
The 2009 Mario AI Competition

Julian Togelius, Sergey Karakovskiy and Robin Baumgarten

Abstract— This paper describes the 2009 Mario AI Competi-
tion, which was run in association with the IEEE Games Inno-
vation Conference and the IEEE Symposium on Computational
Intelligence and Games. The focus of the competition was on
developing controllers that could play a version of Super Mario
Bros as well as possible. We describe the motivations for holding
this competition, the challenges associated with developing
artificial intelligence for platform games, the software and
API developed for the competition, the competition rules and
organization, the submitted controllers and the results. We
conclude the paper by discussing what the outcomes of the
competition can teach us both about developing platform game
AI and about organizing game AI competitions. The first two
authors are the organizers of the competition, while the third
author is the winner of the competition.

Keywords: Mario, platform games, competitions, A*,
evolutionary algorithms

I. INTRODUCTION

For the past several years, a number of game-related
competitions have been organized in conjunction with major
international conferences on computational intelligence (CI)
and artificial intelligence for games (Game AI). In these
competitions, competitors are invited to submit their best
controllers or strategies for a particular game; the controllers
are then ranked based on how well they play the game, alone
or in competition with other controllers. The competitions
are based on popular board games (such as Go and Othello)
or video games (such as Pac-Man, Unreal Tournament and
various car racing games [1], [2]).

In most of these competitions, competitors submit con-
trollers that interface to an API built by the organizers of
the competition. The winner of the competition becomes the
person or team that submitted the controller that played the
game best, either on its own (for single-player games such as
Pac-Man) or against others (in adversarial games such as Go).
Usually, prizes of a few hundred US dollars are associated
with each competition, and a certificate is always awarded.
There is no requirement that the submitted controllers be
based on any particular type of algorithm, but in many cases
the winners turn out to include computational intelligence
(typically neural networks and/or evolutionary computation)
in one form or another. The submitting teams tend to
comprise both students, faculty members and persons not
currently in academia (e.g. working as software developers).

There are several reasons for holding such competitions
as part of the regular events organized by the computational
intelligence community. A main motivation is to improve

JT is with IT University of Copenhagen, Rued Langgaards Vej 7,
2300 Copenhagen S, Denmark. SK is with IDSIA, Galleria 2, 6928
Manno-Lugano, Switzerland. RB is with Imperial College of Science
and Technology, London, United Kingdom. Emails: julian@togelius.com,
sergey@idsia.ch, robin.baumgarten06@doc.ic.ac.uk

benchmarking of learning and other AI algorithms. Bench-
marking is frequently done using very simple testbed prob-
lems, that might or might not capture the complexity of real-
world problems. When researchers report results on more
complex problems, the technical complexities of access-
ing, running and interfacing to the benchmarking software
might prevent independent validation of and comparison
with the published results. Here, competitions have the role
of providing software, interfaces and scoring procedures to
fairly and independently evaluate competing algorithms and
development methodologies.

Another strong incentive for running these competitions
is that they motivate researchers. Existing algorithms get
applied to new areas, and the effort needed to participate in
a competition is (or at least, should be) less than it takes to
write new experimental software, do experiments and write
a completely new paper. Competitions might even bring new
researchers into the computational intelligence fields, both
academics and non-academics. One of the reasons for this is
that game-based competitions simply look cool.

The particular competition described in this paper is
similar in aims and organization to some other game-related
competitions (in particular the simulated car racing compe-
titions) but differs in that it is built on a platform game, and
thus relates to the particular challenges an agent faces while
playing such games.

A. AI for platform games

Platform games can be defined as games where the player
controls a character/avatar, usually with humanoid form, in
an environment characterized by differences in altitude be-
tween surfaces (“platforms”) interspersed by holes/gaps. The
character can typically move horizontally (walk) and jump,
and sometimes perform other actions as well; the game world
features gravity, meaning that it is seldom straightforward to
negotiate large gaps or altitude differences.

To our best knowledge, there have not been any previous
competitions focusing on platform game AI. The only pub-
lished paper on AI for platform games we know of is a recent
paper by the first two authors of the current paper, where we
described experiments in evolving neural network controllers
for the same game as was used in the competition, using
an earlier version of the API [3]. Some other papers have
described uses of AI techniques for automatic generation of
levels for platform games [4], [5], [6].

Most commercial platform games incorporate little or no
AI. The main reason for this is probably that most platform
games are not adversarial; a single player controls a single
character who makes its way through a sequence of levels,
with his success dependent only on the player’s skill. The



obstacles that have to be overcome typically revolve around
the environment (gaps to be jumped over, items to be found
etc) and NPC enemies; however, in most platform games
these enemies move according to preset patterns or simple
homing behaviours.

Though apparently an under-studied topic, artificial intelli-
gence for controlling the player character in platform games
is certainly not without interest. From a game development
perspective, it would be valuable to be able to automatically
create controllers that play in the style of particular human
players. This could be used both to guide players when
they get stuck (cf. Nintendo’s recent “Demo Play” feature,
introduced to cope with the increasingly diverse demographic
distribution of players) and to automatically test new game
levels and features as part of an algorithm to automatically
tune or create content for a platform game.

From an AI and reinforcement learning perspective, plat-
form games represent interesting challenges as they have
high-dimensional state and observation spaces and relatively
high-dimensional action spaces, and require the execution of
different skills in sequence. Further, they can be made into
good testbeds as they can typically be executed much faster
than real time and tuned to different difficulty levels. We
will go into more detail on this in the next section, where we
describe the specific platform game used in this competition.

II. INFINITE MARIO BROS

The competition uses a modified version of Markus Pers-
son’s Infinite Mario Bros, which is a public domain clone
of Nintendo’s classic platform game Super Mario Bros. The
original Infinite Mario Bros is playable on the web, where
Java source code is also available1.

The gameplay in Super Mario Bros consists in moving the
player-controlled character, Mario, through two-dimensional
levels, which are viewed sideways. Mario can walk and run to
the right and left, jump, and (depending on which state he is
in) shoot fireballs. Gravity acts on Mario, making it necessary
to jump over holes to get past them. Mario can be in one of
three states: Small, Big (can crush some objects by jumping
into them from below), and Fire (can shoot fireballs).

The main goal of each level is to get to the end of the
level, which means traversing it from left to right. Auxiliary
goals include collecting as many as possible of the coins
that are scattered around the level, finishing the level as fast
as possible, and collecting the highest score, which in part
depends on number of collected coins and killed enemies.

Complicating matters is the presence of holes and moving
enemies. If Mario falls down a hole, he loses a life. If he
touches an enemy, he gets hurt; this means losing a life if he
is currently in the Small state. Otherwise, his state degrades
from Fire to Big or from Big to Small. However, if he jumps
and lands on an enemy, different things could happen. Most
enemies (e.g. goombas, cannon balls) die from this treatment;
others (e.g. piranha plants) are not vulnerable to this and
proceed to hurt Mario; finally, turtles withdraw into their

1http://www.mojang.com/notch/mario/

shells if jumped on, and these shells can then be picked up
by Mario and thrown at other enemies to kill them.

Certain items are scattered around the levels, either out in
the open, or hidden inside blocks of brick and only appearing
when Mario jumps at these blocks from below so that he
smashes his head into them. Available items include coins,
mushrooms which make Mario grow Big, and flowers which
make Mario turn into the Fire state if he is already Big.

A. Automatic level generation

While implementing most features of Super Mario Bros,
the standout feature of Infinite Mario Bros is the automatic
generation of levels. Every time a new game is started,
levels are randomly generated by traversing a fixed width
and adding features (such as blocks, gaps and opponents)
according to certain heuristics. The level generation can be
parameterized, including the desired difficulty of the level,
which affects the number and placement of holes, enemies
and obstacles. In our modified version of Infinite Mario
Bros we can specify the random seed of the level generator,
making sure that any particular level can be recreated by
simply using the same see. Unfortunately, the current level
generation algorithm is somewhat limited; for example, it
cannot produce levels that include dead ends, which would
require back-tracking to get out of.

B. Challenges for AIs (and humans)

Several features make Super Mario Bros particularly inter-
esting from an AI perspective. The most important of these is
the potentially very rich and high-dimensional environment
representation. When a human player plays the game, he
views a small part of the current level from the side,
with the screen centered on Mario. Still, this view often
includes dozens of objects such as brick blocks, enemies
and collectable items. The static environment (grass, pipes,
brick blocks etc.) and the coins are laid out in a grid (of
which the standard screen covers approximately 22 ∗ 22
cells), whereas moving items (most enemies, as well as the
mushroom power-ups) move continuously at pixel resolution.

The action space, while discrete, is also rather large. In
the original Nintendo game, the player controls Mario with
a D-pad (up, down, right, left) and two buttons (A, B). The A
button initiates a jump (the height of the jump is determined
partly by how long it is pressed); the B button initiates
running mode and, if Mario is in the Fire state, shoots a
fireball. Disregarding the unused up direction, this means that
the information to be supplied by the controller at each time
step is five bits, yielding 25 = 32 possible actions, though
some of these are nonsensical (e.g. left together with right).

Another interesting feature is that there is a smooth learn-
ing curve between levels, both in terms of which behaviours
are necessary and their required degree of refinement. For
example, to complete a very simple Mario level (with no
enemies and only small and few holes and obstacles) it might
be enough to keep walking right and jumping whenever
there is something (hole or obstacle) immediately in front
of Mario. A controller that does this should be easy to



// always the same dimensionality 22x22
// always centered on the agent
public byte[][] getCompleteObservation();
public byte[][] getEnemiesObservation();
public byte[][] getLevelSceneObservation();
public float[] getMarioFloatPos();
public float[] getEnemiesFloatPos();
public boolean isMarioOnGround();
public boolean mayMarioJump();

Fig. 1. The Environment Java interface, which contains the observation,
i.e the information the controller can use to decide which action to take.

learn. To complete the same level while collecting as many
as possible of the coins present on the same level likely
demands some planning skills, such as smashing a power-
up block to retrieve a mushroom that makes Mario Big so
that he can retrieve the coins hidden behind a brick block,
and jumping up on a platform to collect the coins there and
then going back to collect the coins hidden under it. More
advanced levels, including most of those in the original Super
Mario Bros game, require a varied behaviour repertoire just
to complete. These levels might include concentrations of
enemies of different kinds which can only be passed by
timing Mario’s passage precisely; arrangements of holes and
platforms that require complicated sequences of jumps to
pass; dead ends that require backtracking; and so on.

III. COMPETITION API

In order to be able to run the competition (and in order to
use the game for other experiments), the organizers modified
Infinite Mario Bros rather heavily and constructed an API
that would enable it to be easily interfaced to learning
algorithms and competitors’ controllers. The modifications
included removing the real-time element of the game so that
it can be “stepped” forward by the learning algorithm, re-
moving the dependency on graphical output, and substantial
refactoring (the developer of the game did not anticipate that
the game would be turned into an RL benchmark). Each time
step, which corresponds to 40 milliseconds of simulated time
(an update frequency of 25 fps), the controller receives a
description of the environment, and outputs an action. The
resulting software is a single-threaded Java application that
can easily be run on any major hardware architecture and
operating system, with the key methods that a controller
needs to implement specified in a single Java interface file
(see figure 1). On an iMac from 2007, 5 − 20 full levels
can be played per second (several thousand times faster than
real-time). A TCP interface for controllers is also provided.

Figure 2 shows the size and layout relative to Mario of the
sensor grid. For each grid cell, the controller can choose to
read the complete observation (using the getCompleteObser-
vation() method) that returns an integer value representing
exactly what occupies that part of the environment (e.g. a
section of a pipe), or one of the simplified observations
(getEnemiesObservation() and getLevelSceneObservation())
that simply returns a zero or one signifying the presence of
an enemy or an impassable part of the environment.

Fig. 2. Visualization of the granularity of the sensor grid. The top six
environment sensors would output 0 and the lower three input 1. All of
the enemy sensors would output 0, as even if all 49 enemy sensors were
consulted none of them would reach all the way to the body of the turtle,
which is four blocks below Mario. None of the simplified observations
register the coins, but the complete observation would. Note that larger
sensor grids can be used (up to 22 × 22), if the controller can handle the
information.

IV. COMPETITION ORGANIZATION AND RULES

The organization and rules of the competition sought to
fulfill the following objectives:

1) Ease of participation. We wanted researchers of dif-
ferent kinds and of different levels of experience to
be able to participate, students as well as withered
professors who haven’t written much code in a decade.

2) Transparency. We wanted as much as possible to
be publicly known about the competing entries, the
benchmark software, the organization of the competi-
tion etc. This can be seen as an end in itself, but a
more transparent competition also makes it easier to
detect cheaters, to exploit the scientific results of the
competition and to reuse the software developed for it.

3) Ease of finding a winner. We wanted it to be unam-
biguously clear how to rank all submitted entries and
who won the competition.

4) Depth of challenge. We wanted there to be a real score
difference between controllers of different quality, both
at the top and the bottom of the high-score table.

The competition web page hosts the rules, the down-
loadable software and the final results of the competition2.
Additionally, a Google Group was set up to which all
technical and rules questions were to be posted, so that they
came to the attention of and could be answered by both
organizers and other competitors3, and where the organizers
posted news about the competition. The searchable archive
of the discussion group functions as a repository of technical
information about the competition.

Competitors were free to submit controllers written in any
programming language and using any development method-

2http://julian.togelius.com/mariocompetition2009
3http://groups.google.com/group/marioai



ology, as long as they could interface to an unmodified
version of the competition software and control Mario in
real time on a standard desktop PC running Mac OS X or
Windows XP. For competitors using only Java, there was a
standardized submission format. Any submission that didn’t
follow this format needed to be accompanied by detailed
instructions for how to run it. Additionally, the submission
needed to be accompanied by the score the competitors had
recorded themselves using the CompetitionScore class that
was part of the competition software, so that the organizers
could verify that the submission ran as intended on their sys-
tems. We also urged each competitor to submit a description
of how the controller works as a text file.

Competitors were urged to submit their controllers early,
and then re-submit improved versions. This was so that any
problems that would have disqualified the controllers could
be detected and rectified and the controllers resubmitted. No
submissions or resubmissions at all were accepted after the
deadline (about a week before each competition event). The
most common problems that mandated resubmission were:

• The controller used a nonstandard submission format,
and no running instructions were provided.

• The controller was submitted together with and entan-
gled in a complete version of the competition software.

• The controller timed out, i.e. took more than 40 ms per
time step on average on some level.

A. Scoring

All entries were scored before the conference through
running them on 10 levels of increasing difficulty, and
using the total distance travelled on these levels as the
score. The scoring procedure was deterministic, as the same
random seed was used for all controllers, except in the
few cases where the controller was nondeterministic. The
CompetitionScore method uses a supplied random number
seed to generate the levels. Competitors were asked to
score their own submissions with seed 0 so that this score
could be verified by the organizers, but the seed used for
the competition scoring was not generated until after the
submission deadline, so that competitors could not optimize
their controllers for beating a particular sequence of levels.

For the second phase of the competition (the CIG phase)
we discovered some time before the submission deadline
that two of the submitted controllers were able to clear
all levels for some random seeds. We therefore modified
the CompetitionScore class so as to make it possible to
differentiate better between high-scoring controllers. First of
all, we increased the number of levels to 40, and varied
the length of the levels stochastically, so that controllers
could not be optimized for a fixed level length. In case two
controllers still cleared all 40 levels, we defined three tie-
breakers: game-time (not clock-time) left at the end of all 40
levels, number of total kills, and mode sum (the sum of all
Mario modes at the end of levels, where 0=small, 1=big and
2=fire; a high mode sum indicates that the player has taken
little damage). So if two controllers both cleared all levels,

that one that took the least time to do so would win, and if
both took the same time the most efficient killer would win
etc.

V. MEDIA STRATEGY AND COVERAGE

The competition got off of to a slow start. The organizers
did not put a final version of the competition software online
until relatively late, and neglected advertising the competition
until about a month and a half before the deadline of the
first phase. Once it occurred to the organizers to advertise
their competition, they first tried the usual channels, mainly
mailing lists for academics working within computational
intelligence. One of the organizers then posted a link to the
competition on his Facebook profile, which led one of his
friends to submit the link to the social media site Digg. This
link was instantly voted up on the front page of the site, and
a vigorous discussion ensued on the link’s comment page.
This also meant 20000 visitors to the competition website in
the first day, some of which joined the discussion group and
announced their intention to participate. Seeing the success of
this, the organizers submitted a story about the competition to
the technology news site Slashdot. Slashdot is regularly read
by mainstream and technology news media, which meant
that within days there were stories about the competition in
(among others) New Scientist4, MSNBC5 and Le Monde6.

At this point, Robin Baumgarten had already finished a
first version of his controller, and posted a video on YouTube
of his controller guiding Mario through a level, complete
with a visualization of the alternate path the A* algorithm
were evaluating at each time step7. The video was apparently
so enjoyable to watch that it quickly reached the top lists,
and has at the time of writing been viewed over 600000
times. The success of this video was a bit of a double-edged
sword; it drew hordes of people to the competition website,
and led to several announcements of intention to participate
(though far from everybody who said they would eventually
submitted a controller), but it also caused some competitors
to drop out as Robin’s controller was so impressive that they
considered themselves to not stand a chance to win.

VI. SUBMITTED CONTROLLERS

This section describes the controllers that were submitted
to the competition. We describe the versions of the controllers
that were submitted to the CIG phase of the competition;
in several cases, preliminary versions were submitted to
the ICE-GIC phase. The winning controller is described in
some detail, whereas the other controllers are given shorter
descriptions due to space consideration. In some cases, a
controller is either very similar to an existing controller or
very little information was provided by the competitor; those
controllers are described only very briefly here.

4http://www.newscientist.com/article/dn17560-race-is-on-to-evolve-the-
ultimate-mario.html

5http://www.msnbc.msn.com/id/32451009/ns/technology and science-
science/

6http://www.lemonde.fr/technologies/article/2009/08/07/quand-c-est-l-
ordinateur-qui-joue-a-mario 1226413 651865.html

7http://www.youtube.com/watch?v=DlkMs4ZHHr8



A. Robin Baumgarten

As the goal of the competition was to complete as many
levels as possible, as fast as possible, without regarding
points or other bonuses, the problem can be seen as a path
optimisation problem: What is the quickest route through
the environment that doesn’t get Mario killed? A* search
is a well known, simple and fast algorithm to find shortest
paths which seemed perfect for the Mario competition. As
it turned out, A* search is fast and flexible enough to find
routes through the generated levels in real-time.

The implementation process can be separated into three
phases: (a) building a physics simulation including world
states and object movement, (b) using this simulation in an
A* planning algorithm, and (c) optimising the search engine
to fulfill real-time requirements with partial information.

a) Simulating the Game Physics: Due to being open-
source, the entire physics engine of Infinite Mario Bros is
directly accessible and can be used to simulate future world
states that correlate very closely with the actual future world
state. This was achieved by copying the entire physics engine
to the controller and removing all unnecessary parts, such as
rendering and some navigation code.

Associating simulated states of enemies with the received
coordinates from the API provided an implementation chal-
lenge. This association is needed because the API provides
only the location and not the current speed, which has to
be derived from consecutive recordings. Without accurate
enemy behaviour simulation, this can be difficult, especially
if there are several enemies in a close area.

b) A* for Infinite Mario: The A* search algorithm is a
widely used best-first graph search algorithm that finds a path
with the lowest cost between a pre-defined start node and one
out of possibly several goal-nodes[7]. A* uses a heuristic
that estimates the remaining distance to the goal nodes in
order to determine the sequence of nodes that are searched by
the algorithm. It does so by adding the estimated remaining
distance to the previous path cost from the start node to
the current node. This heuristic should be admissible (not
overestimate this distance) for optimality to be guaranteed.
However, if only near-optimality is required, this constraint
can be relaxed to speed up path-finding. With a heuristic that
overestimates by x, the path will be at most x too long[8].

To implement an A* search for Infinite Mario, we have
to define what a node and a neighbour of a node is, which
nodes are goal nodes, and how the heuristic estimates the
remaining distance.

A node is defined by the entire world-state at a given mo-
ment in time, mainly characterised through Mario’s position,
speed, and state. Furthermore, (re)movable objects in the
environment have to be taken into account, such as enemies,
power-ups, coins and boxes. The only influence we have on
this environment is interaction through actions that Mario
can perform. These Mario actions consist of combinations
of movements such as left, right, duck, jump and fire.

Neighbours of a node are given by the world state after
one (further) simulation step, applying an action that Mario

Fig. 3. Illustration of node generation in A* search. Each neighbour node
in the search is given by a combination of possible input commands.

Fig. 4. Illustration of node placement in A* search in Infinite Mario.
The best node in the previous simulation step (right, speed) is inaccessible
because it contains an obstacle. Thus the next best node is chosen, which
results in a jump over the obstacle. The search process continues by
generating all possible neighbours. The speed of Mario at the current node
distorts the positions of all following nodes.

executes during this simulation step. See figures 3 and 4
for an illustration of a typical scenario, figure 5 for an
in-game visualization. Note how backtracking takes place
when an obstacle is discovered, and how the location of the
subsequent neighbours is influenced by the current speed of
Mario in figure 4.

As only a small window of the world around Mario is
visible in the competition API, the level structure outside of
this window is unknown. Therefore it does not make sense
to plan further ahead than the edge of the current window.
Thus, a goal node for our planner is defined as any node
where Mario is outside (or just before) the right border of
the window of the known environment.

In the standard implementation of A*, the heuristic esti-
mates the remaining distance to the target. In Infinite Mario,
one could just translate this as the horizontal distance to the
right border of the window. However, this does not lead to
a very accurate heuristic, as it ignores the current speed
of Mario. To make sure the bot has an admissible (i.e.,
underestimating) heuristic, it would have to assume Mario
runs with maximum speed towards the goal, which is often



Fig. 5. Visualization of the future paths considered by the A* controller.
Each read line shows a possible future trajectory for Mario, taking the
dynamic nature of the world into account.

not the case. Instead, a more accurate representation of the
distance to the goal can be given by simulating the time
required to reach the right border of the window. Here, the
current speed of Mario is taken into account. The quickest
solution to get to the goal would then be to accelerate as
fast as possible, and taking the required time as a heuristic.
Similarly, the previous distance of a node to the starting node
is simply the time it took to reach the current node.

c) Variable Optimisation: While the A* search al-
gorithm is quite solid and guarantees optimality, certain
restrictions need to be put on its execution time to stay within
the allowed 40ms for each game update. These restrictions
will likely lead to a non-optimal solution, so careful testing
has to be undertaken to ensure that the search terminates.

The first restriction used was to stop looking for solutions
when the time-limit had been reached, and using the node
with the best heuristic so far as a goal node. The linear level
design created by the level generator in Infinite Mario favors
this approach, as it does not feature dead ends that would
require back-tracking of suboptimal paths.

The requirement that the heuristic has to be admissible
has also been relaxed. A slightly overestimating heuristic in-
creases the speed of the algorithm in expense of accuracy[8].
In detail, the estimation of the remaining distance can be
multiplied with a factor w >= 1. Experimentation with
different values for w, led to an optimal factor of w = 1.11.

Another factor that has an effect on the processing time
required by A* is the frequency of plan recalculation. As
mentioned above, limited information requires a recalculation
of the plan once new information becomes available, i.e.,
obstacles or enemies enter the window of visible information.
Experimentation indicated that the best balance between
planning ahead and restarting the planning process to in-
corporate new information is given when the plan is re-
created every two game updates. Planning longer in advance
occasionally led to reacting too late to previously unknown
threats, resulting in a lost life or slowdown of Mario.

B. Other A*-based controllers

Two other controllers were submitted that were based on
the A* algorithm. One was submitted by Peter Lawford
and the other by a team consisting of Andy Sloane, Caleb
Anderson and Peter Burns (we will refer to this team with
Andy’s name in the score tables). These submission were
inspired by Robin’s controller and used a similar overall
approach, but differed significantly in implementation.

C. Other hand-coded controllers

The majority of submitted controllers were hand-coded
and did (to our best knowledge) not use any learning al-
gorithms, nor much internal simulation of the environment.
Most of these continuously run rightwards but use heuristics
to decide when and how to jump. Some were built on
one of the standard heuristic controllers supplied with the
competition software. The following are very (due to space
limitations) brief characterizations of each:

1) Trond Ellingsen: Rule-based controller. Determines a
“danger level” of each gap or enemy and acts based on this.

2) Sergio Lopez: Rule-based. Answers the questions
“should I jump?” and “which type of jump?” heuristically,
by evaluating danger value and possible landing points.

3) Spencer Schumann: A standard reactive heuristic con-
troller from the example software augmented with a calcula-
tion of desired jump length based on internal simulation of
Mario’s movement. Incomplete tracking of enemy positions.

4) Mario Perez: Subsumption controller, inspired by con-
trollers used in behaviour-based robotics.

5) Michal Tulacek: Finite state machine with four states:
walk-forward, walk-backward, jump and jump-hole.

6) Rafel Oliveira: Reactive controller; did not submit any
documentation.

7) Glenn Hartmann: Based on an example controller.
Shoots continuously, jumps whenever needed.

D. Learning-based controllers

A number of controllers were submitted that were devel-
oped using learning algorithms in one way or another. These
controllers exhibit a fascinating diversity; still, due to space
considerations and paucity of submitted documentation, also
these controllers will only be described summarily.

1) Matthew Erickson: Controller represented as expres-
sion tree, evolved with fairly standard crossover-heavy Ge-
netic Programming, using CompetitionScore as fitness. The
tree evaluates to four boolean values: left/right, jump, run
and duck. Nonterminal nodes where chosen among standard
arithmetic and conditional functions. The terminals were
simple hard-coded feature detectors.

2) Douglas Hawkins: Based on a stack-based virtual
machine, evolved with a genetic algorithm.

3) Alexandru Paler: An intriguing combination of imita-
tion learning, based on data acquired from human playing,
and path-finding. A* is used to find the route to the end
of the screen; the intermediate positions form inputs to a
neural network (trained on human playing) which returns
the number and type of key presses necessary to get there.



4) Sergey Polikarpov: Based on the “Cyberneuron” archi-
tecture8 and trained with a form of reinforcement learning.
A number of action sequences are generated, and each
is associated with a neuron; this neuron is penalized or
rewarded depending on Mario’s performance while the action
sequence is being executed.

5) Erek Speed: Rule-based controller, evolved with a GA.
Maps the whole observation space (22× 22) onto the action
space, resulting in a genome of more than 100 Mb.

VII. RESULTS

The first phase of the competition was associated with
the ICE-GIC conference in London, and the results of the
competition presented at the conference. The results are
presented in table I, and show that Robin Baumgarten’s
controller performed best, very closely followed by Peter
Lawford’s controller and closely followed by Andy Sloane
et al.’s controller. We also include a simple evolved neural
network controller and a very simple hard-coded heuristic
controller (ForwardJumpingAgent which was included with
the competition software and served as inspiration for some
of the competitors) for comparison; none of the agents that
were not based on A* outperformed the heuristic controller.

TABLE I
RESULTS OF THE ICE-GIC PHASE OF THE COMPETITION.

Competitor progress ms/step
Robin Baumgarten 17264 5.62
Peter Lawford 17261 6.99
Andy Sloane 16219 15.19
Sergio Lopez 12439 0.04
Mario Perez 8952 0.03
Rafael Oliveira 8251 ?
Michael Tulacek 6668 0.03
Erek Speed 2896 0.03
Glenn Hartmann 1170 0.06
Evolved neural net 7805 0.04
ForwardJumpingAgent 9361 0.0007

The second phase of the competition was associated with
the CIG conference in Milan, Italy, and the results presented
there. For this phase, we had changed the scoring procedure
as detailed in section IV-A. A wise move, as both Robin
Baumgarten’s and Peter Lawford’s agent managed to finish
all of the levels, and Andy Sloane et al.’s came very close. In
compliance with our own rules, Robin rather than Peter was
declared the winner because of it being faster (having more
in-game time left at the of all levels). It should be noted that
Peter’s controller was better at killing enemies, though.

The best controller that was not based on A*, that of
Trond Ellingsen, scored less than half of the A* agents.
The best agent developed using some form of learning or
optimization, that of Matthew Erickson, was even further
down the list. This suggests a massive victory of classic AI
approaches over CI techniques. (At least as long as one does
not care much about computation time; if score is divided
by average time taken per time step, the extremely simple
heuristic ForwardJumpingAgent wins the competition...)

8http://arxiv.org/abs/0907.0229

VIII. DISCUSSION AND ANALYSIS

While the objective for the competitors was to design
or learn a controller that played Infinite Mario Bros as
well as possible, the objective for the organizers was to
organize a competition that accurately tested the efficacy of
various controller representations and learning algorithms for
controlling an agent in a platform game. Here we remark on
what we have learned in each of these respects, using the
software in your teaching and the future of the competition.

A. AI for platform games

By far the most surprising outcome of the competition was
how well the A*-based controllers performed compared to all
other controller architectures, including controllers based on
learning algorithms. As A* is a commonly used algorithm for
path-finding in many types of commercial computer games
(e.g. RTS and MMORPG games), one could see this as a
victory over “classical” AI over more fancy CI techniques
which are rarely used in the games industry. However, one
could also observe that the type of levels generated by the
level generator are much less demanding and deceiving than
those found in the real Super Mario Bros games and other
similar games. All the levels could be cleared by constantly
running right and jumping at the right moments, there were
no hidden objects and passages, and in particular there were
no dead ends that would require backtracking. All the A*-
based agents consume considerably more processing time
when in front of vertical walls, where most action sequences
would not lead to the right end of the screen, suggesting that
A* would break down when faced with a dead end.

While the sort of search in game-state space that the A*
algorithm provides is likely to be an important component in
any agent capable of playing arbitrary Mario levels, it will
likely need to be complemented by some other mechanism
for higher-level planning, and the architecture will probably
benefit from tuning by e.g. evolutionary algorithms. Further,
the playing style exhibited by the A*-based agents is nothing
like that exhibited by a human player (the creepy exactness
and absence of deliberation seems part of what made the
YouTube video of Robin’s agent so popular). How to create
a controller that can (learn to) play a platform game in a
human-like style is an industrially relevant (cf. Demo Play)
problem which has not been addressed by this competition.

B. Competition organization

Looking at the objectives enumerated in section IV, we
consider that the first two objectives (ease of participation
and transparency) have been fulfilled, the third (ease of
finding a winner) could have been met better and that we
largely failed at meeting the fourth (depth of challenge).

Ease of participation was mainly achieved through having
a simple web page, simple interfaces and letting all com-
petition software be open source. Participation was greatly
increased through the very successful media campaign, built
on social media. Transparency was achieved through forcing
all submissions to be open source and publishing them on



TABLE II
RESULTS OF THE ICE-GIC PHASE OF THE COMPETITION. EXPLANATION OF THE ACRONYMS IN THE “APROACH” COLUMN: RB: RULE-BASED, GP:

GENETIC PROGRAMMING, NN: NEURAL NETWORK, SM: STATE MACHINE, LRS: LAYERED CONTROLLER, GA: GENETIC ALGORITHM.

Competitor approach progress levels time left kills mode
Robin Baumgarten A* 46564.8 40 4878 373 76
Peter Lawford A* 46564.8 40 4841 421 69
Andy Sloane A* 44735.5 38 4822 294 67
Trond Ellingsen RB 20599.2 11 5510 201 22
Sergio Lopez RB 18240.3 11 5119 83 17
Spencer Schumann RB 17010.5 8 6493 99 24
Matthew Erickson GP 12676.3 7 6017 80 37
Douglas Hawkins GP 12407.0 8 6190 90 32
Sergey Polikarpov NN 12203.3 3 6303 67 38
Mario Perez SM, Lrs 12060.2 4 4497 170 23
Alexandru Paler NN, A* 7358.9 3 4401 69 43
Michael Tulacek SM 6571.8 3 5965 52 14
Rafael Oliveira RB 6314.2 1 6692 36 9
Glenn Hartmann RB 1060.0 0 1134 8 71
Erek Speed GA out of memory

the web site after the end of the competition. However,
many competitors did not describe their agents in detail.
In future competitions, the structure of such descriptions
should be specified, and submissions that are not followed
by satisfactory descriptions should be disqualified.

C. Using the Mario AI Competition in your own teaching

The Mario AI Competition web page, complete with the
competition software, rules and all submitted controllers,
will remain in place for the foreseeable future. We actively
encourage use of the rules and software for your own events,
and have noted that at least one local Mario AI Competition
has already launched (at UC San Diego). Additionally, the
software is used for class projects in a number of AI courses
around the world. When organizing such events, it is worth
remembering that the existing Google Group and its archive
can serve as a useful technical resource, and that the result
tables in this paper provide a useful point of reference. We
appreciate if any such events link back to the original Mario
AI Competition web page, and students are encouraged to
submit their agents to the next iteration of the competition.

D. Future competitions

The 2010 Mario AI Championship, like the 2009 compe-
tition, uses a single website9 but is divided into three tracks:

1) The gameplay track: Similarly to the 2009 competition,
this track is aimed at producing the controller that gets
furthest on a sequence of levels. However, the competition
software is modified so that some of the levels are substan-
tially harder than the hardest levels in last year’s competition.

2) The learning track: This track is similar to the game-
play track, but favours controllers that perform online learn-
ing. Each controller will be tested a large number (e.g. 1000)

9http://www.marioai.org

of times on a single level, but only the score on the last
attempt will count. The level will contain e.g. hidden blocks,
shortcuts and dead ends. Thus, the scoring will reward
controllers that learn the ins and outs of a particular level.

3) The level generation track: The level generation track
differs substantially from the other tracks as what is tested is
not controllers for the agent, but level generators that create
new Mario levels that should be fun for particular players.
The generated levels will be evaluated by letting a set of
human game testers play them live at the competition event.

REFERENCES

[1] J. Togelius, S. M. Lucas, H. Duc Thang, J. M. Garibaldi,
T. Nakashima, C. H. Tan, I. Elhanany, S. Berant, P. Hingston,
R. M. MacCallum, T. Haferlach, A. Gowrisankar, and P. Burrow,
“The 2007 ieee cec simulated car racing competition,” Genetic
Programming and Evolvable Machines, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10710-008-9063-0

[2] D. Loiacono, J. Togelius, P. L. Lanzi, L. Kinnaird-Heether, S. M. Lucas,
M. Simmerson, D. Perez, R. G. Reynolds, and Y. Saez, “The WCCI
2008 simulated car racing competition,” in Proceedings of the IEEE
Symposium on Computational Intelligence and Games, 2008.

[3] J. Togelius, S. Karakaovskiy, J. Koutnik, and J. Schmidhuber, “Super
mario evolution,” in Proceedings of IEEE Symposium on Computational
Intelligence and Games (CIG), 2009.

[4] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proceedings of the Artificial Intelligence and Interactive
Digital Entertainment International Conference (AIIDE), 2006.

[5] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based
level generation for 2d platformers,” in Proceedings of the International
Conference on Foundations of Digital Games, 2009.

[6] C. Pedersen, J. Togelius, and G. Yannakakis, “Modeling player expe-
rience in super mario bros,” in Proceedings of IEEE Symposium on
Computational Intelligence and Games (CIG), 2009.

[7] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[8] I. Millington and J. Funge, Artificial Intelligence for Games. Morgan
Kaufmann Pub, 2009.


