
Compositional procedural content generation

Julian Togelius
IT University of Copenhagen

Rued Langgaards Vej 7
2300 Copenhagen, Denmark

julian@togelius.com

Tróndur Justinussen
IT University of Copenhagen

Rued Langgaards Vej 7
2300 Copenhagen, Denmark

tjus@itu.dk

Anders Hartzen
IT University of Copenhagen

Rued Langgaards Vej 7
2300 Copenhagen, Denmark

andershh@itu.dk

ABSTRACT
We consider the strengths and drawbacks of various proce-
dural content generation methods, and how they could be
combined to hybrid methods that retain the advantages and
avoid the disadvantages of their constituent methods. One
answer is composition, where one method is nestled inside
another. As an example, we present a hybrid evolutionary-
ASP dungeon generator.

1. INTRODUCTION
A procedural content generation (PCG) problem takes the
following form: for a given game, player, context and con-
tent type, generate one or several content artefacts that are
good enough according to some criterion. For example, one
might want to generate a map that allows each player a start-
ing position with surrounding land to explore (Civilization),
a set of weapons that are interestingly different from each
other but not excessively powerful (Borderlands), or sim-
ply plants that are diverse and natural-looking (SpeedTree).
PCG problems can be posed and solved online as the game
is executing, or offline during design time.

Like all problems, PCG problems can be cast as search
problems. From this perspective, solving a problem means
searching for a solution to the problem. There might exist
null, one or many (possibly very many) solutions that are
good enough. In a recent survey paper [7], various ways in
which PCG can be seen as search are discussed and some of
the major choices in searching for good content are outlined,
including representation, evaluation function and search al-
gorithm. The vast majority of work cited in that survey uses
evolutionary computation or similar global stochastic search
algorithms.

An important exception to this is the use of Answer Set
Programming (ASP) for PCG. As introduced by Smith and
Mateas [5, 4], this technique uses the AnsProlog language
to encode content artefacts and the validity constraints such
content must adhere to. While syntactically similar to Pro-

log, AnsProlog is interpreted in a very different way: running
an AnsProlog program returns the set of all configurations
of the specified variables that are valid “answers” to the pro-
gram, i.e. all configurations of variables that do not con-
tradict the validity constraints. When using ASP for PCG,
each answer generated can be interpreted as an artefact.

ASP does not completely fit the definition of “search-based”
PCG in [7], as most ASP implementations do not use stochas-
tic search. Most ASP solvers implement some deterministic
process that iteratively prunes search space through elim-
ination of inconsistent configuration, and which does not
generate and test candidate answers. (A common technique
is to translate the answer set program into an instance of
the satisfiability problem, and use a SAT solver.) However,
content generation based on ASP undoubtedly performs a
search of the content space. The name “solver-based PCG”
has been proposed for ASP and similar techniques (such as
constraint solving as used in e.g. Tanagra [6]), but one could
just as well choose to widen the definition of “search-based”
to include these approaches.

The very different modes of search and problem specifica-
tion employed by evolution-like algorithms and by ASP have
their respective advantages and disadvantages. A complete
characterisation of these differences is still outstanding and
certainly beyond the scope of this paper. However, one dif-
ference that can be pointed out, is that whereas an execution
of an ASP program terminates after an unknown time with
a set of unknown size (perhaps zero) of artefacts that are
guaranteed to satisfy all of the constraints that have been
specified, a run of an evolutionary algorithm terminates af-
ter a well-known pre-specified time with a set of well-known
pre-specified size of artefacts that satisfy all of the objec-
tives that have been specified as best as the algorithm could
find (perhaps not very well at all). While in practice a well-
specified ASP program terminates very quickly, the worst-
case complexity is exponential. On the other hand, while in
practice a well-tailored representation and objective func-
tion allows an evolutionary algorithm to find good solutions
quickly, there is certainly no guarantee.

All search-based methods depend on that the desirable qual-
ities of content can somehow be encoded as evaluation func-
tions (objectives) or constraints (any evaluation function can
be turned into a constraint by specifying a minimum accept-
able value). These functions should reliably and accurately
measure what they are intended to measure, and efficiently



computable. Finding good evaluation functions is a ma-
jor problem for all PCG approaches that rely on search.
It seems extremely hard to design an algorithm that accu-
rately measures something as complex as how interesting a
game ruleset is. Therefore some approaches measure a num-
ber of simpler features and try to combine these measures,
or alternatively use humans as part of the loop to evaluate
candidate content artefacts.

Many other PCG techniques, however, do not perform any
search of content space, at least not in the same sense as
evolutionary algorithms or ASP search space. Classic PCG
algorithms such as Diamond-square [1], Perlin noise [3] or
cellular automata [2] are constructive: they run once and
produce a result within a bounded and predictable (and
usually short) runtime, without the need for re-generating
content in case the generation somehow went wrong. While
there is much to be said for short and predictable runtimes,
it is hard to create constructive algorithms for many types
of content that are capable of generating a sufficiently rich
and diverse repertoire of content without risk of catastrophic
failure, i.e. generating content that is so bad in some sense
that it breaks the game. This is probably why constructive
PCG methods have previously only been used for optional
content (which can be broken without destroying gameplay)
or exhaustively tested to never produce broken content (as
in the case of Elite).

2. HYBRIDISATION THROUGH COMPO-
SITION

So it seems we have a number of different approaches to
PCG, none of which is a silver bullet: they all have advan-
tages and disadvantages. This should not come as a great
surprise to anyone. The precise merits and problems of in-
dividual methods have been debated before and keep be-
ing debated, but that is not our focus here. Instead we
want to discuss how different PCG methods can be com-
bined into hybrid methods, which combines the strengths of
several methods while avoiding the weaknesses of either.

One way of combining methods is to unite them within a
search-based framework. A key part of any search-based
content generation method is the genotype-to-phenotype map-
ping. This mapping is whatever transforms the genotype
(the data structures used inside the search algorithm) into
the phenotype (the actual content artefacts). For exam-
ple, transforming vectors of real numbers into complete RTS
maps, or transforming grammar axioms into 3D rocks. As
observed in [7], the genotype-to-phenotype mapping can be
seen as a PCG algorithm in its own right, that takes the
genotype as input (parameters) and produces the pheno-
type as output. The more indirect the mapping between
genotype and phenotype, the more is expected of this algo-
rithm. In order for the search to be effective, it is important
that the mapping preserves locality, i.e. that small changes
in genotype space produce proportionally small changes in
phenotype space.

The mapping (or “inner PCG algorithm”) could consist of
either a constructive, generate-and-test, solver-based or an-
other search-based algorithm. Given that the different ap-
proaches to PCG seem to excel at producing (or safeguard-
ing) different qualities/properties in content artefacts, it would

make sense to choose a mapping that is complementary to
the main (“outer”) PCG algorithm in terms of what proper-
ties it is responsible for.

Figure 1 depicts several desirable properties common to many
types of game content, ordered by ascending difficulty. (Any
likeness to classic concepts and diagrams in psychology is
completely coincidental.) At the bottom of the pyramid we
find those basic aspects of game content which need to be
present in order for the content to make sense at all — it
needs to be consistent (objects have finite dimensions, rule-
sets are non-contradictory) and playable (maps have starting
positions and game boards have free space). There should
also exist a winning condition and be possible to get there
from the starting condition. Constructive algorithms are
usually good at producing consistent content, and playabil-
ity and winnability can often be specified as easily checked
and satisfied constraints, and thus be delivered by a solver-
based PCG algorithm. Further up the ladder we find such
properties as challenge and fairness (it is equally easy to
play as white or blue even though the sides have different
conditions, the game rewards you for playing better rather
than worse). While such properties can often be reason-
ably approximated by simulation-based evaluation functions
(playing part of the game with an artificial agent and eval-
uating based on the outcome), they are properly evaluated
on a continuum rather than as constraints to be fulfilled.
A game is not challenging or non-challenging, but it might
be “0.76 challenging”. Such numerical evaluation values are
a natural fit for search-based methods. Finally, there are
those properties for which we cannot currently find any good
algorithmic approximations, but will simply have to put a
human in the loop; properties such as “interesting”, “cre-
ative”, “awe-inspiring” and “sublime”. At the top level, we
will have to resort to mixed-initiative techniques or interac-
tive evolution, but we should do everything we can to ensure
that properties at lower levels are automatically optimised
so that humans don’t have to spend their scarce resources
in ensuring these lower-level properties.

A good reason for combining several PCG algorithms, in our
opinion, is to be able to produce content that has more de-
sirable properties than could be delivered by any individual
algorithm. A viable strategy for such combination of algo-
rithms is composition: using an inner algorithm that guar-
antees the more basic properties within an outer algorithm
that optimises the more advanced properties.

Figure 1: A pyramid of desirable properties, and
how they could reasonably be evaluated.



3. COMPOSITIONAL DUNGEON GENER-
ATION

As an example of hybrid content generation, we present an
experiment where we create dungeons for a fictive roguelike
game using an ASP-evolution hybrid approach. The geno-
types are parameters for answer set programs, which are
converted using an ASP solver to answer sets. Each answer
is then interpreted as a map and evaluated using simulation-
based testing; ASP is responsible for well-formedness, playa-
bility and winnability, whereas evolutionary search is re-
sponsible for optimising challenge and skill differentiation.

3.1 Representation and mapping
The chromosome consists of 17 discrete numbers specifying
various controllable properties of generated dungeons:

• Height of the map

• Width of the map

• Minimum number of steps from start to finish

• X an Y coordinates of entrance and exit

• Number of traps

• Number of open tiles

• Number of monsters of types 1-4

• Number of “true sight” buffs (shows all traps in the
map)

• Number of “disarm next trap” buffs

• Number of buffs that help in the next monster en-
counter

During genotype-to-phenotype mapping, these values are
first transcribed into an answer set programming, by substi-
tuting placeholder values in an existing file (loosely based on
Adam Smith’s example maze generation code1). While we
do not have space to reproduce the full ASP code here, the
snippet that deals with specifying trap placement looks as
follows (note that the word “trapcount” is replaced with the
actual number of traps specified in the chromosome during
the mapping process):

%Amount of traps

{trap(X,Y) :dim1(X) :dim2(Y)}trapcount.

%Traps should be reachable

:- trap(X,Y), not solid(X,Y).

:- trap(X,Y), not reachable(X,Y).

:- trap(X,Y), start(X,Y).

:- trap(X,Y), finish(X,Y).

This file is passed to an ASP solver, and the resulting an-
swers are interpreted as dungeons. The AnsProlog program
is written so that any dungeons that are generated this way
are guaranteed to be not only complete and well-formed, but
also winnable; there is at least one way to get from start to
goal without dying.
1http://eis-blog.ucsc.edu/2011/10/map-generation-
speedrun

3.2 Evaluation function
The evaluation function tries to measure the challenge and
skill differentiation of the dungeon. With “skill differen-
tiation” we mean that skilful playing should be rewarded
with more in-game success than bad playing. (The oppo-
site would be badly designed content where the player has
little influence over what happens.) These properties are
approximated through simulation-based evaluation; two dif-
ferent agents play the dungeon, and the difference between
their results is measured. The reckless agent plays by simply
following the shortest path (as found by A*) from start to
goal, running straight into any monsters and traps along its
way. The smart agent also relies on A*, but has a heuristic
that causes it to avoid monsters and traps when possible
and collect any buffs close to its path.

The evaluation function can be stated as

f = (1 − dl/da) + (1 − hs/ha) (1)

where dl is the distance from start to finish in a straight
line, da is the distance from start to finish along the shortest
path (found with A*), hs is the amount of damage sustained
by the smart agent when navigating the dungeon and hr is
the amount of damage sustained by the reckless agent when
navigating the dungeon.

Note that any particular genotype can produce zero or more
phenotypes (answers). When the ASP solver returns the
empty set as a result, indicating that no dungeons with the
specified controllable properties exist, a fitness of zero is
returned. Otherwise, the first 20 dungeons produced during
the mapping are evaluated and their fitness averaged. In
most cases, there is a relatively high fitness variance between
the dungeons generated by the same ASP code.

3.3 Results
A µ+λ (elitist) evolution strategy (ES) with µ = 30, λ = 30
was used as the core search algorithm. Mutation was per-
formed with p = 0.3 for perturbing each locus. Several runs
were made with a number of variations of the underlying
ASP program, in order to find the variation that allowed
the reliable production of the best dungeons. Figure 2 shows
fitness growth during a typical evolutionary run. As can be
seen the ES finds a fitness plateau after only about 40 gen-
erations in this case. Figure 3 shows an example generated
dungeon, displayed in a format similar to that used in many
roguelike games.

Figure 2: An evolutionary run of 92 generations.

4. CONCLUSIONS
We have discussed the pros and cons of some different fam-
ilies of PCG algorithms, and how they can be combined
through “composition”, or putting one algorithm inside an-
other. In our discussion, this means using a constructive or



Figure 3: A sample generated map. Legend: @@–
wall, !!–trap, 11–monster type 1 (etc for 2, 3, 4),
TT–true sight buff, DD–disarm trap buff, BB–defeat
monster buff, SS–start, FF–finish.

solver-based algorithm as the genotype-to-phenotype map-
ping of a search-based algorithm, though it is conceivable
that composition could be achieved in some other manner
as well. The advantage of doing this is that the “inner”
algorithm could be used to guarantee the lower-level de-
sirable properties that can be encoded as generation rules
and/or constraints, leaving the “outer” algorithm to pur-
sue the higher-level desirable properties which might require
simulation-based testing or human input to approximate,
and cannot be encoded as constraints due to there not be-
ing any known or easily attainable minimum level.

We also demonstrated compositional PCG with a simple ex-
periment where dungeons for a roguelike game are generated
with a hybrid approach. An evolution strategy evolves pa-
rameters for ASP programs, which when run produce answer
sets, which in turn are interpreted as dungeons and evalu-
ated using a simulation-based fitness function. While this
is admittedly a simplistic example that does not use either
algorithm to its full potential, we believe that the division
of labour between the algorithms is the correct one, and in
some more demanding content generation tasks such a di-
vision of labour might be essential to producing practical
solutions.

5. ACKNOWLEDGEMENTS
Thanks to Adam Smith of UC Santa Cruz for inspiring dis-
cussions, and also for help with technical matters.

6. REFERENCES
[1] A. Fournier, D. Fussell, and L. Carpenter. Computer

rendering of stochastic models. Communications of the
ACM, 25(6):371–384, 1982.

[2] L. Johnson, G. N. Yannakakis, and J. Togelius. Cellular
Automata for Real-time Generation of Infinite Cave
Levels. In Proceedings of the ACM Foundations of
Digital Games. ACM Press, June 2010.

[3] K. Perlin. An image synthesizer. In ACM SIGGRAPH
Computer Graphics, volume 19, pages 287–296. ACM,
1985.

[4] A. Smith and M. Mateas. Answer set programming for
procedural content generation: A design space
approach. IEEE Transactions on Computational
Intelligence and AI in Games, 2011.

[5] A. M. Smith and M. Mateas. Variations forever:
Flexibly generating rulesets from a sculptable design
space of mini-games. In Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on, 2010.

[6] G. Smith, J. Whitehead, and M. Mateas. Tanagra:
Reactive planning and constraint solving for
mixed-initiative level design. IEEE Transactions on
Computational Intelligence and AI in Games,
3(3):201–215, 2011.

[7] J. Togelius, G. N. Yannakakis, K. O. Stanley, and
C. Browne. Search-based procedural content generation:
a taxonomy and survey. IEEE Transactions on
Computational Intelligence and Games, 3:xx–xx, 2011.


