
Super Mario Evolution

Julian Togelius, Sergey Karakovskiy, Jan Koutnı́k and Jürgen Schmidhuber

Abstract— We introduce a new reinforcement learning bench-
mark based on the classic platform game Super Mario Bros. The
benchmark has a high-dimensional input space, and achieving
a good score requires sophisticated and varied strategies. How-
ever, it has tunable difficulty, and at the lowest difficulty setting
decent score can be achieved using rudimentary strategies and
a small fraction of the input space. To investigate the properties
of the benchmark, we evolve neural network-based controllers
using different network architectures and input spaces. We
show that it is relatively easy to learn basic strategies capable
of clearing individual levels of low difficulty, but that these
controllers have problems with generalization to unseen levels
and with taking larger parts of the input space into account.
A number of directions worth exploring for learning better-
performing strategies are discussed.

Keywords: Platform games, Super Mario Bros, neuroevo-
lution, input representation

I. WHY?

Why would we want to use evolutionary or other reinforce-
ment learning algorithms to learn to play a video game?

One good reason is that we want to see what our learning
algorithms and function representations are capable of. Every
game requires a somewhat different set of skills to play,
and poses a somewhat different learning challenge. Games
of different genres often have radically different gameplay,
meaning that a different set of skills has to be learned to a
different level of proficiency and in a different order. The
first goal when trying to automatically learn to play a game
is to show that it can be done.

Video games are in many ways ideal testbeds for learning
algorithms. The fact that people play these games mean
that the skills involved have some relevance to the larger
problem of artificial intelligence, as they are skills that
humans possess. Good video games also possess a smooth,
long learning curve, making them suitable for continual
learning by humans and algorithms alike [1].

A related reason is that we would like to compare the
performance of different learning algorithms and function
representations. A large number of algorithms are capable
of solving at least some classes of reinforcement learning
problems. However, their relative effectiveness differ widely,
and the differences are not always in line with theoretical
predictions [2]. To accurately characterize the capabilities
of different algorithms we need a wide range of testbed
problems, which are easily reproducible (so that different
researchers can test their algorithms on the very same prob-
lem) and which preferably should have some relevance to

JT is with the IT University of Copenhagen, Rued Langgaards Vej 7,
2300 Copenhagen S, Denmark. SK, JK and JS are with IDSIA, Galleria
2, 6928 Manno-Lugano, Switzerland. Emails: {julian, sergey, hkou, juer-
gen}@idsia.ch

real-life problems. We would like to have a collection of
problems that cover the multidimensional space formed by
the dimensions along which reinforcement learning problems
can vary as completely as possible. It seems likely that video
games can form the basis of many of these parametrisable
testbed problems, especially those on the more complex end
of the scales: continuous, high-dimensional state spaces with
partial observability yet high-dimensional observations, and
perhaps most important of all, requiring a the execution of
sequences of different behaviours.

But there is yet another reason, which could be just as im-
portant: the development of better adaptation mechanisms for
games. While there is limited demand in the games industry
for higher-performing opponents in most game genres, there
is a demand for more interesting NPCs (opponents, allies,
sidekicks etc.), for better ways of adapting the game to the
player, and for automatically generating game content. Re-
cently proposed methods for meeting these demands assume
that there is already an RL algorithm in place capable of
learning to play the particular game that is being adapted [3],
[4], [5] and/or models of player experience [6].

These reasons have motivated researchers to apply RL
algorithms (most commonly phylogenetic methods such as
evolutionary algorithms) to successfully learn to play a large
variety of video games from many different game genres.
These include arcade games such as Pac-Man [7] and X-
pilot [8], first-person shooter games such as Quake II [9]
and Unreal Tournament [10], varieties of racing games [11],
[12] and fighting games [13].

So, given this list of titles and genres, why learn to play yet
another game of another genre? For the simple reason that it
is not represented in the list above. Each game type presents
new challenges in terms of atomic behaviours and their
sequencing and coordination, input and output representation,
and control generalization.

This paper investigates the evolutionary reinforcement
learning of successful strategies/controllers (we will use these
words interchangeably) for Super Mario Bros, the platform
game par excellence. We are not aware of any previous
attempts at learning to automatically play a platform game.

When a video game-based benchmark has been devised,
it’s important that the source code and an easy to use
interface is released on the Internet so that other researchers
can test their own algorithms without going through hassle
or re-implementing or re-interfacing the code, and ensuring
that the comparisons remain valid. A particularly good way
to do this is to organize a competition around the benchmark,
where the competitors learn or otherwise develop controllers
that play the game as well as possible. This has previously
been done for several of the games mentioned above, in-

Fig. 1. Infinite Mario Bros.

cluding our own simulated car racing competitions [12].
The benchmark developed for this paper is therefore also
used for a competition run in conjunction with international
conferences on CI and games, and complete source code is
downloadable from the competition web page 1.

II. WHAT?

The game studied in this paper is a modified version of
Markus Persson’s Infinite Mario Bros (see Figure 1) which
is a public domain clone of Nintendo’s classic platform
game Super Mario Bros. The original Infinite Mario Bros
is playable on the web, where Java source code is also
available2.

The gameplay in Super Mario Bros consists in moving the
player-controlled character, Mario, through two-dimensional
levels, which are viewed sideways. Mario can walk and run
to the right and left, jump, and (depending on which state
he is in) shoot fireballs. Gravity acts on Mario, making it
necessary to jump over holes to get past them. Mario can be
in one of three states: Small (at the beginning of a game), Big
(can crush some objects by jumping into them from below),
and Fire (can shoot fireballs).

The main goal of each level is to get to the end of the
level, which means traversing it from left to right. Auxiliary
goals include collecting as many as possible of the coins
that are scattered around the level, clearing the level as fast
as possible, and collecting the highest score, which in part
depends on number of collected coins and killed enemies.

Complicating matters is the presence of holes and moving
enemies. If Mario falls down a hole, he loses a life. If he
touches an enemy, he gets hurt; this means losing a life if
he is currently in the Small state. If he’s in the Big state, he
changes to Small, and if he’s in the Fire state, he’s degraded
to merely Big. However, if he jumps so that he lands on the
enemy from above, different things happen. Most enemies
(e.g. goombas, fireballs) die from this treatment; others (e.g.
piranha plants) are not vulnerable to this and proceed to hurt

1http://julian.togelius.com/mariocompetition2009
2http://www.mojang.com/notch/mario/

Mario; finally, turtles withdraw into their shells if jumped on,
and these shells can then be picked up by Mario and thrown
at other enemies to kill them.

Certain items are scattered around the levels, either out in
the open, or hidden inside blocks of brick and only appearing
when Mario jumps at these blocks from below so that he
smashes his head into them. Available items include coins
which can be collected for score and for extra lives (every
100 coins), mushrooms which make Mario grow Big if he
is currently Small, and flowers which make Mario turn into
the Fire state if he is already Big.

No textual description can fully convey the gameplay of a
particular game. Only some of the main rules and elements
of Super Mario Bros are explained above; the original game
is one of the world’s best selling games, and still very
playable more than two decades after its release in the mid-
eighties. It’s game design has been enormously influential
and inspired countless other games, making it a good choice
for experiment platform for player experience modelling.

While implementing most features of Super Mario Bros,
the standout feature of Infinite Mario Bros is the automatic
generation of levels. Every time a new game is started,
levels are randomly generated by traversing a fixed width
and adding features (such as blocks, gaps and opponents)
according to certain heuristics. The level generation can be
parameterized, including the desired difficulty of the level,
which affects the number and placement of holes, enemies
and obstacles. In our modified version of Infinite Mario
Bros we can specify the random seed of the level generator,
making sure that we can recreate a particular randomly
created level whenever we want.

Several features make Super Mario Bros particularly inter-
esting from an RL perspective. The most important of these is
the potentially very rich and high-dimensional environment
representation. When a human player plays the game, he
views a small part of the current level from the side, with the
screen centered on Mario. Still, this view often includes many
tens of objects such as brick blocks, enemies and collectable
items. These objects are spread out in a semi-continuous
fashion: the static environment (grass, pipes, brick blocks
etc.) and the coins are laid out in a grid (of which the standard
screen covers approximately 15 ∗ 15 cells), whereas moving
items (most enemies, as well as the mushroom power-ups)
move almost continuously at pixel resolution.

The action space, while discrete, is also rather large. In
the original Nintendo game, the player controls Mario with
a D-pad (up, down, right, left) and two buttons (A, B). The A
button initiates a jump (the height of the jump is determined
partly by how long it is pressed) and the B button initiates
running mode. Additionally, if Mario is in the Fire state, he
shoots a fireball when the B button is pressed. Disregarding
the unused up direction, this means that the information to
be supplied by the controller at each time step is five bits,
yielding 25 = 32 possible actions, though some of these are
nonsensical and disregarded (e.g. pressing left and right at
the same time).

Another interesting feature is that different sets of be-
haviours and different levels of coordination between those
behaviours are necessary in order to play levels of differ-
ent difficulty, and complete these with different degrees of
success. In other words, there is a smooth learning curve
between levels, both in terms of which behaviours are nec-
essary and their necessary degree of refinement. For example,
to complete a very simple Mario level (with no enemies and
only small and few holes and obstacles) it might be enough to
keep walking right and jumping whenever there is something
(hole or obstacle) immediately in front of Mario. A controller
that does this should be easy to learn. To complete the same
level while collecting as many as possible of the coins present
on the same level likely demands some planning skills, such
as smashing a power-up block to retrieve a mushroom that
makes Mario Big so that he can retrieve the coins hidden
behind a brick block, and jumping up on a platform to collect
the coins there and then going back to collect the coins
hidden under it. More advanced levels, including most of
those in the original Super Mario Bros game, require a varied
behaviour repertoire just to complete. These levels might
include concentrations of enemies of different kinds which
can only be passed by observing their behaviour pattern and
timing Mario’s passage precisely; arrangements of holes and
platforms that require complicated sequences of jumps to
pass; dead ends that require backtracking; and so on. How to
complete Super Mario Bros in minimal time while collecting
the highest score is still the subject of intense competition
among human players3.

III. HOW?

Much of the work that went into this paper consisted in
transforming the Infinite Mario Bros game into a piece of
benchmarking software that can be interfaced with reinforce-
ment learning algorithms. This included removing the real-
time element of the game so that it can be “stepped” forward
by the learning algorithm, removing the dependency on
graphical output, and substantial refactoring (as the developer
of the game did not anticipate that the game would be turned
into an RL benchmark). Each time step, which corresponds to
40 milliseconds of simulated time (an update frequency of 25
fps), the controller receives a description of the environment,
and outputs an action. The resulting software is a single-
threaded Java application that can easily be run on any major
hardware architecture and operating system, with the key
methods that a controller needs to implement specified in
a single Java interface file (see figures 2 and 3). On an
iMac from 2007, 5−20 full levels can be played per second
(several thousand times faster than real-time) depending on
the level type and controller architecture. A TCP interface
for controllers is also provided, along with an example
Python client. However, using TCP introduces a significant
connection overhead, limiting the speed to about one game
per minute (three times real-time speed).

3Search for “super mario speedrun” on YouTube to gauge the interest in
this subject.

public enum AGENT_TYPE
{AI, HUMAN, TCP_SERVER}

public void reset();
public boolean[] getAction

(Environment observation);
public AGENT_TYPE getType();
public String getName();
public void setName(String name);

Fig. 2. The Agent Java interface, which must be implemented by all
controllers. Called by the game each time step.

// always the same dimensionality 22x22
// always centered on the agent
public byte[][] getCompleteObservation();
public byte[][] getEnemiesObservation();
public byte[][] getLevelSceneObservation();
public float[] getMarioFloatPos();
public float[] getEnemiesFloatPos();
public boolean isMarioOnGround();
public boolean mayMarioJump();

Fig. 3. The Environment Java interface, which contains the observation,
i.e the information the controller can use to decide which action to take.

We devised a number of variations on a simple neural-
network based controller architecture, varying in whether
we allowed internal state in the network or not, and how
many of the “blocks” around Mario were used as inputs.
The controllers had the following inputs; the value for each
input can be either 0 (on) or 1 (off).

• A bias input, with the constant value of 1.
• One input indicating whether Mario is currently on the

ground.
• One input indicating whether Mario can currently jump.
• A number of input indicating the presence of environ-

mental obstacles around Mario.
• A number of input indicating the presence of enemies

Fig. 4. Visualization of the environment and enemy sensors. Using the
smallest number of sensors, the top six environment sensors would output
0 and the lower three input 1. All of the enemy sensors would output 0, as
even if all 49 enemy sensors were consulted none of them would reach all
the way to the body of the turtle, which is four blocks below Mario. None
of the sensors register the coins.

around Mario.

The number of inputs for environmental obstacles and
enemies are either 9, 25 or 49, arranged in a square centering
on Mario (in his Small state, Mario is the size of one block.
This means that each controller has either 21 (bias + ground
+ jump + 9 environment + 9 enemy), 53 or 101 inputs. See
figure 4 for a visualization and further explanation of the
inputs.

These inputs are then fed in to either an Multi-Layer
Perceptron (MLP) or a Simple Recurrent Network (SRN,
also called Elman network). Both types of network have 10
hidden nodes and tanh transfer functions.

We initially used simple µ + λ Evolution Strategies (ES)
with µ = λ = 50 and no self-adaptation. The mutation
operator consisted in adding random numbers drawn from a
Gaussian distribution with mean 0 and standard deviation 0.1
to all weights. Each run of the ES lasted for 100 generations.

The input space for this problem has a higher-
dimensionality than what is commonly the case for RL
problems, and there is likely to be significant regularities
in the inputs that can be exploited to design competent
controllers more compactly. The simple neuroevolutionary
mechanism described above does not take any such regularity
into account. We therefore decided to also explore the
HyperGP [14] hybrid neuroevolution/genetic programming
algorithm, which has previously been shown to efficiently
evolve solutions that exploit regularity in high-dimensional
input spaces.

HyperGP evolves neuron weights as a function of their
coordinates in a Cartesian grid called a substrate using
Genetic Programming. HyperGP is an indirect encoding
algorithm inspired by the HyperNEAT [15], which uses
the evolved neural networks (generated with NEAT) as
the weight generating function. In HyperGP, the NEAT is
replaced by the Genetic Programming. NEAT features com-
plexification, which means that it starts with a simple linear
function and adds more units during the evolution. HyperGP
generates complex expression from the beginning, thus the
convergence is in many cases faster than in HyperNEAT [14].
Each HyperGP controller was evolved 100 generations of
populations of 100 individuals consisting 7 evolved function
for weight matrices. The function expressions of maximum
depth of 4 were used.

The fitness function is based on how far Mario could
progress along a number of different levels of different
difficulty. The progress is measured in the game’s own units;
the levels vary slightly in length, but are between 4000 and
4500 units long. Each controller was evaluated by testing it
on one level at a time, and using the progress made on this
level as fitness value. The same random seed (and thus the
same level, as long as the difficulty stayed the same) was used
for each fitness evaluation during an evolutionary run in order
to not have to remove noise from fitness evaluations; this seed
was changed to a new random number between evolutionary
runs. Each evolutionary run started with a difficulty level of 0
but every time a controller in the population reached a fitness

above 4000 , which we interpret as clearing a level or at least
being very close to clearing it, the difficulty was incremented
by one step. This means that a new level, usually including
somewhat more gaps and enemies and more complicated
terrain, was used for fitness evaluation instead.

After each evolutionary run, the generalization capacity
of the best controller present in the population of the last
generation was tested. This was done by testing it on 4000
new levels, 1000 each of the difficulties 0, 3, 5 and 10.
The random seeds for these levels were kept fixed between
evolutionary runs.

Table I presents the highest difficulty reached by the con-
trollers of each type, and the performance of the controllers
on the test set of 4000 levels.

TABLE I
RESULTS (LEVEL REACHED, SCORES IN LEVELS 0, 3, 5 AND 10),

AVERAGED OVER THE BEST CONTROLLERS OF EACH TYPE FOUND

DURING APPROXIMATELY 6 (BETWEEN 4 AND 8) INCREMENTAL

EVOLUTIONARY RUNS. RESULTS FOR BOTH MLP- AND SRN-BASED

NETWORKS ARE SHOWN. LAST THREE LINE CONTAIN STATISTICS FROM

LARGE SRN CONTROLLERS EVOLVED BY HYPERGP ALGORITHM.

Controller Level 0 3 5 10
Small MLP 3 1784 719 606 531
Medium MLP 0.83 864 456 410 377
Large MLP 0.5 559 347 345 300
Small SRN 2.83 3050 995 834 692
Medium SRN 1.83 1625 670 576 512
Large SRN 0.25 757 440 408 373
Small HyperGP SRN 1.87 2365 780 695 585
Medium HyperGP SRN 2.13 2352 786 679 545
Large HyperGP SRN 1.25 2314 633 588 534

As can be seen from Table I, we can relatively easily
evolve controllers that can clear individual levels of difficulty
level two, and sometimes three. Levels of difficulty three
contains occasional gaps, and a healthy number of enemies of
all types, including cannons. (In contrast, levels of difficulty
zero contain no gaps, fewer enemies (goombas and turtles
only) and overall a flatter landscape.)

However, there are problems with generalization. Con-
trollers that have managed to progress to clear levels of
difficulty 2 or 3 have problems with clearing levels of the
same difficulty other than the particular level they were
trained on, and often even fail to clear level 0.

Looking at the behaviour of some of the best controllers
from individual evolutionary runs on other levels than they
were trained on, it seems that the one skill every controller
has learnt is to run rightwards and jump when the current
stretch of ground they are on ends. This could be either in
front of a gap (which Mario would die from falling into)
or when the platform Mario stands on ends, even though
there is firm ground to land on below. In some cases, Mario
jumps unnecessarily jumps off a platform just to land inside
a gap later on, something that could have been avoided if a
larger portion of the environment could have been taken into
account.

None of the controllers are very good at handling ene-

mies. Most of the time Mario just runs into them, though
occasionally he seems to be jumping over enemies directly
in front. Still, failing to complete a level because of dying
from running into an enemy seems to be comparably rare,
meaning that selection pressure for handling enemies better
is likely too low. As Mario starts in the Fire state, he needs
to run into three enemies in order to die. Instead, failure to
complete a level is typically due to falling into a hole, or
getting stuck in front of a wall, for some reason failing to
jump over it.

None of the evolved controllers pay any attention to coins
and item blocks, and any collected coins are purely by
chance — they happened to be where to controller wanted
to go anyway. This is not surprising as they have no way of
“seeing” coins or items.

Comparing the fitness of reactive and recurrent controllers,
the SRN-based controllers perform about as good as the
MLP-based controllers both in terms of the average max-
imum training level reached and in terms of score on the
test levels. However, controlelrs with larger input spaces
that “see” more of the game environment perform worse
even though they have access to more information; Large
controllers perform worse than Medium controllers which
in turn perform worse than Small controllers. The simplest
controllers, based on a feedforward network with 21 inputs
performed very much better than the most complex con-
trollers, based on recurrent controllers with 101 inputs. It
seems that the high dimensionality of the search space is
impeding the evolution of highly-fit large controllers, at least
as long as the controller is represented directly with a linear-
length encoding.

Main advantage of the HyperGP is a capability of evolu-
tion of large controllers with 101 inputs. The following set of
7 functions is an example of a genome that can clear level 2.
Note that the first function just generates 0 valued weights
for inputs containing shape of the ground. This controller
moves forward, jumps and kills enemies by firing but is not
robust enough to avoid randomly placed holes in the terrain:

f1 = 0, f2 = x2
2x

2
3, f3 = sin cosx1, f4 = |x1|+ cosx1,

f5 = e
−

“√
|x1|−1

”2

, f6 =
√
|x1| cosx1, sinx1x2, f7 = x4

1

The complete set of function contains 42 nodes, whereas
the generated large network contains 1172 weights. Such
compression of the search space allows to generate large
network with a good performance in a reasonable number of
evaluations. Performance of HyperGP evolved networks is
similar regardless to a number of inputs used. The HyperGP
evolved recurrent neural network do not outperform small
networks evolved by direct encoding of weights in genomes.
The HyperGP in fact allows evolution of networks with a
high number of inputs, which is almost impossible or gives
poor results using direct encoding.

Figure 5 depicts a typical evolution of large controller
evolved by the HyperGP. The plot contains 100 generations

Fig. 5. Example HyperGP evolution of the large SRN controller. The
plot contains sorted population of individuals. Each level in the incremental
evolution is colored with a different color (white for level 0). For example,
controller that clears level 1 just needs three generations to be able to clear
level 3.

of individual controllers sorted by their fitness value. We can
see how the controller advances the game levels (colored
stripes), when it reaches maximum fitness of 4000. All
controllers are reevaluated when the desired fitness is reached
(therefore the maximum fitness is not included in the plot)
and used in the next level. We can see that the controllers may
perform well in the next level. For example, the controller
for level 1 performs well in level 2 and just three generations
are enough to advance to level 3.

IV. SO?
We have described a new RL benchmark based on a

version of the popular platform game Super Mario Bros,
and characterized how it offers unique challenges for RL
research. We have also shown that it is possible to evolve
controllers that play single levels of the game quite well,
using a relatively naive neural network architecture and input
representation. However, these controllers have problems
with generalization to other levels, and with taking anything
temporally or spatially distant into account.

So where do we go from here? How do we go about to
learn controllers that play Super Mario Bros better?

The problems with generalization might be solved through
using new seeds for every evaluation, though that will lead
to problems with noise that might require averaging over
a large number of evaluations to achieve reliable enough
fitness values for evolution. Another solution could be to
incrementally increase the number of levels used for each
evaluation, as was done in [16]; however, this also requires
additional computational time.

It is arguably more important, and more interesting, to
overcome the problems with spatial and temporal reach.
From our results above, it is clear that using simple recurrent
networks rather than MLPs did not affect the performance
significantly; nor did we expect this simple recurrent archi-
tecture to be able to solve the problems of temporal reach.

It is possible that more sophisticated recurrent architecture
such as Long-Short Term Memory (LSTM) can be used to
learn controllers that take more temporally distant events into
account [17]. An example of the long-term dependencies
that could be exploited is that if a wall was encountered
50 or 100 time steps (2− 4seconds) ago, hindering progress
towards the goal, the controller could remember this and go
into “backtracking mode”, temporarily moving away from
the goal and trying to jump onto a higher platform before
resuming movement towards the goal.

The problems of spatial reach were not solved by simply
adding more inputs, representing a larger part of the envi-
ronment, to the standard neural network. Indeed, it seems
that simply adding more inputs decreases the evolvability
of the controllers, probably due the added epistasis of high-
dimensional search spaces.

Given that there are certain regularities to the environment
description (e.g. a piranha plant in front of Mario means
approximately the same thing regardless of whether it is
6 or 8 blocks away) we believe that these problems can
be overcome by using neural network architectures that
are specifically designed to handle high-dimensional input
spaces with regularities. In particular, we plan to perform
experiments using both Multi-Dimensional Recurrent Neural
Networks [18] to see if a larger part of the input space can
successfully be taken into account.

HyperGP evolves controllers with similar performance
regardless to a size of the input window. The results are worse
than those given by small networks evolved using direct
encoding but it can evolve large input networks. Although it
performs relatively well with large number of inputs, further
testing of hypercube encoded networks will be focused on
scalability of either in input space or in the size of the
network itself. It requires testing of networks evolved with a
particular number of inputs on a setup with different number
of inputs or different number of neurons using the same
functions that generate the weight matrices.

If this is successful, the next step would be to include
more observation matrices, allowing the controller to see
coins and item blocks, and possibly differentiate between
different types of enemies, which in turn would allow more
sophisticated strategies. This would mean observations with
many hundreds of dimensions. Examples of successful rein-
forcement learning in nontrivial problems with such large
input spaces are scarce or nonexistent; this is probably
due to lack of both learning algorithms capable to handle
such problems, and benchmark problems to test them. We
believe that the video game-based benchmark presented in
this paper goes some way towards meeting the demands for
such benchmarks.

Another way in which the environment representation can
be made richer in order to permit more sophisticated game
play is to introduce continuous inputs signifying how far
from the center of the current block Mario is. This would
allow more precise spatial positioning, which is necessary
for some complicated jump sequences.

We believe that the techniques used in this paper have
merely scratched the surface of what is possible when it
comes to learning strategies for this Super Mario Bros-based
benchmark. Fortunately, the free availability of the source
code and the associated competition makes it possible for
anyone, including you, to try your best technique at the
problem and compare your results with others.

ACKNOWLEDGEMENTS

This research was supported in part by the SNF under
grant number 200021-113364/1. Thanks to Tom Schaul for
useful comments and chocolate.

REFERENCES

[1] R. Koster, A theory of fun for game design. Paraglyph press, 2005.
[2] J. Togelius, T. Schaul, D. Wierstra, C. Igel, F. Gomez, and

J. Schmidhuber, “Ontogenetic and phylogenetic reinforcement learn-
ing,” Zeitschrift Künstliche Intelligenz, 2009.

[3] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic
personalised content creation in racing games,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games, 2007.

[4] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2008.

[5] A. Agapitos, J. Togelius, S. M. Lucas, J. Schmidhuber, and A. Kon-
stantinides, “Generating diverse opponents with multiobjective evo-
lution,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2008.

[6] G. N. Yannakakis and J. Hallam, “Real-time Adaptation of
Augmented-Reality Games for Optimizing Player Satisfaction,” in
Proceedings of the IEEE Symposium on Computational Intelligence
and Games. Perth, Australia: IEEE, December 2008, pp. 103–110.

[7] S. Lucas, “Evolving a neural network location evaluator to play ms.
pac-man,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2005, pp. 203–210.

[8] M. Parker and G. B. Parker, “The evolution of multi-layer neural
networks for the control of xpilot agents,” in Proceedings of the IEEE
Symposium on Computational Intelligence and Games, 2007.

[9] M. Parker and B. D. Bryant, “Visual control in quake ii with a cyclic
controller,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2008, p. 8.

[10] R. Kadlec, “Evolution of intelligent agent behaviour in computer
games,” Master’s thesis, Charles University in Prague, Sep 2008.

[11] J. Togelius and S. M. Lucas, “Evolving controllers for simulated car
racing,” in Proceedings of the Congress on Evolutionary Computation,
2005.

[12] D. Loiacono, J. Togelius, P. L. Lanzi, L. Kinnaird-Heether, S. M.
Lucas, M. Simmerson, D. Perez, R. G. Reynolds, and Y. Saez, “The
WCCI 2008 simulated car racing competition,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games, 2008.

[13] T. Graepel, R. Herbrich, and J. Gold, “Learning to fight,” in Proceed-
ings of the International Conference on Computer Games: Artificial
Intelligence, Design and Education, 2004.

[14] Z. Buk, J. Koutnı́k, and M. Šnorek, “NEAT in HyperNEAT substituted
with genetic programming,” in Proceedings of the International Con-
ference on Adaptive and Natural Computing Algorithms (ICANNGA
2009), 2009.

[15] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based
indirect encoding for evolving large-scale neural networks,” Artificial
Life, vol. 15, no. 2, 2009.

[16] J. Togelius and S. M. Lucas, “Evolving robust and specialized car
racing skills,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2006.

[17] F. A. Gers and J. Schmidhuber, “LSTM recurrent networks learn sim-
ple context free and context sensitive languages,” IEEE Transactions
on Neural Networks, vol. 12, pp. 1333–1340, 2001.

[18] T. Schaul and J. Schmidhuber, “Scalable neural networks for board
games,” in Proceedings of the International Conference on Artificial
Neural Networks (ICANN), 2008.

