations against each other and against leading
researchers is often appreciated by students [3].

The final reason for constructing these competitions and
their associated benchmarks might seem trivial but really is
not. It is that it makes it easier for people outside of our
research field to understand and engage with what we are
doing. It is not easy to explain to journalists, administrators
or even academics from other departments what research in
CI and AI is. Common testbeds such as pole balancing, TSP
and machine scheduling often come across as incomprehen-
sible and/or pointless. Everyone understands Pac-Man.

III. WHICH COMPETITIONS ARE THERE?

In the rest of the paper, I will use concrete examples of
game-based AI competitions in my argumentation. It will
therefore be useful to start with talking about some of them.
This paper is not a survey of game-based AI competitions;
such a survey ought to be written, but would result in a
considerably longer paper. Instead, this section is a selective
enumeration of competitions (most of them associated with
the CIG and AIIDE conferences) ordered by domain.



The earliest game-based AI competitions were based on
classical board games; Chess has long been studied in AI and
cognitive science research, and a Computer Chess Olympiad
has been running since 1974 [4]. Checkers has also been
the subject of much research, at least until it was solved in
2007 [5]. Recently, much effort has gone into playing Go,
motivating the development of the Monte Carlo Tree Search
algorithm [6], [7]. In the CIG community, there has been
a competition in Othello-playing at some conferences; com-
petitors submitted board evaluation functions which would
work with a shallow MiniMax search [8].

Strategy games have in common with classic board games
the control over multiple units and the focus on long-term
strategy. Surprisingly few competitions have been based on
turn-based strategy games. One of them is Planet Wars, a
mechanically simple game that was the basis of a Google
competition. There was also briefly a competition based on
the nuclear strategy game DefCon in 2009. Instead, popular
competitions in the CI/AI community have been based on
real-time strategy games (RTS). ORTS (Open RTS) was
developed by Buro and used for a competition that ran
2003–2009 [9]. In recent years, focus has shifted to the
StarCraft competitions. These are based on the now-classic
Blizzard RTS game together with a third-party interface
called BroodWar API; there is an annual competition at CIG
and another at AIIDE, and both are currently very active [10].

Car racing games could be positioned at the other end
from classic board games on several dimensions of the games
continuum; while they feature elements of tactics (such as
overtaking) and occasionally strategy (such as damage and
fuel management), the greatest emphasis is on the continuous
control problem of driving the car so that lap times are
minimised. The first simulated car racing competition, in
2007, was based on an idiosyncratic two-dimensional racing
game with simple physics and attracted a large number of
submissions [11]. This competition morphed into the Simu-
lated Car Racing Championship, based on the more complex
game TORCS, which has been running since 2008 [12].

Several competitions have been based on classic arcade
games or console games from the 80s. The Ms. Pac-Man
Screen Capture competition, where agents interfaced to an
emulated version of the original Ms. Pac-Man game, ran from
2007 to 2011 [2]. A Java-based Ms. Pac-Man competition ran
in 2011 and 2012, where the core mechanics and levels of
the game have been replicated in a framework to which the
controllers can interface directly [13]. The Mario AI Cham-
pionship ran in various versions from 2009 to 2012 [14],
[15]. This competition had four tracks. In one track submitted
controllers competed on playing unseen levels as well as
possible, in another on learning to play specific levels, in a
third on playing in a human-like manner and in the fourth
on generating levels. Competitions have also briefly existed
based on the 2D space shooter Xpilot [16], and on the
cooperative platformer Geometry Friends [17].

Another category of games is first-person shooter (FPS)
games. The Unreal Tournament 2004 is perhaps the only

commercial FPS for which a third-party interface for agent
control exists, and as a result it has been used extensively
for competitions. The 2k BotPrize was a Turing-test-like
competition for developing the bot that played in the most
human-like manner in a multiplayer game; it ran from 2008
until 2013, when a bot finally managed to convince more than
half of the judges that it was a human player [18]. The same
game has also been used for a “deathmatch” competition in
2009, where the aim was simply to be the last bot standing.

Finally, there are a few competitions that are not based on
existing games or game genres. One is the physical travelling
salesman problem (PTSP) competition, which can be seen as
the hybrid of the traditional TSP problem and a racing game.
Controllers compete for reaching a number of checkpoints
in minimum time, while taking turning radius, momentum
etc into account [19]. Another is Cellz, which is a game
where the task of the controller is to control multiple “cellz”,
which move about in a 2D environment, eat smaller cellz
and multiply [20]. A more famous example is the general
game playing competition (GGP), which tasks submitted
controllers with learning to play an arbitrary unseen board-
game-like game, after being provided with the rules [21].

Competitions are also held in other fields, including rein-
forcement learning, evolutionary computation and planning,
and much could be learnt from how those are organised.
An interesting competition to learn from is the HUMIEs,
focusing on human-competitive results from evolutionary
computation in any domain, which has several times been
won by game-playing agents [22]. Much could probably also
be learnt from how human-human game-playing competi-
tions (eSports) are organised.

IV. SUCCESS AND FAILURE

Not all game-based AI competitions are equal: some have
more impact than others. A competition may get no entrants,
run only once, stagnate, or evolve and keep being relevant.

Get no entrants. Both the Cellz competition and the
Xpilot competition ran once, and received no submissions.
The first Geometry Friends competition had only one entrant.
This is of course the least desired fate for a competition,
so it is important to analyse the reasons for the lack of
competitors. In the case of Cellz, a probable cause is that the
game was not similar enough to any existing computer game,
and was not really playable by humans. (In the later stages
of the game, a human would have to control dozens of cellz
simultaneously in real-time.) Therefore, it is hard to compare
the performance of a controller to how a human would
have played, and also hard to intuit strategies. Additionally,
perhaps few people perceived Cellz as an interesting or
important problem to work on. Xpilot on the other hand is
a fairly well-known game with strong similarities to classic
arcade games such as Asteroids and Defender. However, it
was rather complicated to get started with developing an en-
try for the competition. There was no interface for any high-
level language in common use, such as Java; instead there
was a Scheme interface. The Geometry Friends competition



software did not include a sample controller, which probably
dissuaded many potential competitors.

Run only once. The first version of the Simulated Car
Racing competition ran only one year, before being replaced
with a competition with the same name and partly the same
organisers but based on a very different racing game. The
Unreal 2k4 Deathmatch competition ran only once, attracting
submissions from three competitors, and was not followed
by another such competition. A key reason for competitions
being discontinued is almost certainly lack of time and en-
ergy on part of the organisers. Running competitions is hard
work, and sometimes thankless. If the number of submissions
is low, it is tempting to not re-run the competition. Another
possible reason is that the problem appears solved or close to
solved in its current form. In the first version of the simulated
car racing competition, the top competitors reached very
similar scores, and seemed to be playing the game near-
optimally. Some sort of change was needed to make the
problem more challenging; thus the radical redesign.

Stagnate. The new version of the Simulated Car Racing
competition kept attracting better and better submissions
for two or three years, but then it stagnated: in 2012 and
2013, none of the new submissions beat the best submission
from 2011. The controllers neither performed better nor were
they more sophisticated. There were also fewer submissions
in these latter years. As a result, the competition is not
running in 2014 and it is unclear whether it will run again.
Something similar happened for the Gameplay track of the
Mario AI competition but in a shorter time span: 2009 saw
two competition events and 2010 saw three; in between
each event, the framework evolved. The sophistication of the
submissions increased throughout 2010, even though there
were fewer of them. In 2011 the Gameplay track saw very
few entrants, and in 2012 there were too few entrants to run.

One important possible reason for stagnation is that no
further progress seems attainable, either because the problem
is perceived as “solved”, or because the submitted controllers
seem so sophisticated that it would be impossible to improve
on them in time for the deadline. This is a problem particu-
larly for submissions by teams of students. Other important
possible reasons are that the organisers of the competition
fail to sufficiently advertise the competition, make results of
previous years available, and make source code of previous
years’ competitors available. It is worth noting that even
if a competition stagnates, the competition software can
go on to be widely used for research papers that report
experiments done using that software but not submitted to
the competition. This is the case for both the Simulated Car
Racing competition and the Mario AI competition.

Keep evolving and being relevant. The 2k BotPrize
managed to get numerous submissions during the six years it
was running. More importantly, these submission generally
became better at fooling the judges, until an entry (as
mentioned above) finally managed to win the prize in 2013.
In its lifetime, it saw at least one major overhaul of its
rules, and there was continual improvement of the Pogamut

framework it builds on. This is an example of a competition
that managed to keep evolving and stayed relevant until
the very end. Another good example here is the StarCraft
competitions. These competitions have run since 2010, and
the submissions to the competitions have been getting better
and more sophisticated each year. This is somewhat sur-
prising, as the complexity of the best controllers is such
that it would deter many students and other more casual
participants from participating. But apparently, many of the
best competitors in that competition are either researchers on
long-term or permanent contracts, or developers outside of
academia working in their spare time.

Competitions that keep being relevant have at least two
things in common: (1) the organisers keep investing time
in e.g. improving the usability of the software, bug-fixing
both rules and software, keeping results tables up to date and
promoting the competition, and (2) the underlying problem
is not perceived as solved, but it is seen as realistic to make
short-term advancement towards solving the problem.

V. HOW TO SUCCEED

The following advice is based on the fates of existing
competitions discussed above, and on my own experience of
running competitions. It can be thought of as “the ten habits
of highly successful competition organisers”. The list is
ordered by how well-corroborated these habits are by existing
competitions. I regard the first five as purely beneficial habits
that you should follow, whereas the five latter are positive in
most cases though there might be situations where they can
or should not be followed.
Choose a fun game. A game that humans play out of their
own free will is more interesting to write AI for. It also helps
if the game is famous so that many have already played it.
Be transparent and reliable. Lay down the rules for your
competition early on. Be clear about how scoring will happen
and whether you have an open-source requirement for your
submissions. Stick to your rules. Keep your website updated.
Be platform-agnostic. It is often erroneously assumed that
academic AI researchers are willing to spend time learning
any particular programming language or build system that the
competition might require, or go out and buy the hardware or
software it requires. A good competition builds on software
that runs on any platform, and can easily interface with
several major programming languages in use in academia
(such as Java, c and Python).
Be persistent. Running a competition once is of limited
value. Running a competition ten times over the space of
five years is of much higher value, and does not require
more initial effort, but does require much more persistence.
Repeating a competition allows competitors to improve and
tune their submissions, and allows people who see earlier
competition events to get inspired and participate in later
events. Therefore it is worth running again even if you get
no submissions the first time. Establish a clear governance
structure, and make sure there is someone there to take over
running the competition when you or your students graduate.



Run a discussion group. Even though you keep your
website updated, if your competition is popular there will
be more questions than you can handle, especially regarding
technical details. So start a discussion group (e.g. using
Google Groups) and invite all competitors and other users
of the software to do technical support for each other.
Offer money. Not only are researchers like other humans
motivated by money, but the fact that someone is prepared
to pay money to the winner makes the competition seem
more serious.
Avoid network communication. It should be possible to link
directly to the competition software, as overhead for commu-
nication via IP can slow down the software substantially.
Make it possible to speed up the game. Most forms of
reinforcement learning, in particular evolutionary computa-
tion, require many thousands of trials. If you want your
competitors to be able to use learning algorithms effectively,
make sure your game can be sped up by several orders
of magnitude. This unfortunately causes problems for using
existing closed-source commercial games as a basis for a
competition, as they can rarely be sped up significantly.
Make it really easy to get started. This is surprisingly often
overlooked. An average postgraduate student or faculty AI
researcher, who might not be a stellar programmer, should be
able to have a proof-of-concept submission up and running
within hours. Instructions should be less than a page.
Keep everything open source. Competition entries should
be open source so as to allow competitors to learn from
each other, and so as to prevent cheating. It might be
best to release the source code of entrants only after each
competition event, so as to avoid copying techniques during
the run-up to an event. The competition software itself
should be open source if possible, as it is the only fully
complete specification of the competition rules. This is a
question of fairness: closed-source software can always be
decompiled by anyone with sufficient time and resources.
(The parameters, levels or datasets used for the final test can
be kept secret until the competition event.) Note that it is not
enough to stipulate the open access to source code – all the
source code should be available on the website.

VI. WRITING UP COMPETITIONS

Peer-reviewed publications are the universal currency of
academia. Publication output and citation numbers factor
heavily in hirings and promotions. Running competitions
takes time and effort, and can usually not be discounted
as “teaching”. If we agree that competitions are valuable
for the research community, we need to incentivise running
them by making it possible to publish on the running and
results of competitions. For the same reason, we need to
incentivise taking part in competitions, especially for those
who put serious efforts into their competition entries. It is
also important for future researchers, and for future compe-
titions organisers, that results of competitions are available
in a permanent and citable form. (Competition web pages
fail on both accounts.) Looking at the competitions used as
examples in this paper, a number of different approaches to

publishing their organisation and results have been taken.
They can be grouped into four publication models: solipsist,
dictator, anarchist and big hippie family. I will here comment
on the pros and cons of each.

Solipsist. The solipsist model is that nothing is published,
as if the outside world did not exist. This leaves no permanent
record of the competition. Such a solution essentially negates
the value of organising the competition, as nobody will be
able to build on it. It has no advantages beyond simplicity.

Dictator. In the (benevolent) dictator model, the organ-
iser(s) write a paper of their own, and do not include the
competitors as authors, even though the paper includes results
and might include descriptions of the competitors’ entries.
The big advantage of this model is authorial control: the
organiser can write a stylistically, conceptually and factu-
ally coherent paper and get it submitted on time. Another
potential advantage is that the paper has few authors – for
some people (though certainly not all) this is important.
The main disadvantage is that competitors, who are crucial
for the success of the competition, might not get sufficient
credit as they are not included as authors. (This might be
perfectly fine, e.g. with competitors from outside academia
that are not interested in citations, or when competitors are
anyway planning to publish their contributions separately.)
Another disadvantage is that the organiser might not know
the submissions well enough to write good descriptions of
them. This model was used by the Pac-Man vs Ghost Teams
competition [13] and the 2k BotPrize [18] among others.

Anarchist. One way to make sure that everybody gets
credit for their work is to make an arrangement where
the organisers write a short paper about the organisation
of the competition but not about the competition entries,
and that each of the competitors submits a paper about
their own entry. In theory this is great, as every part of
the competition is described by someone who worked on
it, and everybody gets due credit. The main disadvantage
is that it likely won’t work. Students graduate and faculty
are perennially overcommitted, so the papers might not get
submitted. Some competition entries might not be substantial
or novel enough to publish a paper on in isolation, only as
part of the comparison that the competition provides. Another
big disadvantage is that no single publication will contain the
definitive record of the competition, and be able to make
a really informed comparison of the entries. This model
was used by for example the Gameplay Track of the Mario
AI Championship, where papers by the organisers [14],
[15] were followed by papers by some (but far from all)
competitors, e.g. Bojarski and Congdon [23].

Big hippie family. In the big hippie family model, the
competition organisers organise the writing of a joint paper
including both organisers and competitors as authors. This
paper contains discussions of all aspects of the competi-
tion, and short descriptions of the competitors. Perhaps the
greatest advantage of this model is that it results in a single
paper which will become the definitive point of reference
for the competition. Naturally, this paper will also be the



paper to cite when discussing the competition or its under-
lying benchmark game software. It also allows everybody to
write about what they know most about, resulting in more
initiated technical sections. If done right, this allows deep
comparisons between entries.

One way to do write such a paper is for the competition
organisers to give detailed instructions to competitors for how
to describe their entries. This could be in the form of a list of
questions that must be answered in the section describing the
entry, and a strict page limit and deadline. In the final paper,
the first third could be devoted to the organisation of the
competition, about half to descriptions of the competition
entries, and the rest to results. The author order could be
that organisers go first, followed by competitors in order
of descending results ranking. This model was used for the
Simulated Car Racing Championship [11], [12] and for the
Level generation track of the Mario AI Championship [24].

There are also disadvantages to the big hippie family
model. The main disadvantage is probably the substantial
editorial effort required to assemble the paper, including
chasing competitors that do not contribute their descriptions
in time, and editing the descriptions. Given the page lim-
its of conferences and journals, there might not be space
to describe the contributions in sufficient level of detail
(though this could be solved with online appendixes and
extended versions on repositories such as arXiv). Also, for
those judged by committees that count fractional citations,
spreading authorship so thinly might not be ideal.

The publication models described above are all geared
towards publication in existing conferences and journals.
However, it would be interesting to experiment with new
forms of publication specially geared to reporting competi-
tions. One such model could be a bundle of short or very
short articles, with the introductory article written by the
competition organisers and every competing team writing
their own article, published simultaneously and back-to-back.
Such a bundle would be reviewed and accepted/rejected as
a single entity, but it would be composed of a number of
smaller entities for authorship and citation purposes.

VII. LEARNING FROM COMPETITIONS

What can we learn from a game-based AI competition?
This question is harder to answer than it seems. Let us
consider some alternatives:

That the problem can be solved algorithmically? Most
competition software comes with example code that can
solve the given problem to some extent, e.g. drive a lap
around a track in TORCS, create a playable Mario level
or kill a few enemies in Unreal Tournament. However, the
winning competitor might be able to solve the problem better.
After much work, some competition submissions drive faster
than a human, create levels that humans find interesting or
trick human judges that they are human. These are impressive
“existence proofs” of AI solutions to game problems.

How best to solve the problem? We cannot answer this
question with a high degree of certainty based on the results
of a competition. Just because e.g. neuroevolution is the

basis for the best-performing Pac-Man controller, this does
not mean that neuroevolution is the best way to play the
game – not even out of these methods that have been tried.
Tomorrow, someone might submit a controller that performs
better based on a new, exotic method, or on some method
that has already been tried but where the previous attempt
got some detail wrong. However, if a competition has many
entrants it might be possible to say something generic about
the relative performance of methods. For example, MCTS
seems to be a better method than MiniMax for playing Go.

How not to solve the problem? No. The fact that all con-
trollers based on neural networks have done comparatively
badly in the Gameplay track of the Mario AI competition
does not prove the hypothesis that neural networks are
unsuited to this kind of problem. Maybe neural nets work
excellently if you just change the input representation, or
get rid of the bugs in the previous submissions. At best, the
results corroborate the unsuitability hypothesis.

How to solve a more general version of the problem?
Just because a given methods works very well for e.g. solving
instances of the physical travelling salesman problem, this is
no guarantee that the same method will work well for other
similar problems. It does not even guarantee that they work
well for the same problem after adding noise or multiple
players, or for radically different instances of the problem.

Interestingly, this echoes the situation with competitions
in non-game fields: they mostly provide existence proofs,
that something can be done and how it concretely can be
done in one case. The DARPA Grand Challenge showed us
that it was possible for vehicles to drive a long distance
autonomously, but the specific solution that won was not
necessarily the best way to control an autonomous vehicle.
In the NetFlix Challenge, it was shown that it was possible to
produce 10% more accurate movie recommendations, but the
winning entry was not adapted into a production environment
and it could be argued that it teaches us little about which
machine learning algorithms work best.

One thing we do learn from competitions is how to run
competitions. In recent years we have seen an increase in
sophistication of competitions, and I hope that this paper will
help to codify the knowledge we are gaining in this process.

VIII. EVOLVING COMPETITIONS

Below, I will outline a few steps we as a community
could take to ensure the continued popularity and increased
scientific relevance of game-based AI competitions.

We should work towards ensuring that competition bench-
marks are used in more papers, so as to improve the compa-
rability of results in our field. When we review conference
and journal papers, we need to start demanding that new
algorithms and methods are tested on the same benchmarks
as are used for the competitions, unless there is a very good
reason not to do so. For example, if in a paper the authors test
an algorithm on a “Pac-Man-like game” or a “generic racing
game”, demand that in the revision, the algorithm is tested
on the competition version of Ms. Pac-Man or TORCS, so
that the results can be fairly compared with other methods.



In order to ensure that competitions become more perma-
nent and reliable, we could consider distributing the respon-
sibility for running them, so that they become community ef-
forts. This would mean that “ownership” of the competitions
is transferred from individuals to the organisations behind
them, such as the IEEE CIS Games Technical Committee.

As game design evolves, we need to evolve our offering
of competitions to make use of the possibilities afforded by
new game genres. We have not yet seen any competitions
based on new game genres such as physics-based puzzles
(e.g. Angry Birds, Tower of Goo) or Tower Defence (e.g.
Plants vs. Zombies, Kingdom Rush). This is a question both
about keeping the competition menu fresh and interesting,
and about exploiting the exploration of human cognitive
capacities that good game designers engage in. Carpe ludem!

We should try to counteract the tendency of competition
participants to overfit their solution to particular problems
and problem parameters, so as to make the results of com-
petitions more generally valid. This could be done through
parameterising the competitions, and testing the submissions
on multiple random parameter sets. Almost any game could
easily be parameterised, either through numerical parameters
such as gravity, tire grip, speed or amount of hit points, or
through generating level geometry or other non-numerical
structures. For example, the PTSP competition was made
more generic through evolving problem instances [25].

In the extreme, when parameterising all aspects of the
game including its rules, each parameterisation is a com-
pletely new game. The idea of general video game play-
ing [26] is to apply this idea to games with graphical logic;
there is ongoing work to develop a general video game
playing competition based on a special-purpose language
called the Video Game Description Language [27], [28]. This
is the road less travelled, and the shape of things to come.

REFERENCES

[1] J. R. Koza, “Genetic programming: on the programming of computers
by means of natural selection (complex adaptive systems),” Cam-
bridge, MA, 1992.

[2] S. M. Lucas, “Ms pac-man competition,” ACM SIGEVOlution, vol. 2,
no. 4, pp. 37–38, 2007.

[3] J. Carpio Cañada, T. Mateo Sanguino, J. Merelo Guervós, and
V. Rivas Santos, “Open classroom: enhancing student achievement
on artificial intelligence through an international online competition,”
Journal of Computer Assisted Learning, 2014.

[4] M. Newborn, Computer chess. John Wiley and Sons Ltd., 2003.
[5] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller,

R. Lake, P. Lu, and S. Sutphen, “Checkers is solved,” science, vol.
317, no. 5844, pp. 1518–1522, 2007.

[6] C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel, O. Tey-
taud, S.-R. Tsai, S.-C. Hsu, and T.-P. Hong, “The computational
intelligence of mogo revealed in taiwan’s computer go tournaments,”
Computational Intelligence and AI in Games, IEEE Transactions on,
vol. 1, no. 1, pp. 73–89, 2009.

[7] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey
of monte carlo tree search methods,” Computational Intelligence and
AI in Games, IEEE Transactions on, vol. 4, no. 1, pp. 1–43, 2012.

[8] S. M. Lucas and T. P. Runarsson, “Temporal difference learning versus
co-evolution for acquiring othello position evaluation,” in Computa-
tional Intelligence and Games, 2006 IEEE Symposium on. IEEE,
2006, pp. 52–59.

[9] M. Buro, “Orts: A hack-free rts game environment,” in Computers and
Games. Springer, 2003, pp. 280–291.

[10] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill,
and M. Preuss, “A survey of real-time strategy game ai research
and competition in starcraft,” IEEE Transactions on Computational
Intelligence and AI In Games, 2013.

[11] J. Togelius, S. M. Lucas, H. Duc Thang, J. M. Garibaldi,
T. Nakashima, C. H. Tan, I. Elhanany, S. Berant, P. Hingston,
R. M. MacCallum, T. Haferlach, A. Gowrisankar, and P. Burrow,
“The 2007 IEEE CEC Simulated Car Racing Competition,” Genetic
Programming and Evolvable Machines, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10710-008-9063-0

[12] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta, M. V.
Butz, T. D. Lonneker, L. Cardamone, D. Perez, Y. Sáez, et al., “The
2009 simulated car racing championship,” Computational Intelligence
and AI in Games, IEEE Transactions on, vol. 2, no. 2, pp. 131–147,
2010.

[13] P. Rohlfshagen and S. M. Lucas, “Ms pac-man versus ghost team cec
2011 competition,” in Evolutionary Computation (CEC), 2011 IEEE
Congress on. IEEE, 2011, pp. 70–77.

[14] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 mario
ai competition,” in Evolutionary Computation (CEC), 2010 IEEE
Congress on. IEEE, 2010, pp. 1–8.

[15] J. Togelius, N. Shaker, S. Karakovskiy, and G. N. Yannakakis, “The
mario ai championship 2009-2012,” AI Magazine, vol. 34, no. 3, pp.
89–92, 2013.

[16] G. B. Parker and M. Parker, “Evolving parameters for xpilot combat
agents,” in Computational Intelligence and Games, 2007. CIG 2007.
IEEE Symposium on. IEEE, 2007, pp. 238–243.

[17] J. B. G. Rocha, “Geometry friends,” Master’s thesis, IST, University
of Lisbon, 2009.

[18] P. Hingston, “A Turing test for computer game bots,”
IEEE Transactions on Computational Intelligence and AI
In Games, vol. 1, no. 3, 2009. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5247069

[19] D. Perez, P. Rohlfshagen, and S. M. Lucas, “The physical travelling
salesman problem: Wcci 2012 competition,” in Evolutionary Compu-
tation (CEC), 2012 IEEE Congress on. IEEE, 2012, pp. 1–8.

[20] S. M. Lucas, “Cellz: a simple dynamic game for testing evolutionary
algorithms,” in Evolutionary Computation, 2004. CEC2004. Congress
on, vol. 1. IEEE, 2004, pp. 1007–1014.

[21] M. Genesereth, N. Love, and B. Pell, “General game playing:
Overview of the aaai competition,” AI magazine, vol. 26, no. 2, p. 62,
2005.

[22] K. Kannappan, L. Spector, M. Sipper, T. Helmuth, W. Lacava, J. Wis-
dom, and O. Bernstein, “Analyzing a decade of human-competitive
(“humie”) winners: What can we learn?” in Genetic Programming
Theory and Practice (GPTP), 2014.

[23] S. Bojarski and C. B. Congdon, “Realm: A rule-based evolutionary
computation agent that learns to play mario,” in Computational Intel-
ligence and Games (CIG), 2010 IEEE Symposium on. IEEE, 2010,
pp. 83–90.

[24] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
et al., “The 2010 mario ai championship: Level generation track,”
Computational Intelligence and AI in Games, IEEE Transactions on,
vol. 3, no. 4, pp. 332–347, 2011.

[25] D. Perez, J. Togelius, S. Samothrakis, P. Rohlfshagen, and S. Lucas,
“Automated map generation for the physical travelling salesman prob-
lem,” IEEE Transactions on Evolutionary Computation, 2013.

[26] J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M. Lucas,
R. Miikkulainen, T. Schaul, and T. Thompson, “General video game
playing,” in Artificial and Computational Intelligence in Games, S. M.
Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius, Eds.
Saarbrücken/Wadern: Dagstuhl Publishing, 2013.

[27] M. Ebner, J. Levine, S. Lucas, T. Schaul, T. Thompson, and J. To-
gelius, “Towards a Video Game Description Language,” in Artificial
and Computational Intelligence in Games, S. M. Lucas, M. Mateas,
M. Preuss, P. Spronck, and J. Togelius, Eds. Saarbrücken/Wadern:
Dagstuhl Publishing, 2013.

[28] T. Schaul, “A video game description language for model-based or
interactive learning,” in Computational Intelligence in Games (CIG),
2013 IEEE Conference on. IEEE, 2013, pp. 1–8.


