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Abstract. Recently, a small number of papers have appeared in which
the authors implement stochastic search algorithms, such as evolution-
ary computation, to generate game content, such as levels, rules and
weapons. We propose a taxonomy of such approaches, centring on what
sort of content is generated, how the content is represented, and how the
quality of the content is evaluated. The relation between search-based
and other types of procedural content generation is described, as are
some of the main research challenges in this new field. The paper ends
with some successful examples of this approach.

1 Introduction

In this paper we aim to define search-based procedural content generation, inves-
tigate what can and cannot be accomplished by the techniques that go under
this name, and outline some of the main research challenges in the field. Some
distinctions will be introduced between approaches, and a handful of examples
of search-based procedural content generation (SBPCG) will be discussed within
and classified according to these distinctions. It is important to note that this
paper proposes an initial framework of SBPCG approaches that leaves room for
further new approaches to be co-located within this young yet emerging field.
To begin, procedural content generation is itself introduced.

Procedural content generation (PCG) refers to the creation of game content
automatically, through algorithmic means. In this paper, game content means
all aspects of a game that affect gameplay but are not non-player character
(NPC) behaviour or the game engine itself. This definition includes such aspects
as terrain, maps, levels, stories, dialogue, quests, characters, rulesets, camera
viewpoint, dynamics and weapons. The definition explicitly excludes the most
common application of search and optimisation techniques in academic games
research, namely, NPC artificial intelligence.

There are several reasons for game developers to be interested in PCG. The
first is memory consumption — procedurally represented content can typically
be compressed by keeping it “unexpanded” until needed. A good example is the
classic space trading and adventure game Elite (Acornsoft 1984), which managed
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to keep hundreds of star systems in the few tens of kilobytes of memory available
on the hardware of the day by representing each planet as just a few numbers.
Another reason for using PCG is the prohibitive expense of manually creating
game content. Many current generation AAA titles employ software such as
SpeedTree to create whole areas of vegetation based on just a few parameters,
saving precious development resources while allowing large, open game worlds.

A third argument for PCG is that it might allow the emergence of completely
new types of games, with game mechanics built around content generation. If
new content can be generated with sufficient variety in real time then it may
become possible to create truly endless games. Further, if this new content is
created according to specific criteria, such as its suitability for the playing style
of a particular player (or group/community of players) or based on particular
types of player experience (challenge, novelty, etc.), it may become possible to
create games with close to infinite replay value.

A fourth argument for PCG is that it augments our limited, human imagina-
tion. Off-line algorithms might create new rulesets, levels, narratives, etc., which
can then inspire human designers and form the basis of their own creations.

2 Dissecting Procedural Content Generation

While PCG in different forms has been a feature of various games for a long
time, there has not been an academic community devoted to its study. This
situation is now changing with the recent establishment of a mailing list4, an
IEEE CIS Task Force5, a workshop6 and a wiki7 on the topic. However, there is
still no textbook on PCG, or even an overview paper offering a basic taxonomy
of approaches. Therefore, this section aims to begin to draw some distinctions.
Most of these distinctions are not binary, but rather a continuum wherein any
particular example of PCG can be placed closer to one or the other extreme.
Note that these distinctions are drawn for the purpose of clarifying the role of
search-based PCG; of course other distinctions will be drawn in the future as
the field matures.

2.1 Online versus Offline

The first distinction to be made is whether content generation is performed
online during the runtime of the game, or offline during game development. An
example of the former is when the player enters a door to a building and the
game instantly generates the interior of the building, which was not there before;
in the latter case an algorithm suggests interior layouts that are then edited and
perfected by a human designer before the game is shipped. Intermediate cases
are possible, wherein an algorithm running on e.g. an RTS server suggests new
maps to a group of players daily based on logs of their recent playing styles.
4 http://groups.google.com/proceduralcontent
5 http://game.itu.dk/pcg/
6 http://pcgames.fdg2010.org/
7 http://pcg.wikidot.com



3

2.2 Necessary versus Optional Content

A further distinction relating to the generated content is whether that content
is necessary or optional. Necessary content is required by the players to progress
in the game — e.g. dungeons that need to be traversed, monsters that need
to be slain, crucial game rules, and so on — whereas optional content is that
which the player can choose to avoid, such as available weapons or houses that
can be entered or ignored. The difference here is that necessary content always
needs to be correct; e.g. it is not acceptable to generate an intractable dungeon
if such an aberration makes it impossible for the player to progress. On the other
hand, one can allow an algorithm that sometimes generates unusable weapons
and unreasonable floor layouts if the player can choose to drop the weapon and
pick another one or exit a strange building and go somewhere else instead.

2.3 Random Seeds versus Parameter Vectors

Another distinction concerning the generation algorithm itself is to what extent
it can be parameterised. All PCG algorithms create “expanded” content of some
sort based on a much more compact representation. At one extreme, the algo-
rithm might simply take a seed to its random number generator as input; at
another extreme, the algorithm might take as input a multidimensional vector
of real-valued parameters that specify the properties of the content it generates.

2.4 Stochastic versus Deterministic Generation

A distinction only partly orthogonal to those outlined so far concerns the amount
of randomness in content generation, as the variation in outcome between dif-
ferent runs of an algorithm with identical parameters is a design question. It is
possible to conceive of deterministic generation algorithms that always produce
the same content given the same parameters, but it is well known that many
algorithms do not. (Note that we do not consider the random number generator
seed a parameter here, as that would imply that all algorithms are deterministic.)

2.5 Constructive versus Generate-and-test

A final distinction may be made between algorithms that can be called con-
structive and those that can be described as generate-and-test. A constructive
algorithm generates the content once, and is done with it; however, it needs to
make sure that the content is correct or at least “good enough” as it is being con-
structed. An example of this approach is using fractals to generate terrains [1].

A generate-and-test algorithm incorporates both a generate and a test mech-
anism. After a candidate content instance is generated, it is tested according to
some criteria (e.g. is there a path between the entrance and exit of the dungeon,
or does the tree have proportions within a certain range?). If the test fails, all
or some of the candidate content is discarded and regenerated, and this process
continues until the content is good enough.
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3 Search-based Procedural Content Generation

Search-based procedural content generation (SBPCG) is a special case of the
generate-and-test approach to PCG, with the following qualifications:

– The test function does not simply accept or reject the candidate content,
but grades it using one or a vector of real numbers. Such a test function is
sometimes called a fitness function and the grade it assigns to the content
its fitness.

– Generating new candidate content is contingent upon the fitness assigned
to previously evaluated content instances; in this way the aim is to produce
new content with higher fitness.

All of the examples below (see section 4) use some form of evolutionary algo-
rithm (EA) as the main search mechanism. In an EA, a population of candidate
content instances are held in memory. Each generation, these candidates are eval-
uated by the fitness function and ranked. The worst candidates are discarded
and replaced with copies of the good candidates, except that the copies have
been randomly modified (i.e. mutated) and/or recombined. However, SBPCG
does not need to be married to evolutionary computation (EC); other search
mechanisms are viable as well. The same considerations about representation
and the search space largely apply regardless of the approach to search.

3.1 Content Representation and Search Space

A central question in EC concerns how to represent whatever is evolved. In other
words, an important question is how genotypes (i.e. the data structures that are
handled by the EA) are mapped to phenotypes (i.e. the data structure or pro-
cess that is evaluated by the fitness function). An important distinction among
representations is between direct encodings, wherein the size of the genotype is
linearly proportional to the size of phenotype and each part of the genome maps
to a specific part of the phenotype, and indirect encodings, wherein the genotype
maps nonlinearly to the genotype and the former need not be proportional to
the latter ([2–4]; see [5] for a review).

The study of representations for EC is a broad field in its own right, where
several concepts have originated that bear on SBPCG [6]. The problem represen-
tation should have the right dimensionality to allow for precise searching while
avoiding the “curse of dimensionality” associated with representation vectors
that are too large (or the algorithm should find the right dimensionality for the
vector). Another principle is that the representation should have a high locality,
meaning that a small change to the genotype should on average result in a small
change to the phenotype and a small change to the fitness value.

Apart from these concerns, of course it is important that the chosen repre-
sentation is capable of representing all the interesting solutions; this ideal can
be a problem in practice for indirect encodings, for which there might be areas
of phenotype space to which no genotypes map.
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These considerations are important for SBPCG as the representation and
search space must be well-matched to the domain if it is to perform optimally.
There is a continuum between SBPCG that works with direct and indirect rep-
resentation. As a concrete example, a maze (for use e.g. in a “roguelike” dungeon
adventure game) might be represented:

1. directly as a grid for which mutation works directly on the content (wall,
free space, door, monster) of each cell,

2. more indirectly as a list of the positions, orientations and lengths of walls
([7] provides an example),

3. even more indirectly as a repository of different reusable patterns of walls
and free space, and a list of how they are distributed (with various transforms
such as rotation and scaling) across the grid,

4. very indirectly as a list of desirable properties (number of rooms, doors,
monsters, length of paths and branching factor), or

5. most indirectly as a random number seed.

These representations yield very different search spaces. In the first case, all
parts of phenotype space are reachable, as the one-to-one mapping ensures that
there is always a genotype for each phenotype. Locality is likely high because
each mutation can only affect a single cell (e.g. turn it from wall into free space),
which in most cases changes fitness only slightly. However, because the length of
the genotype would be the number of cells in the grid, mazes of any interesting
size quickly encounter the curse of dimensionality.

At the other end of the spectrum, option number 5 does not suffer from search
space dimensionality because it searches a one-dimensional space. However, the
reason this representation is unsuitable for SBPCG is that there is no locality;
one of the main features of a good random number generator is that there is no
correlation between the numbers generated by different seed values. All search
performs as badly (or as well) as random search.

Options 2 to 4 might all be suitable representations for searching for good
mazes. In options 2 and 3 the genotype length would grow with the desired
phenotype (maze) size, but sub-linearly, so that reasonably large mazes could
be represented with tractably short genotypes. In option 4 genotype size is in-
dependent of phenotype size, and can be made relatively small. On the other
hand, the locality of these intermediate representations depends on the care and
domain knowledge with which each genotype-to-phenotype mapping is designed;
both high- and low-locality mechanisms are conceivable.

3.2 Fitness Functions

Once a candidate content item is generated, it needs to be evaluated by the
fitness function and assigned a scalar (or a vector of real numbers) that accu-
rately reflects its suitability for use in the game. Designing the fitness function
is ill-posed; the designer first needs to decide what, exactly, should be optimized
and then how to formalize it. For example, one might intend to design a SBPCG
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algorithm that creates fun, immersive, frustrating or exciting game content, and
thus a fitness function that reflects how much the particular piece of content
contributes to the player’s respective affective states while playing. At the cur-
rent state of knowledge, any attempt to estimate the contribution to “fun” (or
affective states that collectively contribute to player experience) of a piece of
content is bound to rely on conflicting assumptions. More research is needed at
this time to achieve fruitful formalisations of such subjective issues; see [8] for a
review.

Three key classes of fitness functions can be distinguished for the purposes
of PCG are direct, simulation-based and interactive fitness functions.

Direct Fitness Functions In a direct fitness function, some features are ex-
tracted from the generated content, and these features are mapped directly to
a fitness value. Hypothetical such features might include the number of paths
to the exit in a maze, firing rate of a weapon, spatial concentration of resources
on an RTS map, and material balance in randomly selected legal positions for
board game rule set. The mapping between features and fitness might be lin-
ear or non-linear, but typically does not involve large amounts of computation,
and is typically specifically tailored to the particular game and content type.
This mapping might also be contingent on a model of the playing style, prefer-
ences or affective state of the player, meaning that an element of personalization
is possible. An important distinction within direct fitness functions is between
theory-driven and data-driven functions. In theory-driven functions, the designer
is guided by intuition and/or some qualitative theory of player experience to de-
rive a mapping. On the other hand, data-driven functions are based on collecting
data on the effect of various examples of content via e.g. questionnaires or phys-
iological measurements, and then using automated means to tune the mapping
from features to fitness.

Simulation-based Fitness Functions It is not always apparent how to design
a meaningful direct fitness function for some game content — in some cases, it
seems that the content must be sufficiently experienced and operated to be eval-
uated. An indirect fitness function is based on an artificial agent playing through
some part of the game that involves the content being evaluated. Features are
then extracted from the observed gameplay (e.g. did the agent win? How fast?
How was the variation in playing styles employed?) and used to calculate the
fitness of the content. The artificial agent might be completely hand-coded, or
might be based on a learned behavioral model of a human player.

Another key distinction is between static and dynamic simulation-based fit-
ness functions. In a static fitness function, it is not assumed that the agent
changes while playing the game; in a dynamic fitness function the agent changes
during the game and the fitness value somehow incorporates this change. For
example, the implementation of the agent can be based on a learning algorithm
and the fitness be dependent on learnability, i.e. how well and/or fast the agent
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learns to play the content that is being evaluated. Other uses for dynamic fitness
functions is to capture e.g. order effects and user fatigue.

Interactive Fitness Functions Interactive fitness functions score content
based on interaction with a player in the game, which means that fitness is
evaluated during the actual gameplay. Data can be collected from the player
either explicitly, using questionnaires or verbal input data, or implicitly by mea-
suring e.g. how often or long a player chooses to interact with a particular piece
of content [9], when the player quits the game, or expressions of affect such as
intensity of button-presses, shaking the controller, physiological response, gaze
fixation, speech quality, facial expressions and postures.

3.3 Situating Search-based PCG

At this point, let us revisit the distinctions in Section 2 and ask how they relate to
SBPCG. As stated above, SBPCG algorithms are generate-and-test algorithms.
They might take parameter vectors (in particular, parameters that modify the
fitness function) or not. As evolutionary and similar search algorithms rely on
stochasticity (e.g. a random seed is required for mutation); for the same reasons,
these algorithms should be classified as stochastic rather than deterministic.

As there is no general proof that all EAs ultimately converge, there is no
guaranteed completion time for a SBPCG algorithm, and no guarantee that it
will produce good enough solutions. For these reasons it would seem that SBPCG
would be unsuitable for online content generation, and better suited for offline
exploration of new design ideas. However, as we shall see later, it is possible to
successfully base complete game mechanics on SBPCG, at least if the content
generated is optional rather than necessary.

We can also choose to look at the relation between indirect representation
and SBPCG from a different angle. If our SBPCG algorithm includes an indirect
mapping from genotype to phenotype, this mapping can be viewed as a PCG
algorithm in itself, and an argument can be made for why certain types of PCG
algorithms are more suitable than others for use as part of an SBPCG algorithm.
It is worth noting that some indirect encodings used in various EC application
areas bear strong similarities to PCG algorithms for games; several indirect
encodings are based on L-systems, as are algorithms for procedural tree and
plant generation [3].

4 Case Studies of Search-based PCG

In this section, we present five examples of search-based procedural content
generation, and categorise those according to the distinctions made previously
in the paper.
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4.1 Rulesets for Pac-Man-like Games

Togelius and Schmidhuber [10] conducted an experiment in which rulesets (nec-
essary content) were evolved offline for grid-based games in which the player
moves an agent around, in a manner similar to a discrete version of Pac-Man.
Apart from the agent, the grid was populated by walls and “things” of different
colours, which could be interpreted as items, allies or enemies depending on the
rules. Rulesets were represented fairly directly as fixed-length parameter vectors,
interpreted as the effects on various things when they collided with each other
or the agent, and their behaviour. A relatively wide range of games could be
represented using this vocabulary, and genotype generation was deterministic
except for the starting position of things. The fitness function was dynamic and
simulation-based, and completely hand-crafted: an evolutionary reinforcement
learning algorithm was used to learn each ruleset and the ruleset was scored de-
pendent on how well it was learned. Games that were impossible or trivial were
given low fitness, whereas those that could be learned after some time scored
well.

4.2 Rulesets for Board Games

Browne [11] developed a system for offline design of rules (necessary content) for
board games using a form of genetic programming. Game rules were represented
relatively directly as expression trees, formulated in a custom-designed game
description language. This language allowed representation of a sufficiently wide
variety of board games, including many well-known games. The EA used for
the creation of new rule sets was non-standard in that suboptimal children with
poor performance or badly formed rules were not discarded but were instead
retained in the population with a lower priority to maintain a necessary level
of genetic diversity. The fitness function was a complex combination of direct
measures and static simulation-based measures: for example, standard game-tree
search algorithms were used to play the generated game as part of the fitness
evaluation to investigate issues such as balance and time to play the game. While
hand-coded, the fitness function was based on extensive study of existing board
games, and measurements of user preferences for board games that exhibited
various features.

4.3 Tracks for a Racing Game

Togelius et al. [12] designed a system for offline/online generation of tracks (nec-
essary or optional content, dependent on game design) for a simple racing game.
Tracks were represented directly as fixed-length parameter vectors, interpreted
deterministically as b-splines (i.e. sequences of Bezier curves) that defined the
course of the track. The fitness function was simulation-based, static, and per-
sonalised. Each candidate track was evaluated by letting a neural network-based
car controller, which had previously been trained to drive in the style of a par-
ticular human player, drive on the track. The fitness of the track was dependent
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on the driving performance of the car: amount of progress, variation in progress
and difference between maximum and average speed.

4.4 Weapons for a Space Shooter Game

Hastings et al. [9] developed a multi-player game built on SBPCG. In the game,
players guide a spaceship through various parts of space, engaging in fire-fights
with enemies and collecting weapons (each weapon is optional, but having a good
set of weapons is necessary for success). Weapons are represented indirectly as
variable-size vectors of real values, which are interpreted as connection topologies
and weights for neural networks, which in turn control the particle systems that
underlie the weapons. The fitness function is interactive, implicit and distributed.
Fitness for each weapon depends on how often the various users logged on to
the same server choose to fire each weapon relative to how often the weapons sit
unused in users’ weapon caches.

4.5 Levels and Mechanics for Super Mario Bros

Pedersen et al. [13] modified an open-source clone of the classic platform game
Super Mario Bros to allow for personalised level and game mechanics generation.
Levels were represented very indirectly as a short parameter vector describing
mainly the number, size and placement of gaps in the level whereas the sole
mechanic investigated was represented as the percentage of the level played from
right to left. This vector was converted to a complete level in a stochastic fashion.
The fitness function was direct, data-driven and personalised, using a neural
network that converted level parameters and information about the player’s
playing style to one of six emotional state predictors (fun, challenge, frustration,
predictability, anxiety, boredom), which could be chosen as components of a
fitness function. These neural networks were trained through collecting both
gameplay metrics and data on player preferences using variants of the game on
a web page with an associated questionnaire.

5 Outlook

As reviewed in the previous section, a small number of successful experiments
are already beginning to show the promise of search-based procedural content
generation. By classifying these experiments according to the taxonomies pre-
sented in this paper, it can be seen both that (1) though all are examples of
SBPCG, they differ from each other in several important dimensions, and (2)
there is room for approaches other than those that have already been tried; both
the type of content generated and the algorithmic approach to generating it may
change in the future.

At the same time, there are several hard and interesting research challenges.
These include the appropriate representation of game content and the design
of relevant, reliable, and computationally efficient fitness functions. The latter
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challenge in particular is likely to benefit from collaboration with experts from
fields other than computational intelligence, including psychology, game design
studies and affective computing. The potential gains from providing good so-
lutions to these challenges, however, are significant: the invention of new game
genres built on PCG, streamlining of the game development process, and further
understanding of the mechanisms of human entertainment are all possible.
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