
Noname manuscript No.
(will be inserted by the editor)

Controllable Procedural Map Generation
via Multiobjective Evolution

Julian Togelius · Mike Preuss · Nicola Beume ·
Simon Wessing · Johan Hagelbäck · Georgios
N. Yannakakis · Corrado Grappiolo

the date of receipt and acceptance should be inserted later

Abstract This paper shows how multiobjective evolutionary algorithms can be used
to procedurally generate complete and playable maps for real-time strategy (RTS)
games. We devise heuristic objective functions that measure properties of maps that
impact important aspects of gameplay experience. To show the generality of our ap-
proach, we design two different evolvable map representations, one for an imagi-
nary generic strategy game based on heightmaps, and one for the classic RTS game
StarCraft. The effect of combining tuples or triples of the objective functions are
investigated in systematic experiments, in particular which of the objectives are par-
tially conflicting. A selection of generated maps are visually evaluated by a popula-
tion of skilled StarCraft players, confirming that most of our objectives correspond
to perceived gameplay qualities. Our method could be used to completely automate
in-game controlled map generation, enabling player-adaptive games, or as a design
support tool for human designers.

Keywords: Real-time strategy games, RTS, procedural content generation, evo-
lutionary computation, multiobjective optimisation, StarCraft

1 Introduction and Motivation

Procedural content generation (PCG) refers to the automatic or semi-automatic gener-
ation of game content. PCG comes in many flavours, as there are many types of game

Julian Togelius · Georgios N. Yannakakis · Corrado Grappiolo
IT University of Copenhagen, 2300 Copenhagen S, Denmark
E-mail: julian@togelius.com, yannakakis@itu.dk, cogr@itu.dk

Mike Preuss · Nicola Beume · Simon Wessing
TU Dortmund, Otto-Hahn-Str. 14, Dortmund, Germany
E-mail: mike.preuss@tu-dortmund.de, nicola.beume@tu-dortmund.de, simon.wessing@tu-dortmund.de

Johan Hagelbäck
Blekinge Institute of Technology, Karlskrona, Sweden
E-mail: johan.hagelback@bth.se



2 Julian Togelius et al.

content that can be generated (such as levels, adventures, characters, weapons, plan-
ets, plants, histories) and many ways in which the content can be generated (many
of them based on methods from artificial intelligence (AI) or computational intel-
ligence (CI), such as constraint satisfaction, planning or evolutionary computation,
others based on e.g. fractals). PCG can also be used in different ways in games, for
example for offline content creation during game development, in support tools for
human designers or for fully automatic online content creation based on player ac-
tions. Similarly, there are different motivations for using PCG, such as speeding up
game development, saving human designer effort/cost, saving main memory or sec-
ondary storage space, academic curiosity or enabling completely new types of games.
What is clear is that PCG is gaining increasing attention among both commercial
game developers, indie developers and academic game researchers.

This paper presents a search-based approach to generating maps for real-time
strategy games. More specifically, we use a multiobjective evolutionary algorithm to
generate maps for both an imaginary generic strategy game based on heightmaps,
and for the classic RTS game StarCraft, using objective functions based on theories
of player entertainment. We believe this approach has significant merits over previous
approaches to generating terrains, and also that we are the first to automatically gen-
erate complete, playable maps for strategy games. We have previously explored this
method in two published papers [1,2]; this paper builds on those papers, and extends
the work published there through adding experiments that combine three objectives
rather than just two, through refining the objective functions, through rerunning most
of the experiments and presenting a larger set of results, through analysing the re-
sults in more depth, through letting human players evaluate the results and through
providing an extended background discussion.

We do not claim to have “solved” the problem of automatic strategy game map
generation, as designing a suitably balanced map (especially a three-player map) is a
hard task even for a skilled human designer; indeed, the maps we have been able to
create have a number of areas to improve on, as evidenced by user studies. However,
we believe our general approach is already more controllable and applicable than any
other map generation algorithm available, and that with more refined constraints and
heuristics it could produce professional-quality maps. Our main contributions are the
general approach, two map representations, a number of reusable heuristics, and an
in-depth study and evaluation of some attempts to evolve good strategy game maps
using the proposed approach.

The paper is structured as follows: The next section gives a background to the
research described in this paper, discussing the role of PCG for strategy games, the
search-based approach to PCG and uses of multiobjective optimisation in games. In
section 3, we present the two game domains we use for our experiments: an imagi-
nary generic strategy game, and the classic RTS game StarCraft. Section 4 outlines
some high-level design decisions. In section 5 we describe how we represent maps
for both of these games. Section 6 first discusses our motivations for various objective
functions to be optimised simultaneously by a multiobjective evolutionary algorithm
(MOEA), followed by a description of the objective functions themselves. The miss-
ing puzzle piece before describing the experiments is the particular MOEA we used
and its configuration (section 7). In section 8, we describe a systematic investigation



Controllable Procedural Map Generation via Multiobjective Evolution 3

of the interplay of pairs and triples of the devised objective functions, in order to to
clarify the design trade-offs in the problem and to ascertain the advantages of multi-
objective techniques. Section 9 summarises the results of a user study, validating that
our objective functions agree with perceived map design qualities. We conclude by
discussing how this method can be used in some different content generation scenar-
ios.

2 Preliminaries

2.1 Procedural Map and Terrain Generation

Maps are central to many computer games, including First-Person Shooters (FPS) and
many Role-Playing Games (RPG), in which the player experiences the world from
a first-person perspective as he navigates a typically hostile environment. But they
are perhaps most important for strategy games, both of the turn-based variety and
RTS games. In these games, the player views the playing area from a third-person
perspective (usually from above) while directing one or several units as they traverse
an area and perform missions, usually involving battle. In this paper, we will mainly
be concerned with RTS games.

Most strategy games come with a set of hand-crafted maps, used both in single-
player “campaign” mode and multi-player matches. These maps are usually created
by professional map designers, having extensive experience of the game as well as
key design considerations. However, there are numerous reasons for wanting to au-
tomatically generate maps. Perhaps the most obvious reason is that by generating a
fresh map each time the game is played, you extend the life-span of the game by per-
mitting the player to explore a fresh map and the specific challenges it entails each
time the game is played. This also means that any advantages a player has accrued
through learning a map by heart are nullified.

A slightly less obvious reason is that maps could be tailored to suit specific play-
ers or groups of players, and/or to generate particular gameplay experiences. For
example, a player that has proven adept at a particular form of strategy might be pre-
sented with a freshly generated map that challenges her to develop other aspects of
her strategic thinking; or, if she has been determined by the game to be less motivated
by challenge and more by easy progress, a new map could be generated that plays
to the strengths of her particular playing style while seeming dissimilar to previous
maps she has played. In a multi-player game, maps might be generated that balance
out the strengths of different players’ playing styles and levels of proficiency, with-
out resorting to explicit handicapping in terms of game rules or resources supplied.
Such a mechanism would place particular demands on models of player behavior and
preferences, as well as on how the map creation algorithm can be controlled.

But one might also want to use procedural map generation algorithms as author-
ing and design support tools, to complement human creativity. In this case the PCG
tools would be used off-line, before a game is shipped or before new high-quality
maps are made available for download. The role of the algorithm would be to suggest



4 Julian Togelius et al.

new map designs according to specified parameters or constrains, which could then
be modified and refined by human map designers.

While most strategy games stick with prefabricated maps (possibly complemented
with an end-user map editor), a significant minority are based on random map gen-
eration. An influential example is the Civilization series of epic turn-based strategy
games, in which the default game mode sees the player playing on a newly ran-
domly generated world map. No authoritative information has to the authors’ best
knowledge been released about Civilization’s map generation algorithm, but the very
short time taken to generate a map suggests a relatively uncomplicated algorithm.
The available parameters for map generation are relatively few, the most important
parameters relate to the size and connectedness of the world’s landmass; further, in
the opinion of the authors, the resulting maps are often not very well balanced. Still,
these maps are good enough, as Civilization poses very different challenges to an
RTS such as StarCraft: Civilization is not usually played as a competitive game, and
play sessions are extremely long, free-form and unpredictable.

A simple way of generating maps similar to those used by Civilization is to seed
the ocean with embryonal islands, and having them grow out in random directions
a predefined number of steps [3]. Certain features on land, such as forest areas, can
be created in the same way. Simple constraints, such as not connecting certain land
areas to fill in canals, can easily be added.

Other approaches involve using fractals, such as the diamond-square algorithm [4].
The diamond-square algorithm works by iteratively subdividing areas of space and
offsetting the midpoint by random amounts. Such algorithms are most commonly
used with height maps to generate, for example, believable mountains. An advantage
of this family of algorithms is that they are so fast that they can often be used for
real-time terrain generation [5].

Recently, Doran and Parberry suggested the use of software agents for generating
terrain [6]. In their approach, a large number of agents are let loose on an initially
featureless piece of terrain and collectively shaping it. Each type of agent has a par-
ticular task, and the workings of some of them resemble forces of nature; so for ex-
ample the river agents travel from mountains to coast following the steepest descent
gradient. The agents are applied in phases, with coastline agents followed by smooth-
ing agents, etc. This approach is claimed to be more controllable than fractal-based
terrain generation algorithms.

In many cases, several different algorithms need to be combined in order to create
a rich and detailed large-scale landscape. When such combinations of procedural
terrain generation algorithms need to allow for human editing at various levels of
detail, specific problems arise, such as how to retain human micro-level edits when
re-generating macro-level features [7].

None of the above approaches take balancing of the map into account, and a map
generated using any of these techniques is unlikely to satisfy a competitive strategy
game player, as it would unfairly advantage one player or another.

The roguelike genre of games (the original Rogue game as well as countless suc-
cessors, such as Nethack, Moria and Diablo) is unique in being fundamentally based
on random map generation. In these games the player fights through a randomly gen-
erated dungeon – walls, placements of monsters, traps and treasure are all generated



Controllable Procedural Map Generation via Multiobjective Evolution 5

at the beginning of each game or play session. The dungeon generators used here of-
ten work either similarly to fractal terrain generation approaches (generate a straight
line from start to exit, iteratively deform the path a number of times, and then grow
randomly branching paths until the room is filled), or by glueing together a number
of prefabricated segments [3].

2.2 Search-Based Procedural Content Generation

The above examples represent what can be called constructive PCG. This means that
the generation algorithm only makes one attempt: it proceeds from start to finish with
none or only insignificant backtracking. In contrast to this, generate-and-test algo-
rithms make several attempts, and only keep those candidate maps content instances
that pass some sort of test. A good example is Tarn Adams’ ambitious game Dwarf
Fortress, for which initial fractal map generation is often repeated a couple of times,
and the user is shown screenshots of “failed” maps along with explanations of what
went wrong, e.g. wrong elevation distribution.

Search-based procedural content generation (SBPCG) is a particular type of
generate-and-test PCG, where the generated candidate content is not simply rejected
or accepted by the test but graded on one or several numeric dimensions, and where a
search algorithm is used to find better content based on the evaluations of previously
generated content.

Usually, some sort of evolutionary algorithm (e.g. a genetic algorithm or an evolu-
tion strategy) is used as the core algorithm for SBPCG. In these cases, a population of
candidates (e.g. maps) is created randomly at the beginning of a run of the algorithm,
and at each generation the worst candidates (according to some objective function)
are replaced with new candidates generated through mutation and/or recombination
from the best candidates. Core concerns when devising an SBPCG solution to some
content generation task is how to represent the content and how to devise the objective
function. An overview of SBPCG can be found in [8].

One of the main arguments for SBPCG is that it allows the designer to formulate
the desired properties of the content more explicitly than with other content gener-
ation methods. Another argument is that it allows the use of content representations
that sometimes yield infeasible solutions (e.g. unusable maps), as such candidates
can be discarded but still form the basis for later, better candidates. The main argu-
ment against SBPCG is that it can be very time-consuming, making it less suitable
for real-time PCG. However, choosing the objective function and the search space
carefully can allow the whole process to finish in a fraction of a second.

There have been a few previous attempts to use evolutionary algorithms to gener-
ate height maps for terrains before. Frade et al. used genetic programming to evolve
terrains, with the evolved expression tree mapping coordinates on a grid to elevation
at that point. The objective function was based on “accessibility” meaning that all
flat areas should be connected while no individual flat area grows too big. Only the
height map was evolved, no other features of the map [9].

Sorenson and Pasquier evolve simple dungeon layouts for e.g. roguelike games,
using a map representation where rooms and hallways of different sizes are placed on



6 Julian Togelius et al.

a two-dimensional surface which is by default non-traversible. The objective function
is simply the length from start to finish, and the only constraint that the path should
be connected [10]. Similarly, Ashlock et al. evolved path-planning problems in which
the objective was to maximise distance from start to finish by placing walls at various
positions and angles [11].

In the above examples, only parts of game environments (e.g. height maps and
walls) are evolved – not complete, playable levels with e.g. items, monsters, re-
sources. This is probably part of the reason why the objective functions are only
tangentially related to actual game playability and entertainment; path length and
accessibility do not alone make for a well-designed level.

In contrast, some recent SBPCG papers have explicitly been based on notions of
player entertainment. Togelius et al. evolved racing game tracks based on objectives
inspired by Malone’s entertainment dimensions [12]; Pedersen et al. evolved levels
for Super Mario Bros based on an empirically derived model of player affect [13];
Hastings et al. evolved weapons for a 2D shooter based on player activity in the
game [14]; Togelius and Schmidhuber evolved rulesets for predator-prey games [15];
and Browne evolved board games based on measures derived from studies of success-
ful games [16]. None of these studies concerned maps or terrains, however. Further,
they all used either a single objective function or an arithmetic or ordinal combination
of several objective functions, yielding in effect a single objective.

2.3 Multiobjective Evolution

In standard evolutionary computation a single objective function is sought to optimise
and therefore used to evaluate candidate solutions. However, for many problems it is
hard to combine all demands into a single objective measure; e.g. when we want a car
to be cheap, fast and safe, we need to optimise in three objective dimensions. In many
cases, the objectives are partially conflicting, for example a faster car is typically less
cheap.

The intuitive solution is to simply add the objective measures together (using
some weighting of each measure), and optimise for the resulting composite measure.
This method has several drawbacks. One is that it is hard for the user to articulate
her preferences by appropriate weights; this does not become easier until the trade-
off between objectives has been explored. Another is that optimisation along a single
dimension does not allow for exploration of the often complicated ways in which the
various objective dimensions interact (e.g., above a certain price threshold faster cars
might not be less cheap). Depending on these interactions, some desired combina-
tions of function values may be unreachable for any weighting. Furthermore, it is a
well-known fact in multiobjective optimisation that for some problems, no weighted-
sum single-objective approach can reach some existing optimal compromise solu-
tions a multiobjective algorithm could attain.1

1 This is the case if the set of optimal compromises, also called the Pareto front (please see next para-
graph), has a concave shape. Das et al. [17] discuss the problem in more detail, simple examples are e.g.
given by Koski [18].



Controllable Procedural Map Generation via Multiobjective Evolution 7

Multiobjective evolutionary algorithms (MOEA) are state-of-the-art methods for
multiobjective problems, and are now a major research direction within evolutionary
computation as well as common in industrial applications. An MOEA presumes at
least two objective functions that are partially conflicting, and proceeds to search for
a Pareto front. The Pareto front is the set of Pareto-optimal solutions, i.e. solutions
that cannot be improved in one objective without worsening in another; it contains all
possible optimal compromises between the objectives. A solution is called dominated
when there is another solution that is better in at least one objective and worse in none.
Elements of the Pareto front are not dominated by definition as no dominating points
exist. In practice, only an approximation of the Pareto front can be expected to be
found by the MOEA. In this context, the term of a nondominated set is important:
A nondominated set contains only solutions that have not been dominated by other
solutions so far. The MOEA iteratively improves a nondominated set as an approx-
imation to the Pareto front and its final set is the algorithms result presented to the
user.

When using two or three objectives, the Pareto front (approximation) can be con-
veniently plotted as a graph, allowing visual exploration of the tradeoffs between
these objectives. Visual or automated inspection of Pareto fronts helps to understand
the space of design possibilities. For example, one can detect situations where a small
loss in one objective would lead to a huge improvement in another, or the opposite.
The possibility to visualise the tradeoffs inherent in a design problem makes multi-
objective optimisation via MOEAs a great but as yet underused tool for design and
authoring support.

More than three objectives are usually hard to handle, as the objective space grows
exponentially with the number of objectives. On the other hand the fraction of points
being comparable to a point (either better or worse in all objective values but not both)
becomes exponentially small. This makes a progress towards the Pareto front quite
hard and requires much resources, i.e. the generation and evaluation of many points,
which might be too time-consuming in case of complex objective evaluation like
simulations. Moreover, the interpretation of results becomes hard as it is problematic
to visualise results in case of more than three objectives.

2.4 Multiobjective Evolution Applied to Games

Multiobjective evolution has been used for a number of different tasks in games, such
as optimising controllers both for memory capacity and for playing well [19], opti-
mising controllers for both playing well and playing and a human-like fashion [20],
optimising several different measures of well-playing simultaneously [21] and for
finding strategies that are well-performing yet behaviourally simple [22]. As far as
we know, multiobjective techniques have not been used in procedural content gener-
ation before.

Optimising some aspect of a game for playability is inherently a multiobjective
problem, as it is very hard to formulate a reliable single-dimensional algorithmic
measure of how entertaining a game is; it is indeed not trivial to formulate partial
measures of game enjoyability. When designing game content, it would seem invalu-



8 Julian Togelius et al.

able for a designer to be able to conveniently visualise the tradeoffs inherent in a
design problem; when automatically generating game content tailored to particular
players, it would also seem ideal to first generate a selection of candidate content
from which appropriate game content for the particular player could then be chosen,
based on her previous playing style and experience model. Additionally, variations
from human-created solutions are desirable for a diversified game, and this is what
evolutionary algorithms naturally are able to accomplish.

3 Game Domains

We test our algorithms by evolving maps for two different domains: an imaginary
strategy game, containing some of the most common elements of strategy games,
and the StarCraft RTS game. In both games, we assume that a map needs to include
positions for player-controlled bases and positions for resources of different kinds.
These features, or more or less isomorphic ones, are common to many strategy games
of different types.

3.1 Generic strategy game

Our imaginary game has a key feature in common with many strategy games (in-
cluding Total War, Dawn of War and several games created with the Spring engine),
namely that the terrain is based on a height map capable of accommodating complex
landscape features – especially hills and valleys of differing height and steepness. We
suppose that elevation differences are associated with a movement penalty, so that
moving up and down hillsides takes more time (or movement points) than moving
along flat territory. There might or might not be visibility effects associated with the
heightmap, such as units only being visible when in line of sight.

3.2 StarCraft

StarCraft is one of the most famous strategy games ever. It was released by Blizzard
Entertainment in 1998 and has, as of 2009, sold more than 11 million copies. The
game is famous for its exquisite balance between the different playable factions, and
is very popular for tournament play.

The game features three factions; terrans, humans that have left planet earth to
travel to distant areas of our galaxy; zerg, a race of insectoid creatures; and protoss, a
humanoid race with very advanced technology and psionic abilities.

In the game the player has to plan and build a base with different structures,
each with a specific purpose. To afford structures and building units the player has
to gather resources from minerals and vespene gas, located around the game map.
Units must be created to defend the home base and to attack and defeat the enemy
players. Different units have different strengths and weaknesses; e.g., some are good
defenders, some deal plenty of damage but are not very mobile, others are fast but do



Controllable Procedural Map Generation via Multiobjective Evolution 9

not do very much damage. The game also features a technology tree in which players
can spend resources to research upgrades for units and structures.

The game can be played in a single-player story line mode, or a skirmish mode
where the player battles against other players or computer controlled enemies. A large
world-wide fan base has contributed large amounts of player generated content, such
as multiplayer maps and map editors.

StarCraft does not have hills and valleys like our imaginary strategy game above;
the terrain is mostly flat. Instead of height maps, StarCraft is built on the notion of
impassable and passable areas. Passable areas are those that ground troops can pass
through, and impassable areas are elements such as rock formations and rivers, which
cannot be passed by ground troops. Nevertheless, the illusion of passable mountain
areas (plateaus) is created by painting the inner part of an area that is surrounded by
impassable tiles in a different color and adding ramps. However, the movement is
restricted in exactly the same way as if the impassable tiles were walls.

4 Meta-design considerations

Before designing the map representation and fitness functions, we had to decide on
a number of high-level design questions that would delimit the space of possible
maps we search. It is quite common in StarCraft and some other strategy games to
create either two- or four-player maps, with one- or two-way symmetry, in order to
guarantee the fairness of the map. In the opinion of the authors, symmetry makes a
map more predictable (if you have seen a particular landscape feature close to your
base, you can count on the enemy having an identical feature next to his own) and
therefore less interesting. We reasoned that symmetry is a result of not having tools
available for creating balanced asymmetric map. Therefore we decided not only to not
enforce symmetry in the map representation, but also to generate three-player maps,
where perfect symmetry is impossible and near-symmetry rather hard to achieve.
The generation mechanism would have to find ways of creating asymmetric balanced
maps.

It should be noted these high-level design decisions are not uncontroversial. As
we will see, these decisions amounted to posing a design problem that would chal-
lenge even professional map designers, and which is beyond the capabilities of any
known map generation algorithms.

5 Map Representation

The map representation for both domains (the imaginary strategy game and StarCraft)
have many things in common, and differ mainly in the representation of terrain fea-
tures. We start with what both representations have in common.

The naive map representation, laid out spatially like it would in the actual game,
is unlikely to induce a good search space for evolutionary or other stochastic search
algorithms, for reasons of dimensionality and locality. Therefore the evolutionary al-
gorithm works on a genotype which is a somewhat indirect representation of the phe-
notype, the map which is used for objective testing and visualisation. The genotype



10 Julian Togelius et al.

is about an order of magnitude smaller than than the phenotype in terms of memory
size, and we believe it is also likely to induce a space that has better locality rela-
tive to several of our objectives. On the continuum of direct-indirect representations
presented in [8], our representation would be at level one or two from the top (the
“direct” end of the scale).

Each time objectives are calculated, a phenotype is created from each genotype.
The genotype (indirect) representation is a fixed-length array of real values between
0 and 1. The length of the array is decided by the number and types of map elements.
These are the four types of elements encoded in the genotype:

– Base: � and ✓ coordinates of each base.
– Resource type 1: x and y coordinates of each resource of type 1. In StarCraft,

this translates to a mineral source.
– Resource type 2: x and y coordinates of each resource of type 2. In StarCraft,

this translates to a well for vespene gas.
– Terrain features. The representation of these differ between the two game do-

mains, but in both cases each terrain element is defined by 5 floating point values.

For the generic strategy game domain, we generate maps with 3 bases, 4 resources
of each type and 10 terrain features, leading to genotypes of length 3 · 2 + 4 · 2 + 4 ·
2 + 5 · 10 = 72. For the StarCraft domain, we use 8 mineral fields and 7 vespene gas
fields (minerals are more important when the game starts, vespene for later stages),
leading to genotypes of length 86.

The indirect representation has the advantage that it can be efficiently searched
by many common global optimisation algorithms, such as evolution strategies and
particle swarm optimisation. In particular, many of these algorithms assume a real-
valued representation, and that local changes in the genotype have local effects in
the phenotype. For example, when changing the � coordinate of the base, the posi-
tions of nearby resources are not changed, and neither are the mountains; it is easy to
imagine representations where this would not be the case, such as many fractal rep-
resentations. Additionally, this representation is scale invariant; a phenotype of any
size can be created out of the genotype. (See more about representation considera-
tions in SBPCG in section 3.1 of [23].) However, one shall consider that even this
very condensed map representation leads to relatively large genotypes (⇡ 50 to 100
real-valued variables), so that search in this large space is not trivial. This may be a
reason why automated map creation has been tried only rarely in the past.

The phenotype (direct) representation is a spatial representation similar to how
the map would be represented in the actual game engine. This representation consists
of a two-dimensional array detailing the terrain, and lists of the x and y positions of
all bases and resources. The terrain array is constructed very differently in the two
domains, but the base and resource locations are generated in the same way.

Resource locations in the phenotype are generated by simply multiplying the x

and y values of each resource in the genome with the height and width of the terrain
array. Base placement is a bit more involved. The coordinates for each base are gen-
erated using a method based on polar coordinates. The two parameters for the base
are treated as angle and length of an axis extending from the center of the map, at the
end of which the base is placed. Additionally, the representation is constrained so that



Controllable Procedural Map Generation via Multiobjective Evolution 11

each base is forced to be within its own arc of the circle, meaning that for three bases
each base is placed within its own 120 degree arc; the length of the axis is constrained
to be between 1/2 and 1 of the radius of the map, meaning that bases cannot be place
too close to the center of the map. By means of polar coordinates, we restrict base
placement so as to make neighboring bases unlikely in order to increase the chances
of obtaining a playable map. Coordinates lying outside the map are simply mapped
to the outermost cell of the map in that direction. This increases the probability of
placing bases on the map borders and is a desired effect.

5.1 Generic strategy game terrain representation

In the generic strategy game, the terrain features are mountains. For each mountain
we consider the two standard deviations (�

x

and �

y

) of a three-dimensional Gaus-
sian distribution with a mean [x, y] (representing the coordinates of the Gaussian
mountain peak); and a weighting parameter, h, that adjusts the height of the Gaussian
surface. The terrain array has size 100⇥100, and each cell can take on a discrete num-
ber between 0 and 99 representing elevation at that point. All cells of the heightmap
are initially set to elevation zero.

The mountains are then drawn as Gaussian curves in two dimensions. The peak
(x and y values for the mountain in the genome multiplied by 100) is elevated to the
height set for that mountain (multiplied by the height parameter, h — h is 99 in these
experiments). The standard deviation values along the x and y axes (�

x

and �

y

) are
calculated by multiplying the corresponding value in the genome by 10. For cells that
are affected by more than one Gaussian 3D bell, the highest value from any of them
is used in the phenotype (final map).

5.2 StarCraft terrain representation

When generating StarCraft maps, the terrain array has size 64⇥ 64 (the standard size
for a StarCraft skirmish map).

The five real numbers that define each terrain feature are interpreted as starting
position (x, y), left and right turn probabilities, and pen lifting probability. All cells
of each map phenotype are by default passable. Impassable areas are then “drawn” in
a manner similar to turtle graphics [24]. The drawing of each impassable area starts
at its designated x and y position by marking that cell as impassable. The “pen”
then repeatedly moves one step in its current direction (starting direction is right) and
marks the new cell as impassable, until it reaches a cell which is already impassable
or the border of the map. At each cell, it decides whether to turn left, turn right and/or
“lift the pen” and leave a gap in the line according to its designated probability for
each of these actions. Only one of these actions is taken at each step, with a turn
angle of 45 degrees. That is, if the turtle turns left, the next step starts over again at
the same position without painting. If it does not turn left, the probability for a right
turn is checked, and if it does not turn right, the probability for a gap is checked. If
none of this applies, the turtle just moves one step forward in its current orientation



12 Julian Togelius et al.

and marks the new position as impassable. Checking left turns first consistently is
done to enlarge the chance that the resulting curve is closed. However, as it still often
happens that the resulting line is not closed (especially if the left turn probability is
low), one attempt to draw towards the original x and y starting position is made by
simply setting the orientation according to the vector between current and starting
position and starting the whole process over again. One further additional constraint
is used to prevent very long lines without turns: whenever 5 consecutive steps have
been made into one direction, the orientation of the turtle is changed by rotating it 45
degrees into the direction to the starting position.

In order to ensure a deterministic genotype to phenotype mapping, a fixed random
number table with 200 entries is used to decide whether to turn and/or leave gaps.
(Non-deterministic genotype to phenotype mappings are known to induce significant
evaluation noise [23].)

The last steps in the generation of a complete StarCraft map are that (1) a GIF
image file is generated from the phenotype, in which each cell type has a different
color, and that (2) the SCPM software2 automatically creates a complete StarCraft
map from the image. Further manual editing is then possible using StarCraft map
editors. The maps shown in this paper have been slightly edited for visual appeal,
without changing the functional structure of the evolved maps.

6 Evaluation Functions for Map Generation

In SBPCG, there is a distinction among three types of evaluation functions: interac-
tive, simulation-based and direct [8]. Interactive evaluation functions rely on human
game players playing the candidate content and providing direct or indirect feedback
about its quality. While in a sense the ultimate type of evaluation function, inter-
active evaluation functions require very large amounts of player input and are only
possible in some types of games, such as ongoing massively multiplayer games [14].
Simulation-based evaluation functions assess content automatically through algorith-
mically playing the game or some aspect of the game using the candidate content.
Such evaluations can potentially be accurate predictors of player enjoyment, but re-
quire both artificial intelligence capable of playing the game competently in a human-
like manner and often substantial computation time [12,15]. Direct evaluation func-
tions base their fitness calculations directly on the phenotype representation of the
content. Such evaluation functions are obviously much easier to implement and faster
to compute than simulation-based functions, but it is hard to devise direct objective
functions that accurately predict key aspects of player experience (except when bas-
ing them on data-driven player models built from extensive user studies [13]).

In this paper, we will not attempt full simulation-based evaluation functions, as
we do not have access to any game engine for our imaginary generic strategy game,
and the StarCraft game is proprietary, closed source and does not have a satisfactory
API. Even if we could script StarCraft to test aspects of our levels through automated
playthrough, this would be prohibitively time-consuming as StarCraft cannot be sped

2 available at http://www.clanscag.com



Controllable Procedural Map Generation via Multiobjective Evolution 13

up to run much faster than real-time (this goes for most commercial games), and
most evolutionary runs would need tens of thousands of objective evaluations. This is
also why we do not use any interactive objective functions; we do not have access to
enough cheap labor to manually play through and evaluate masses of algorithmically
generated maps, especially those maps that would be considered “errors” in the trial-
and-error process of evolutionary computation.

However, we can simulate one key aspect of RTS gameplay: moving between
two points along the shortest possible path. We use the classical A* algorithm for this
task, which returns the number of cells along the shortest path (avoiding impassable
areas) – if not otherwise specified, “distance” means the ength of shortest path found
by A* in the rest of the paper.

But this only answers the “how” question in relation to objective function design,
not the “what” question: what sort of maps do we want to create? We agreed on a
number of desirable characteristics of good strategy game maps, in the sense that
they create conditions for enjoyable gameplay.

– Playability: It should be possible to engage in normal gameplay: building up a
base, attacking enemies etc.

– Fairness: All players should have similar possibility of winning the game given
the same skill level. Note that this does not necessarily mean that starting posi-
tions should be or look similar.

– Skill differentiation: Superior tactics should win more often, so the map should
allow use of different tactics.

– Interestingness: Maps should not all look the same, and should not be bland (e.g.
symmetrical or featureless).

These characteristics can be related to a number of theories of what constitutes
enjoyable game experiences. For example, Malone analyses fun in gameplay into its
components challenge (the right amount of it), fantasy and curiosity [25]. Czikszent-
mihalyi’s Flow theory also centers on having the right amount of challenge [26],
wheras Koster’s “Theory of fun for game design” is fundamentally based on learn-
ability, meaning that the player constantly improves aspects of his/her gameplay [27].

In terms of these theories, playability is of course strongly related to challenge,
in addition to operating on a level below (and presupposed by) the aforementioned
theories; fairness to both challenge (playing against a vastly superior or inferior en-
emy leads to a challenge imbalance) and learnability (playing against someone who,
adjusted for superior/inferior map, is about your own strength encourages learning);
skill differentiation to learnability and curiosity (encouraging players to try out new
strategies); and interestingness to fantasy and curiosity.

We defined a number of different objective measures (mainly based on distance)
for both the generic strategy game and for StarCraft, intended to reflect the desired
map characteristics outlined above. It was at the time of their formulation not clear to
which degree the various functions conflicted or induced searchable objective land-
scapes. The experiments in this paper investigate the interplay of pairs and triples of
these functions, as it is computationally infeasible to optimise for all of the functions
at the same time. All objective functions are to be maximised and are normalised to
values in [0, 1].



14 Julian Togelius et al.

6.1 Generic Strategy Game Evaluation Functions

On generic strategy game maps, the A* algorithm measures the weighted distance
between points. In our formulation, each transition between any two cells has a cost of
5 plus the difference in elevation between the two cells. This takes elevation changes
into account and means that the shortest path between two points might mean going
around a mountain or valley, even if the path straight across the mountain or valley
would result in fewer cells traversed. We defined the following functions for generic
strategy game maps:

– f0: Base distance. The f0 function is calculated as the average weighted distance
between bases.
Motivation: fairness and interestingness. For multiplayer games, all players should
have bases at approximately the same effective distance from each other (either
this means they are separated by long expanses of plains, or by mountain peaks).
Bases should be not be too easily reachable from each other, to avoid too short
games.

– f1: Base on ground. The f1 function promotes low elevation for bases and is
expressed as: f1 = 1 �

P
i

{hB

i

/N

B

}, where h

B

i

is the elevation of base i and
N

B

is the number of bases considered.
Motivation: playability and fairness. Bases should be placed on flat areas to allow
placement of adjacent buildings and spatial allocation of newly produced units.
Bases should all be placed on the same elevation to avoid unfair advantages (cf.
Masada).

– f2: Asymmetry. The f2 function corresponds to the average elevation difference
between a strategically chosen cell (at position (w, h) where w is map width di-
vided by 4 and h is map height divided by 4) and its counterparts on the opposite
half of the grid in both x and y axes (w, 3h), (3w, h), (3w, 3h).
Motivation: interestingness. Symmetric maps might look artificial and boring,
and if symmetry is common among produced maps (if the generating algorithm
displays a preference for this) players might come to count on the same feature
(base, mountain or resource) be available on the opposite side of the grid and
adjust their strategies accordingly.

– f3: Resource distance. The f3 function is expressed as f3 = 1 � (max{DR} �
min{DR}, where max{DR} and min{DR} are, respectively, the maximum and
minimum distances from any base to their nearest resource of any type.
Motivation: fairness. All bases should have the same access to resources.

– f4: Resource clustering. Function f4 expresses the spatial diversity of resources
within a map (within a number of meta-cells) and it is calculated via Shannon’s
entropy formula: f4 = �(1/logC)

P
i

(r
i

/R)log(r
i

/R), where c is the number
of meta-cells the map is divided upon; r

i

is the number of resources on meta-cell
i and R is the total number or resources available. In this study, the map is divided
into 9 square meta-cells, so that the first meta-cell contains all cells between (0, 0)
and (32, 32) etc.
Motivation: interestingness and skill differentiation. Maps where resources are
clustered together (f4 ⇡ 1) motivates some players to explore more, and gives



Controllable Procedural Map Generation via Multiobjective Evolution 15

them more surprises; they also allow more skillful players to take advantage of
their superior tactical knowledge by deciding when to explore and which areas to
defend.

6.2 StarCraft Objective Functions

Based on the experiences gained from the map generator for the imaginary RTS game,
we further develop objective functions for StarCraft.

On StarCraft maps, the A* algorithm simply measures the number of cells along
the shortest path between two points, not traversing any impassable areas. As the
existence of impassable areas may result in unplayable maps, we designed a simple
“sanity check” that is executed before any objective function is run. This test en-
sures that every base and all resources are accessible (there exists a path which is not
blocked by impassable areas) from every other base. Any map not satisfying these
criteria is assigned a value of 0 in all objectives, effectively discarding it. It should
be noted that this constraint precludes the generation of “air war” maps, where the
players can only reach others’ bases using aircraft.

6.2.1 Base placement functions

The first two objective functions relate mainly to the properties of the placement of
players’ starting bases, and to the impassable area around and between bases.

– f

b0: Base space. For playability, some space for other buildings is required next
to the base. Out of the 5*5 cells surrounding a base, the base space is defined as
the fraction of these cells that are passable and reachable within 5 steps (using
A*) from the base. This objective value is the mean of the base space of all bases.

– f

b1: Base distance. The measure makes sure that the bases are not too easy to
reach from each other so that each player has the opportunity to develop their
base before clashing with the others. It contributes to playability and skill differ-
entiation as the game is more difficult for all players when starting close to each
other. f

b1 is the minimum distance between any two bases, divided by the sum of
the map’s width and height.

6.2.2 Resource placement functions

The next four objective functions relate to the placement of resources, relative to each
other and to bases; all of these measures mainly contribute to fairness.

– f

r1: Distance from base to closest resource. The distance from each base to its
closest mineral and its closest gas wells is calculated. f

r1 is the quotient between
the minimal and maximal distance to the closest resource for all bases.

– f

r2: Resource safety. Another measure of how clearly resources are assigned to
a single player, f

r2 measures the average deviation of path lengths between one
resource and all bases (see Fig. 1). So, for bases b1, ..., bn and resources r1, ..., rm



16 Julian Togelius et al.

(a) unsafe resources (b) safe resources

Fig. 1: Safe and unsafe resources. Bases are depicted by pentagons, resources as
circles. The lines mark shortest possible paths for attackers/defenders.

we calculate all path lengths between resources and bases and group them by
resource type:

8j = 1, . . . ,m : D
j

= {dist(r
j

, b

i

) | i = 1, . . . , n} .

f

r2 = min{sGas, sMinerals}, where sGas and sMinerals are simply the average stan-
dard deviations of the respective sets D

j

.

6.2.3 Path functions

The remaining two evaluation functions deal with the character of the paths of the
map. These functions mainly contribute to skill differentiation and interestingness.

– f

p1: Path overlapping. We consider the paths from the bases to all resources and
calculate to what extent paths of different players overlap. In case many cells are
used from different bases we assume that the players’ units are likely to meet.
The value of f

p1 is the average number of users of cells belonging to a path. It
contributes to skill differentiation, as it increases the number of possible flash
points which the player must monitor for conflicts. To produce maps with few
interaction for unexperienced players, we also optimise in the inverse direction
(low values of f

p1) and which we denote as function f�p1.
– f

p2: Choke points. We consider the average narrowest gap on all paths between
bases. The narrowest gap along a path from A to B is calculated by first calcu-
lating a shortest path and then traversing along the path and counting the width
of the path at each cell. Gap width is calculated through determining whether the
path is currently moving horizontally or vertically through comparison with the
previous cell in the path, and searching orthogonally to the path direction until
either an impassable cell or the border of the map is encountered. If the narrowest
gap is less than 10 cells wide, it is deemed a choke point. A copy of the map is



Controllable Procedural Map Generation via Multiobjective Evolution 17

then made, and this gap is filled in with impassable cells on the copy of the map.
A new attempt is then made to find the shortest path from A to B, and if a path
still exists, the increase in length between the new and the old path is recorded.
The choke points function for a pair of bases is calculated as:

0.5 · (10� g) + 0.5 ·
(
0.5 if no new path is found,
d/w otherwise.

Where g is the width of the narrowest gap in the original path, d is the difference
in length between the new and old path, and w is twice the diagonal length of the
map.
Choke points contribute to skill differentiation in that a good player might be
able to exploit such points by using a smaller defending force to stop a larger
attacking force, which cannot use the strength of its numbers as they have to pass
sequentially through the narrow gap. Here, we also consider the inverse function
f�p2 to create easy maps.

7 Optimisation by Multiobjective Evolutionary Algorithm

Most MOEAs work similarly. A population of search points (called individuals) is
generated randomly at first, and then adapted to the problem in order to move towards
the Pareto front by a repeated cycle of variation and selection. Variation creates new
search points by mixing information of existing ones (recombination) and performing
undirected steps with a defined expected length (mutation). Selection choses the best
of the old and new individuals for the preceding iteration and deletes the others. Like
other evolutionary algorithms, MOEAs are black box algorithms, meaning that they
do not rely on explicit domain knowledge. The most popular and long-established
MOEA, NSGA-II [28], has proven its worth in many benchmark and real-world ap-
plications. However, it is nowadays outperformed by state-of-the-art MOEAs, such
as the SMS-EMOA [29].

The SMS-EMOA, which we use in this paper, generates only one new individual
per cycle and removes the individual with the smallest hypervolume contribution, i.e.
the one that dominates the smallest part of the objective space. To accommodate the
need for setting one or several constraints, we employ a modified selection scheme
here. Individuals outside the allowed region get a penalty equalling their distance to
it. When considering which individual to remove, the one with the largest penalty
always gets precedence. Thus, valid individuals are never removed in the presence of
invalid ones.

We employ the NSGA-II standard recombination/mutation operators simulated
binary crossover (SBX) and polynomial mutation (PM) from [28] with (near) default
parameter values of ⌘

c

= 20 and ⌘

m

= 153. SBX has been introduced in [30] and is
based on a polynomial distribution that is 1-centered and that is the flatter, the lower
the respective ⌘ value is. While in SBX, the distribution is applied as multiplier to the

3 In [28], both parameters have been set to 20, other authors use 20 and 15. However, the difference in
algorithm behavior is most likely negligible.



18 Julian Togelius et al.

Fig. 2: Pareto front approximation for the objective pair f3-f4. The solutions a, b, c, d
correspond to the 4 maps in Fig. 3.

difference of the parents (each variable separately), the mutation follows the same
scheme but works directly on the variable values of one individual.

After some testing, the run length was fixed to 50, 000 evaluations for the generic
strategy game and to 100, 000 evaluations for StarCraft. Small further progress after
this time is still observed sometimes but considered irrelevant. In all experiments, we
use populations of 20 individuals, which we consider sufficient to achieve a reason-
able approximation of the Pareto front as we are only interested in a small number
of resulting maps and a rough impression of the front. Increasing the population size
will increase the runtime (in evaluations) at least linearly, leading to unacceptable
waiting times if we think of applying the technique as supportive method in a map
design context.

8 Experiments

We performed a large number of experiments using both game domains in order
to find partial conflicts between objective functions and generate interesting Pareto
fronts. In order to investigate whether multiobjective evolution can provide a tangible
advantage over other optimisation techniques, we need to know whether there exist
partial conflicts between the objectives, meaning that a tradeoff will need to be made
in optimising two objectives simultaneously. If it is further found that the individual
objectives correspond to desirable properties of maps (as will be investigated in a
user study for the StarCraft domain) this is a strong indication that tradeoffs between



Controllable Procedural Map Generation via Multiobjective Evolution 19

(a) (b)

(c) (d)

Fig. 3: The four generated maps taken from the Pareto front approximation for the
objective pair f3-f4 displayed in Figure 2. Bases are illustrated as yellow spheres;
resources are depicted as either red (type 1) or blue (type 2) cones.

different desirable qualities fundamentally exist in the map design problem itself. The
investigation of degree of conflicts between objectives in this section therefore serves
both to clarify the usefulness of multiobjective techniques for designing maps, and
indirectly to investigate properties of the underlying design problem. The experiments
in this section are ordered by game domain (generic strategy game versus StarCraft)
and number of objectives (2 versus 3).

8.1 Generic strategy game

For the generic strategy game, we only explored the interplay of pairs of objectives.
The experiments were chiefly concerned with finding which pairs of objectives ex-
hibit partial conflicts. Therefore multiple evolutionary runs were done with 12 pairs
of the 5 objectives, and the resulting Pareto fronts exhibited.

Partial conflicts (as indicated by substantial Pareto fronts) were found between
objective pairs (f1 (base on ground) and f2 (asymmetry)), (f1 and f3 (resource dis-
tance)), (f2 and f3) and (f3 and f4 (resource clustering)). The resulting Pareto front
for objective pair f3 and f4 is shown in Figure 2. Four maps taken from that front are
depicted in Figure 3.

These conflicts can all be explained in qualitative terms. For example, the easiest
way of optimising base on ground is to simply remove all mountains – this makes
sure that all bases are at elevation zero. But this also makes for a completely topo-
logically symmetrical map. Almost all additions of mountains to the map reduce the
symmetry (increase asymmetry score) but most such additions will also elevate some



20 Julian Togelius et al.

base, reducing the base on ground score. Of course, some configurations of moun-
tains exist where asymmetry is high (though probably not maximal) while all bases
are on ground, but such configurations are hard to find – this is why the conflict is
partial between the objectives. A similar explanation can be given for the conflict
between resource distance and resource clustering, which is visualised in the figures
referred to above: in most configurations where all bases have the same access to
resources, the resources are by necessity quite far from each other, so clustering is
low.

It appears from these pictures that the algorithm finds maps that are interestingly
different from one end of the Pareto front to the next. In particular, the heightmap-
based representation turns out to provide a relatively high locality in the spaces de-
fined by the various fitness functions, a crucial component of evolvability. Any judg-
ment about playability must be qualified by the fact that the maps are not created for
any game in particular. Still, the various fitness functions and constraints on the ter-
rain generation contain an implicit game design sketch, which could relatively easily
be fleshed out to a full game.

8.2 StarCraft

The most extensive set of experiments concerned maps for the StarCraft game. Be-
fore the main investigation of tradeoffs between our objective functions, we per-
formed initial exploratory studies check whether functions were possible to optimise
or trivial on their own, and whether there seemed to be conflicts with other objectives
at all. Both base placement functions (f

b0 and f

b1) were very simple to optimise to
maximal or near-maximal values, so they are included as constraints; maps with less
than 0.5 on any of these functions are discarded immediately. Additionally, f

b1 is
used as an objective in its own right. These initial experiments were followed by a
systematic exploration of the search space induced by our representation and fitness
function.

8.2.1 Two-Objective Experiments

Table 1: Average number of individuals in the final non-dominated fronts for each
function combination.

fr1 fr2 fp1 f�p1 fp2 f�p2

fb1 8.3636 6.5455 7.4545 9.7273 4.4545 7.3636
fr1 4.0909 2.4545 3.7273 3.3636 1.5455
fr2 5.1818 2.5455 2.8182 2.4545
fp1 17.0909 3.3636 1.0000
f�p1 3.0909 2.2727
fp2 17.0909



Controllable Procedural Map Generation via Multiobjective Evolution 21

r1 r2 p1 �p1 p2 �p2

b1
best

median

worst

0.75 1.25 1.75

0
.
7
5

1
.
2

5
1
.
7
5

r1
best

median

worst

0.75 1.25 1.75

0
.
7
5

1
.
2

5
1
.
7
5

r2
best

median

worst

0.75 1.25 1.75

0
.
7
5

1
.
2

5
1
.
7
5

p1
best

median

worst

0.75 1.25 1.75

0
.
7
5

1
.
2

5
1
.
7
5

�p1
best

median

worst

0.75 1.25 1.75

0
.
7
5

1
.
2

5
1
.
7
5

p2
best

median

worst

0.75 1.25 1.75

0
.
7
5

1
.
2

5
1
.
7
5

Fig. 4: Estimated attainment function of the 2-dimensional experiments. The columns
and rows have the following order of function: f

b1, fr1, fr2, fp1, f�p1, fp2, f�p2.

The aim of our main 2-objective study was to find out the degree of conflict
between the map objectives we developed. We performed runs with all pairs of those
objectives that were non-trivial to optimise on their own, with the aim of revealing
trade-offs between them. For each pair 11 runs were performed. The results can be
seen in tables 1 and 2, using two different indicators of the degree of conflict.

Table 1 shows the average sizes of the final Pareto front approximations, i.e. the
number of non-dominated solutions in the last generation. Small fronts are usually
indicators of a low degree of conflict. For the pairs of opposing functions f

p1, f�p1

and f

p2, f�p2 all points are Pareto-optimal and so a large number of points showing
different trade-offs are obtained. Table 2 shows the hypervolume of the final non-
dominated sets relative to the reference point (2, 2). For this indicator, low values
indicate high degrees of conflict. (A value of 2.0 indicates that both objectives can
be maximised simultaneously.) A strong conflict seem to exist for f

r2 with f

p1, f�p1

and f

p2. A weak conflict can be observed for f
r1 and f�p2.



22 Julian Togelius et al.

Table 2: Average hypervolume values of the final non-dominated fronts for each func-
tion combination.

fr1 fr2 fp1 f�p1 fp2 f�p2

fb1 0.6858 0.4076 0.5512 0.4457 0.7680 0.8520
fr1 0.1379 0.5668 0.4553 0.2705 1.0380
fr2 0.0978 0.0982 0.0563 0.2047
fp1 0.3290 0.2401 0.7938
f�p1 0.2123 0.6729
fp2 0.3551

Figure 4 shows the estimated attainment function (EAF) for each pair of objec-
tives. An EAF is an approximation of the shape of a pareto front based on density
functions [31,32]. The size of dominated area (around the upper right corner) corre-
sponded to the hypervolume of the front.

The structure of the matrix in Fig. 4 equals the structure of Tables 1 and 2. A
strong conflict can be observed regarding f

r2, fp2. Here, all the function values are
big (bad) compared to the better values achieved in combination with other objec-
tives. It can concluded that one objective prevents the improvement of the other com-
peting one. Weak conflicts seem to exists among f

r1, f�p2 since the values of both
function reach very good values, better than in combination with other objectives.
When completely contrary objectives are optimised, like for f

p1, f�p1, f
p2, f�p2, the

Pareto front approximation is a line that show possible values of the functions.

8.2.2 Three-Objective Experiments

It would be infeasible to do an exhaustive study of the conflicts within all possible
triples of objectives, both because of the computation time required to produce the
results and the effort required to analyse them. Therefore, based on the results of
the two-objective runs, we selected three interesting objective functions to be used
in three-objective runs. We are here trying to find a triple of objectives where each
objective partially conflicts with each of the other two, and where the three objectives
are still relatively orthogonal to each other in terms of what they measure, reasoning
that such combinations of objectives give rise to the most useful and meaningful
Pareto fronts in design space.

As objective functions we chose the base distance f

b1, typed bases-resource dis-
tance f

r1, and choke points f

p2. Additionally, the base distance is also a constraint
so that only maps with f

b1 � 0.5 are valid, ensuring that the starting positions are
relatively fair. These three objectives represent all 3 function groups and may be con-
sidered a good choice as the first two ensure that playable maps result and the third
one strives for interesting maps. However, one may also exchange e.g. f

r1 with f

r2

or f
p2 with f

p1.
Figure 5 depicts the resulting fronts of 5 independent runs (lower figure) and

the non-dominated points attained from the composition of all fronts (upper figure).
Values of f

b1 < 0.5 would make a map invalid and are not part of the final front of
any run. In the lower figure, single run fronts have different colours, showing that



Controllable Procedural Map Generation via Multiobjective Evolution 23

(a) Non-dominated points of 5 runs

(b) The final fronts of the same 5 runs

Fig. 5: Optimisation in 3 dimensions: Base distance f
b1, bases-resource distance f

r1,
and choke points f

p2. The upper figure shows only the non-dominated points of the
aggregated set of the 5 fronts, the lower figure all points of the fronts. Note the slightly
different scaling.

they are quite diverse. This is probably an effect of the very large search space, and
similar to what has been obtained in a recent real-world multiple criteria optimisation
problem investigation [33]. It seems that there are many ways to achieve the same
objective function values, and that it depends on the starting population of each run
to which area of the solution space it converges. A general treatment of such different



24 Julian Togelius et al.

front realisations has been given in [34]. Nearly all runs ended with a front of size 20
(the population size), meaning that there is a considerable amount of conflict between
the objectives.

Analysing the results, it seems that the choke points objective and the base-
resources distance objective are strongly in conflict, regardless of base distance val-
ues. For base distance against base-resources distance, there seems to be a weaker
conflict which interacts with the choke points objective, so that for certain choke point
function values, a much better front becomes available. However, base distance and
choke points seem to be in very weak conflict only as it is possible to reach near opti-
mal solutions in both at the same time. In figures 6 and 7, we depict 10 example maps
obtained from a single run, please see the next section for more details. However,
we would like to note that the map style looks quite different from manually crafted
maps: the maps are strongly asymmetric and feature large linear or areal blocks of
impassable areas. Given that it is impossible to design perfectly symmetrical square
3-player maps, the lack of symmetry is not surprising.

8.2.3 Testing in the Wild

Some of the evolved maps were used for the first StarCraft AI competition [35] at
the 2010 IEEE Conference on Computational Intelligence and Games. In this com-
petition, competitors pit their best StarCraft AIs against each other and the objective
is simply to write the AI code that survives longest. Though technical issues pre-
vented a conclusive winner from being found, the results of using evolved maps were
encouraging.

9 User study

After investigating the search space induced by our representation and evaluation
functions, the partial conflict between our objectives and the feasibility of evolving
complete maps, we needed to investigate whether the objective functions actually
corresponded to perceived qualities of map design. The best judges of the existence
of such qualities in maps ought to be experienced StarCraft players, who have seen
and played a large variety of maps, presumably of different quality. In order to reach
out to a sizable number of experienced StarCraft players, and in order to be able to
conduct the survey within reasonable time, we would need to use an Internet-based
survey. (Using local students would mean a population of less experienced players,
and therefore presumably less reliable answers.) Due to the technical, legal and other
problems with letting survey participants play the maps in the actual StarCraft game
engine, we opted to simply let participants view images of the generated maps. Over-
all, our study attracted 147 participants of which 7 (roughly 5%) were female. The
vast majority (133) of participants were between 16 and 30 years old, and 134 (91%)
saw themselves as experienced StarCraft gamers.

While the user study was designed to investigate the correlation between objec-
tives and specific traits of the maps, as a side effect we obtained the opinions of



Controllable Procedural Map Generation via Multiobjective Evolution 25

Fig. 6: First 4 of 10 example maps generated from the Pareto front of one 3D run (see
table 3 for function values); these maps were in the user study

experienced players about the overall quality of the maps, as related to the (presum-
ably high quality) maps usually enjoyed by the participants. The reader is advised to
bear in mind that the objective of our research is not at this stage to rival the capacities
and performance of professional human map designers, even though we hope that a
system built on the methods we explore here will one day be able to do so.

The study took the following form: participants were first presented with a page
of instructions, including a legend of the maps. They were then presented with a brief
demographic questionnaire, including questions about whether and how often they
played strategy games. The main part of the survey consisted of a single web page
including ten different maps, so that the participants could easily compare the maps
with each other, and a number of questions concerning each map. The same ten maps
were used for all participants, but their order was randomised between participants.
The number ten is a compromise between the need for statistical significance (more



26 Julian Togelius et al.

Fig. 7: Maps 5 to 10 of the 10 example maps used in the user study

maps) and user fatigue (less maps). All employed maps were taken from the last pop-
ulation of one 3-objective optimisation run using the same objectives as for our pre-
sented 3-objective study (sec. 8.2.2), namely base distance f

b1, typed bases resource
distance f

r1, and choke points f
p2. We chose the ten most extreme maps in order to



Controllable Procedural Map Generation via Multiobjective Evolution 27

allow the users to recognise the differences easily. (These were not necessarily the
maps that “looked best” to us.)

For each map, three forced-choice questions were asked, ten tags could be applied
and the participant was given the option to write a free-text comment on the map. The
main questions were whether the participant agreed with the statements “the map has
a fair resource distribution”, “the map has a fair base starting point distribution” and
“the map has choke points”; each of these questions had to be answered with “yes”,
“no” or “I don’t know” for each of the maps before the user could submit the survey
form (following the recommendations in [36]). The ten tags were simple check boxes,
which the participant could choose to check none or as many as they wanted for each
map; the tags were “interesting”, “fun”, “good gameplay”, “engaging”, “immersive”,
“boring”, “frustrating”, “challenging”, “fair” and “symmetrical”.

In order to collect both experienced and inexperienced StarCraft players as par-
ticipants in the survey, we advertised it widely using social networking sites (Face-
book, Twitter and Google Plus), blog posts, emails to academic mailing lists and the
message board of the StarCraft enthusiast site Team Liquid. In addition to survey par-
ticipation from many highly experienced players, the Team Liquid post got 47 replies
from players commenting on our maps in detail4.

Most of the commenters on our experiments at Team Liquid appreciated the ef-
fort to automatically create StarCraft maps (claiming that it would be very useful for
players if we succeeded) but said that the generated maps were not very good maps
at all. In particular, a very common opinion was that the maps could not be balanced
because they were not symmetrical; any balanced map, in the opinion of these play-
ers, must be symmetrical. Additionally, the decision to focus on three-player maps
was frequently criticised, as it is very hard to make these maps symmetrical.

The results of the survey can be seen in tables 3 and 4, and the most important
correlations from the statistical evaluation are depicted in table 5. We performed two
different statistical tests. At first, it is important to know if the obtained user an-
swers are at all different for the different maps in a statistical sense, or if the user
answer variations can be explained by noise. We investigated this by means of the
prop.test in the statistical software R, which ”can be used for testing the null
hypothesis that the proportions (probabilities of success) in several groups are the
same”5. The null hypothesis is that all measured proportions (one for each map) con-
cerning a specific property (e.g. base fairness) stem from variations of a single fixed
probability. According to table 5, there is a clear influence for resource fairness and
choke points (p-values around 10�6, whether there is none for base fairness. Note that
our sample size (10) is relatively small, so that differences must be relatively strong
for the test to get significant. However, it is clear that base fairness is not perceived
as being very different for the maps, and that tag values are not significantly different
between maps.

The second statistical test is a non-parametric correlation test after Kendall (again
we employed an R method, in this case cor.test) that compares the ranks induced

4 The complete thread can be found at http://www.teamliquid.net/forum/

viewmessage.php?topic_id=245185\&currentpage=All

5 The manual is available e.g. here: http://stat.ethz.ch/R-manual/R-patched/

library/stats/html/prop.test.html, the test goes back to a paper by Wilson [37]



28 Julian Togelius et al.

Table 3: Function values and normalized user answers (from 147 users) to the main
questions. The fBase, fRes, and fChoke values give the objective values measured
while producing each map, namely for base fairness, resource fairness, and choke
points. Note that we minimise here, where 1.00 is the attainable minimum and 2.00 is
the maximum. The next 3 columns give the fraction of users that answered yes to the
main questions as corresponding to the function values: fair base starting point dis-
tribution (base), fair resource starting point distribution (res), contains choke points
(choke.)

Map fBase fRes fChoke base res choke
1 1.38 1.00 1.42 0.180 0.144 0.583
2 1.23 1.46 1.05 0.160 0.118 0.625
3 1.48 1.40 1.04 0.289 0.127 0.641
4 1.20 1.57 1.05 0.091 0.224 0.783
5 1.16 1.66 1.07 0.209 0.158 0.655
6 1.48 1.61 1.02 0.121 0.191 0.674
7 1.24 1.18 1.05 0.191 0.227 0.787
8 1.12 1.76 1.07 0.155 0.169 0.739
9 1.45 1.00 1.11 0.296 0.211 0.697
10 1.33 1.00 1.67 0.238 0.168 0.510

Table 4: Tag frequencies provided by the 147 users for the 10 example maps. Legend:
interesting (intr), fun (fun), good gameplay (ggp), engaging (eng), immersive (imm),
boring (bor), frustrating (frus), challenging (chall), fair (fair), symmetrical (sym).
Note that some maps lacked some tag values for technical reasons.)

Map intr fun ggp eng imm bor frus chall fair sym
1 15 4 2 2 0 30 46 12 2 0
2 14 6 1 1 3 27 46 20 1 0
3 19 0 2 2 1 27 51 21 3 0
4 19 4 3 1 0 30 48 19 1 1
5 15 1 1 2 0 35 56 18 1 2
6 22 7 4 3 2 28 44 17 2 2
7 19 5 3 7 1 30 43 17 2 1
8 27 4 1 2 0 26 49 17 3 0
9 19 2 3 2 1 25 38 20 2 2
10 11 3 2 5 0 36 52 20 2 1

by ordering after an objective value and one based on its corresponding user answer.
We thus feed the test with the 10 values from each of the corresponding columns in
table 3. The result is similar to the one above, namely that there is a relatively strong
anti-correlation between objective values (which were formulated for minimisation)
and user answers (questions posed for maximisation) for the same two cases resource
fairness and choke points. As we have very few samples (10), the correlation tests
themselves do not become significant, but they are not very far from doing so. The
resulting correlations are near to what is usually regarded as strong anti-correlation
(around �0.4) in psychology, thus the user feedback is in remarkably strong agree-
ment to the measured objective function values.



Controllable Procedural Map Generation via Multiobjective Evolution 29

Table 5: Relation of user feedback data to map specific objective function values.
The column fBase/base stands for base fairness, fRes/res for resource fairness and
fChoke/choke for the choke point objective. First line is the Kendall tau correlation,
second gives the correlation test p-value. Third row consists of the p-values of an
equal proportions test of the 10 answer ratios for each map property (failing this test
means that user feedback shall be disregarded).

Property fBase/base fRes/res fChoke/choke
User answer to map value correlation -0.1111 -0.4140 -0.3492
P-value correlation test 0.7275 0.1022 0.1715
P-value equal proportions test 0.2037 7.373e-06 6.358e-06

10 Discussion

As we had hypothesised, many of the objective functions partially conflict with each
other. One of the reasons why we expected this is that the game design considerations
that these objectives intend to model partially conflict even when humans design. The
most fair map is a completely symmetric and relatively uninteresting-looking one; the
resource distribution which best assigns resources unequivocally to individual players
does not cluster the resources as well; the requirement that all bases have enough
space to grow gives less room for the type of easily defended entrances to bases that
could constitute choke points, etc.

We believe that similar design tradeoffs between properties desirable from a game-
play perspective exist for many, perhaps most, game genres and types of game con-
tent. For example, it is hard to design a ruleset for a game that is both easy to grasp
and hard to master, or to design an NPC personality which is both psychologically
believable and acts in a way which fits with the storyline of a game. Therefore, it
is plausible that the multiobjective technique introduced here could be used in other
game genres and for other types of game content – subject to the development of
appropriate content representations and objective functions.

Our three-objective experiment should be seen as a first step rather than a com-
plete coverage of the matter. To our knowledge, the use of more than 2 objectives in
PCG has not been studied before, and the main question is if the larger effort in set-
ting up and understanding the results is rewarded by interesting findings. Doubtlessly,
inspecting two-objective results in order to detecting conflicts is much easier. Thus,
one should only resolve to larger numbers of objectives when a first impression of the
nature and interaction of the single functions has been obtained. Note that in multi-
objective optimisation in general, the interpretation of results regarding the detection
of conflicts is an active research topic and there are no commonly-agreed upon tech-
niques. We hope that we have been able to add to the growing understanding of that
topic, as well as to PCG research, with our study.



30 Julian Togelius et al.

10.1 How Can We Use Multiobjective Evolution as a Design Support Tool?

To make our ideas about how MOEAs can aid designers more concrete, we present a
short fictive scenario.

A designer is at work on producing an extensive library of maps for a new strat-
egy game. The plan is to be able to balance the gameplay by having ready-made maps
that empower weaker players by catering to their particular strengths, and indirectly
handicapping stronger players through presenting them with the sorts of challenges
they are least good at. Presently, the designer is tasked with finding maps that work
well when the weaker player (player 1) is adept at tactical combat, but bad at har-
vesting resources and building up an effective base defence, and the stronger player
(player 2) has as an only weakness a tendency to only build very large and advanced
bases that require a great many resources. The designer therefore specifies that, al-
though players 1 and 2 should have the same number of resources in their general
sphere of interest, player 1 should have “her” resources much closer to her initial
base and clustered together, whereas player 2’s resources are spread out over a large
area. The designer also specifies that the bases should be relatively close to each other
(so that player 1 could conceivably attack before player 2 has finished building), and
that there should be only a single path between the bases and that path should contain
a choke point close to player 1’s base (so she can defend easily). After specifying
these requirements, the designer runs a number of multiobjective runs and look at the
resulting combined Pareto front. The tradeoffs are studied, and the designer decides
to what degree each of the objectives will have to be compromised. A small num-
ber of solutions, taken from different evolutionary runs in order to ensure diversity,
are selected for further inspection and editing. In the last phase, human judgment
and aesthetic sensibility is used to ensure that the maps are indeed playable and to
improve them through manual editing. The process proposed here has similarities to
what has elsewhere been called mixed-initiative PCG [38]

10.2 Making maps better

Our user study was designed to verify whether optimising for a particular objective
yielded an increase in the map quality the fitness function was intended to model. The
results are overall positive, both in that there were significant differences in terms of
perceived qualities between maps optimised for different objective combinations, and
that of the three main assessed qualities (base fairness, resource fairness, presence of
choke points), at least the latter two were found strongly correlated with the corre-
sponding objectives. The base fairness is problematic in that the human testers gen-
erally did not agree with this being a valuable objective for which different degrees
of fulfilment would be reasonable (we do not fully agree with this especially when
we think of balancing a game for two differently able players). We therefore consider
the effectiveness of these fitness functions validated.

On the other hand, the maps we generated were not “good” maps, in the sense
that an experienced player would enjoy one of our maps as much as a professionally
designed map.



Controllable Procedural Map Generation via Multiobjective Evolution 31

One interesting way of indirectly assessing the quality of generated maps would
be to first create a predictor of map quality based on extracted features from existing
maps. As StarCraft is a hugely popular game for which manual map editors have
been available for a long time, several rich repositories of player-made maps exist.
Some of these repositories feature rankings of popularity and/or perceived quality
for their maps, based on the ratings of thousands of players. It would be eminently
doable to calculate all objective scores for the functions defined above on each map.
A model could then be trained (e.g. via neuroevolution) to reproduce the ranking
observed on the repository, with only the objective vector as input. This would give
us a predictor of map quality, which could be used to rate existing maps; it could
also be used to create one or several new objective functions resulting from nonlinear
combinations of these features. However, we have to be aware that the model would
reflect the tastes of the players at that time; setting up maps with new, unseen features
as 3-player/asymmetric maps would not be covered.

10.3 Symmetry in map design, and the purpose of PCG

The outcomes of our user study surprised us to some extent, in that so many of the
commenters complained about the lack of symmetry in the maps our algorithms had
generated. We had started out it with the assumption that symmetrical maps were
boring because they were predictable, and considered the asymmetrical nature of our
maps a feature rather than a bug (in fact, it would have been much easier to generate
symmetrical maps, though in our opinion less interesting). However, most of the ex-
perienced StarCraft players that commented on our maps at Team Liquid disagreed
with us. Many of them reasoned that as the maps were not symmetrical, they cannot
be balanced. One explanation is that they have never seen an asymmetrical balanced
map, and cannot imagine how such a map could be balanced, but would have liked
the maps if they were shown to be balanced through extensive playthroughs. Another
explanation is that such players value the symmetry and associated predictability in
itself, in striking contrast to the authors. Certain players appreciate knowing their
content very well, whether it be racing tracks or maps for FPS or RTS games, so they
can perfect a strategy on a particular level; others value variation and novelty. When
using procedural content generation to adapt gameplay such inter-player differences
should be kept in mind; it is also important to test with the type of player population
for which a particular PCG approach is targeted.

11 Conclusions

We have shown that complete and playable strategy game maps can be generated
using multiobjective evolution. We have also introduced a generic indirect evolvable
representation for such maps, together with its specialisation to two particular map
spaces (StarCraft and a heightmap-based game). We have introduced more than a
dozen evaluation functions related to gameplay experience, several of which partially
conflict with each other; most of these functions could easily be generalised to other



32 Julian Togelius et al.

strategy games. Finally, we have empirically demonstrated that some of our key eval-
uation functions correlate with perceived map qualities.

We believe that with relative little additional work, the method described here
could be used as design a support tool for offline map generation in real games. For
online content generation to be feasible, some work remains to be done, in particular
the process needs to be sped up. As discussed above, a number of interesting research
projects could be undertaken to further develop the technique introduced here.

12 Acknowledgments

This research was supported in part by the Danish Research Agency project AGame-
ComIn (number 274-09-0083) and in part by the EU FP7 ICT project SIREN (num-
ber 258453). As stated in the introduction, this paper is based on two previously
published papers [1,2]; the differences and additions with regard to those papers are
detailed in the introduction.

References

1. J. Togelius, M. Preuss, and G. N.Yannakakis, “Towards multiobjective procedural map generation,”
in Proceedings of the FDG Workshop on Procedural Content Generation, 2010.

2. J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. N. Yannakakis, “Multiobjective
exploration of the starcraft map space,” in Proceedings of the IEEE Conference on Computational
Intelligence and Games (CIG), 2010.

3. T. Adams, “Re: Optimization-based versus “constructive” pcg (post to the “procedural content gener-
ation” google group).”

4. G. S. P. Miller, “The definition and rendering of terrain maps,” in Proceedings of SIGGRAPH, vol. 20,
1986.

5. J. Olsen, “Realtime procedural terrain generation,” University of Southern Denmark, Tech. Rep.,
2004.

6. J. Doran and I. Parberry, “Controllable procedural terrain generation using software agents,” IEEE
Transactions on Computational Intelligence and AI in Games, 2010.

7. R. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “Integrating procedural generation and manual
editing of virtual worlds,” in Proceedings of the FDG Workshop on Procedural Content Generation,
2010.

8. J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based procedural content gen-
eration: a taxonomy and survey,” IEEE Transactions on Computational Intelligence and AI in Games,
vol. in print, 2011.

9. M. Frade, F. F. de Vega, and C. Cotta, “Evolution of artificial terrains for video games based on acces-
sibility,” in Proceedings of the European Conference on Applications of Evolutionary Computation
(EvoApplications), vol. 6024. Springer LNCS, 2010, pp. 90–99.

10. N. Sorenson and P. Pasquier, “Towards a generic framework for automated video game level creation,”
in Proceedings of the European Conference on Applications of Evolutionary Computation (EvoAppli-
cations), vol. 6024. Springer LNCS, 2010, pp. 130–139.

11. D. Ashlock, T. Manikas, and K. Ashenayi, “Evolving a diverse collection of robot path planning
problems,” in Proceedings of the Congress On Evolutionary Computation, 2006, pp. 6728–6735.

12. J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic personalised content creation in racing
games,” in Proceedings of the IEEE Symposium on Computational Intelligence and Games, 2007.

13. C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player experience in super mario bros,” in
Proceedings of the IEEE Symposium on Computational Intelligence and Games, 2009.

14. E. Hastings, R. Guha, and K. O. Stanley, “Evolving content in the galactic arms race video game,” in
Proceedings of the IEEE Symposium on Computational Intelligence and Games, 2009.



Controllable Procedural Map Generation via Multiobjective Evolution 33

15. J. Togelius and J. Schmidhuber, “An experiment in automatic game design,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games, 2008.

16. C. Browne, “Automatic generation and evaluation of recombination games,” Ph.D. dissertation,
Queensland University of Technology, 2008.

17. I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing weighted sums of objectives
for pareto set generation in multicriteria optimization problems,” Structural and Multidisciplinary
Optimization, vol. 14, pp. 63–69, 1997.

18. J. Koski, “Defectiveness of weighting method in multicriterion optimization of structures,” Commu-
nications in Applied Numerical Methods, vol. 1, pp. 333–337, 1985.

19. A. Agapitos, J. Togelius, S. M. Lucas, J. Schmidhuber, and A. Konstantinides, “Generating diverse
opponents with multiobjective evolution,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2008.

20. N. van Hoorn, J. Togelius, D. Wierstra, and J. Schmidhuber, “Robust player imitation with multiob-
jective evolution,” in Proceedings of the IEEE Symposium on Computational Intelligence and Games
(CIG), 2009.

21. J. Schrum and R. Miikkulainen, “Constructing complex npc behavior via multi-objective neuroevo-
lution,” in Proceedings of the Conference on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE), 2008.

22. F. J. Gomez, J. Togelius, and J. Scmidhuber, “Measuring and optimizing behavioral complexity for
evolutionary reinforcement learning,” in Proceedings of the International Conference on Artificial
Neural Networks (ICANN), 2009.

23. J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-based procedural content gen-
eration,” in Proceedings of the European Conference on Applications of Evolutionary Computation
(EvoApplications), vol. 6024. Springer LNCS, 2010.

24. S. Papert, “Teaching children thinking,” Massachusetts Institute of Technology AI Memos, Tech. Rep.
247, 1971.

25. T. W. Malone, “What makes computer games fun?” Byte, vol. 6, pp. 258–277, 1981.
26. M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience. Harper Perennial, 1991.
27. R. Koster, A Theory of Fun for Game Design. Paraglyph press, 2005.
28. K. Deb, A. Pratap, and S. Agarwal, “A fast and elitist multi-objective genetic algorithm: NSGA-II,”

IEEE Trans. on Evolutionary Computation, vol. 6, no. 8, 2002.
29. N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective selection based on dom-

inated hypervolume,” European Journal of Operational Research, vol. 181, no. 3, pp. 1653–1669,
2007.

30. K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Sys-
tems, vol. 9, pp. 115–148, 1995.

31. M. López-Ibáñez, L. Paquete, and T. Stützle, “EAF graphical tools,” 2010. [Online]. Available:
http://iridia.ulb.ac.be/⇠manuel/eaftools

32. V. G. d. Fonseca, C. M. Fonseca, and A. O. Hall, “Inferential performance assessment of stochastic
optimisers and the attainment function,” in EMO ’01: Proceedings of the First International Con-
ference on Evolutionary Multi-Criterion Optimization. London, UK: Springer-Verlag, 2001, pp.
213–225.

33. M. Preuss, C. Kausch, C. Bouvy, and F. Henrich, “Decision space diversity can be essential for solving
multiobjective real-world problems,” in MCDM for Sustainable Energy and Transportation Systems,
EMO Track, M. Ehrgott et al., Eds. Berlin: Springer, 2008, pp. 367–377.

34. G. Rudolph, B. Naujoks, and M. Preuss, “Capabilities of emoa to detect and preserve equivalent pareto
subsets,” in Evolutionary Multi-Criterion Optimization, 4th International Conference, EMO 2007,
Proceedings, ser. Lecture Notes in Computer Science, S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu,
and T. Murata, Eds., vol. 4403. Springer, 2007, pp. 36–50.

35. J. Hagelbäck, M. Preuss, and B. Weber, “CIG 2010 StarCraft RTS AI Competition,” 2010, http://ls11-
www.cs.tu-dortmund.de/rts-competition/starcraft-cig2010/.

36. G. N. Yannakakis, “How to Model and Augment Player Satisfaction: A Review,” in Proceedings of
the 1st Workshop on Child, Computer and Interaction. Chania, Crete: ACM Press, October 2008.

37. E. Wilson, “Probable inference, the law of succession, and statistical inference,” Journal of the Amer-
ican Statistical Association, vol. 22, pp. 209–212, 1927.

38. G. Smith, J. Whitehead, and M. Mateas, “Tanagra: Reactive Planning and Constraint Solving for
Mixed-Initiative Level Design,” Computational Intelligence and AI in Games, IEEE Transactions on,
no. 99, pp. 1–1, 2011.


