Learning What to Ignore:
Memetic Climbing in Topology and Weight space

Julian Togelius, Faustino Gomez and Jurgen Schmidhuber
Dalle Molle Institute for Artificial Intelligence (IDSIA)
Galleria 2, 6298 Manno-Lugano
Switzerland
{julian, tino, juergen@idsia.ch

Abstract— We present the memetic climber, a simple search the lack of published successful results for evolving agent
algorithm that learns topology and weights of neural netwoks that use high-dimensional input data, e.g. vision. Almdist a
on different time scales. When applied to the problem of lear- published papers in evolutionary robotics and game playing

ing control for a simulated racing task with carefully seleded . . .
inputs to the neural network, the memetic climber outperforms use networks with few (on the order of 10 to 20) inputs (with

a standard hill-climber. When inputs to the network are less the notable exception of [3]).

carefully selected, the difference is drastic. We also prest two Realizing the i ¢ f | h
variations of the memetic climber and discuss the generalation ealizing the importance of topology, many researchers

of the underlying principle to population-based neuroevoltion ~have devised algorithms that evolve topology and weights of

algorithms. networks in tandem. Some of the more well-known efforts
Keywords: neuroevolution, reinforcement learning, netdinclude those of Gruau (Cellular Encoding; [4]) and Stanley
work topology, memetic algorithms (NEAT; [5]). These algorithms can create networks with
very unusual topologies that perform significantly bethemnt
I. INTRODUCTION fully-connected topologies with evolved weights, at least

Neuroevolution, or the training of neural networks usingﬂoecncIC tasks.
evolutionary algorithms, is conceptually simple, has very There is a problem with evolving the topology, though:
broad applicability, and has been shown to outperform elasghanging the topology of a network is almost always very
cal reinforcement learning algorithms on difficult benchikna disruptive. Critical links can be disabled, and enabling-pr
problems [1], [2]. Most neural networks can be defined byiously inoperative links can be equally destructive. 1€ th
their topology (the set of neurons and connections betweertwork has a reasonably high fitness, it will often drop
them) and connection weights, and the genetic crossover aingimediately to near the level of a random network after
mutation operators can in principle be applied to both. this kind of structural modification, so simply applying a
Although the majority of neuroevolutionary algorithmsmutation operator that changes topology as well as weights
stick to a fixed topology and evolve only the weights (seés unlikely to work very well.
e.g. references 26-112 in [1]) as they represent a relgtivel . . .

In this paper, we explore a simple way of addressing
smaller search space, a large body of work suggests that Eﬂ?s issue by evolving the structure and weights of a neural
topology of a neural network interacts in a nontrivial way y 9 . 9 .)

o S s : : network at different time scales, where “global” search in
with its evolvability, i.e. the ability of evolutionary atgithms

to find weight settings for networks that produce a desiretc(i)loology space is interleaved with *local” search in weight

i : . . . ace. In other words, after changing a topology, try to find
behavior or approximate a given function. It is not as easy gaggood weight combination for a little while before deciding

getting the size of the network right: two networks with the
. ._Whether to keep the new topology or revert to the old one.
same number of neurons and connections can have drastic h is that thi h il vield a family wBmeti
different evolvability for a given problem. Specificallyfuly € hope 1s hat this scheme will yield a family Ic
Igorithms [6], that might initially learn more slowly than
connected network (e.g. a standard MLP) can often be ma . .
: . . _methods that search for weights only, but ultimately reach
more evolvable by simply removing a few key connections. . : - ;)
. . .) higher fithess by avoiding topology-induced local optima.
The simplest hypothesis that explains this phenomenon : .
e authors are not aware of any previous applications of

that the availability of certain information at certain pt memetic algorithms to evolving neural networks
in the network leads evolution into local optima. Calatzett 9 9 ’

et al. call this effecheural interference. For those of us who The next section, provides some additional background on
wish to use neuroevolution for learning control (e.g. fomga the interaction between evolvability and network topology
agents or robots) with minimal human domain knowledgén section Ill, we present five algorithms that are compared
this poses a problem. We would rather leave it to the learnirexperimentally in a race car control task in section V.
algorithm to decide which inputs to use and which to ignoreSection V discusses our results and future directions, and
Not knowing how to deal with this effect may explain, in part,section VI summarizes our findings.

Il. RELATED WORK Algorithm 1 : Hill-Climber (n)

Several studies have demonstrated that often increasimg NITIALIZE (champion)
evolvability is simply matter of removing a single neural2 f.,qm, < EVALUATE (champion)
connection (e.g. Nolfi was able to evolve better robot los for i=1 to n do
calization by applying such a minimal lesion to a recurreni contender— champion
network [7]), or removing a certain input, as shown bys WEIGHTMUTATE (contender)
Lucas and Togelius’ work in evolving waypoint-following 6 fentder <— EVALUATE (contender)
behavior for a holonomic agent in simulation [8]. In that7 if fentder >= fehamp then
study, the authors found that effective controllers woultyo s champion«< contender
evolve when a specific input representing the angle between end
the agent’s direction of movement and the direction to the end
waypoint wasabsent.
Restricting network topology can also encourage modular-

ity to evolve for tasks where multiple, relatively orthogdn . .
y P y g gne hidden layer, where each neural connection has an as-

functional competencies are required. Calabretta et al. : . . .
. : sociated boolean variable that determines whether it isron o
tempted to evolve networks to perform two different image . .
ff. The network as a whole is thus defined/byeal numbers

H H &, I)H &, t)l
processing tasks, resembling the *what?” and *where?'sas enoting connection weights amdbooleans denoting which

in human neurobiology, simultaneously. They found that for 7 i : .
9y y y onnection weights are active (i.e. the "mask”). When an

this to work, the two tasks needed to be performed by IargeIF put vector is propagated through the network, only those

separate networks, otherwise networks would evolve tha . o
onnections whose mask bit is set are used to compute the

_ . C
could solve only one of the tasks [9]. Similarly, De Nardi et)

y [9] . y . network output. The search algorithms operate on the mask
al. found that to evolve successful helicopter control iswa

. : . networks via two mutation operatoraeight mutation and
crucial to enforce some modularity—it was necessary to keﬁg

the yaw stabilization module separate from the networks tha pology mutat!on: W§|ght mutatlon adds values drawp from
. - 1 a Gaussian distribution with mednand standard deviation
controlled other aspects of the helicopter’s flight [10].alf

0.1 to all connection weights; this includes weights which

network with access to all inputs was able to control the yaw : .
are currently marked as off. Topology mutation consists

of the helicopter, it quickly learned to keep hovering wh|len considering each bit in the mask, and flipping that bit

spinning, which is a local optimum as goal-directed fIIghtvith probability 0.05. In the pseudocode for the algorithms

requires stable yaw. Keeping the yaw stabilization module) . .
separate prevented evolution from taking the easy way ou resented below, weight and topology mutation are invoked
y the WEIGHTMUTATE() and ToPOLOGYMUTATE() func-

Of course is it not always possible to identify the bes ons. respectivel
connectivity experimentally, and searching topology spac In :alll ef erime)r/{ts all connection weights were initiatize
can be problematic since mutations that affect the connec- .- - P lizati ' fih K vari d? h .
tivity of a network can often be very disruptive. There haéO ; the |-n|t|a|zat|on ofthe mask varied for each expermte
been some work addressing this problem, most notably tfe described below.
NEAT algorithm [5], through a mechanism callgahovation
protection. Whenever a network with a sufficiently different
new topology is created, it is assigned its own “SpeCies’Algorithm 1: Hill-Climber
and it or its offspring (with the same topology but differentyp;g algorithm is equivalent to al (-1) evolution strategy
weights) are allowed to stay in the population for a feWyhich has a population of one individual (trbampion),
generations, even if its fitness is much below that of thgnqy each update (generation), it evaluates the fitness of the
best networks in the population. If, at the end of this “gracﬁhampion, generates a new individual (tbentender) by
peric_>d”, weight set_tings have been found_that give net\{vorlg_:copying the champion and mutating the copy, and evaluates
of this topology a fitness among the best in the population, jhe fitness of the contender. If the fitness of the contender is
can stay on, otherwise the topology is removed. This featufgyher than or equal to that of the champion, the champion
is similar to what we are proposing here, though NEAT is & "repjaced by the contender, otherwise the contender is
considerably more complex algorithm. discarded and the champion remains.

Ill. METHODS Algorithm 2: Simultaneous Climber

This section describes the neural network representatiofhis algorithm is the same as Algorithm 1, except that
the five search algorithms, and test domain used in thE each iteration the topology is also mutated, not just

B. Algorithms

experiments in section 1V. the weights. Arguably, this constitutes the simplest puesi
topology-evolving algorithm. However, given that topojog
A. Masked neural networks mutations are typically destructive, this algorithm is et

In all of the experiments, solutions are represented by expected to work very well; the probability of a beneficial
Multi-Layered Perceptron (i.e. a feedforward network)hwit weight mutation and a beneficial topology mutation co-

Algorithm 2 : Simultaneous Hill-Climber) Algorithm 4: Constrained Memetic Climber(m,p, k)

1 INITIALIZE (champion) 1 INITIALIZE (champion)

2 fehamp < EVALUATE (champion) 2 fehamp < EVALUATE (champion)

3 for i=1to n do 3 for i=1ton do

4 contender— champion 4 contender— champion

5 WEIGHTMUTATE (contender) 5 TOPOLOGYMUTATE (contender)

6 TOPOLOGYMUTATE (contender) 6 PRUNECONNECTIONS(contenderp)

7 Sentder <— EVALUATE (contender) 7 for j=1to mdo

8 if fentder >= fehamp then 8 fentder <— EVALUATE (contender)

9 champion«— contender 9 subcontender— contender

10 end 10 WEIGHTMUTATE (subcontender)

11 end 11 Ssubent <— EVALUATE (subcontender)
12 if ,fsubcnt >= ,fcntdr then
13 contender— subcontender

Algorithm 3: Memetic Climber @,m) 14 end

1 INITIALIZE (champion) 15 end

2 fehamp < EVALUATE (champion) 16 fentder — EVALUATE (contender)

3 for i=1tondo 17 if fcntder >= fchamp then

4 contender— champion 18 champion« contender

5 TOPOLOGYMUTATE (contender) 19 end

6 for j=1 to m do 20 if ¢ >k then

7 fentder — EVALUATE (contender) 21 p—2%p

8 subcontender— contender 22 k—2xk

9 WEIGHTMUTATE (subcontender) 23 end

10 fsubent — EVALUATE (subcontender) 24 end

1 if fsubcnt >= fcntdr then

12 contender— subcontender

13 de”d climber uses a principled scheme for incrementally aliogat

14 en

the total search time borrowed from universal program $earc
_ methods [11], [12]: spend twice the time on programs of size
16 if fentder >= fehamp then 21 that is spent on programs of sizeThis algorithm starts

15 fentder — EVALUATE (contender)

17 champion— contender by searching for weights for a topologies of an initial “ize

18 end specified by the parametgrthe probability that a connection

19 end is active. After k generations botht and p are doubled
(lines 20-23) so that topologies with, on average, twice
the number of connections are searched for twice as many

occurring is simply too low. generations. The network size limit is enforced after every
topology mutation by the RUNECONNECTIONY) function

Algorithm 3: Memetic Climber (line 6) which randomly switches connections off until only

This is the memetic version of the hill-climber. Each generas many connections as allowed are active.

ation, a contender is generated by copying the champion and _

applying topology mutation, which typically causes a largé\l90rithm 5: Inverse Climber o

drop in fitness. Algorithm 1 is then applied fer iterations 1S is the same as Algorithm 3 (memetic climber) except
(lines 6-14) in order to find better weights for the mutatedat the two types of mutations are swapped. Each geneyation

topology. the algorithm makes one weight mutation and then searches
_ _ _ topology space fomn steps, in order to find a good mask for
Algorithm 4: Constrained Climber that particular configuration of weights.

Algorithm 3 puts no restrictions on topology mutation, and
thus on how many connections can be on at a particular poiat The Race Car test domain

in time. This means that the topologies are not searchedThe five algorithms were tested in the “simplerace” simu-
in any particular order, or with any bias for a particulanated car racing domain, previously used for the 2007 IEEE
network size. However, there are at least two orthogon@lEc car racing competitidn A complete description can

reasons for ordering solution candidates such that simplg found in [13]; source code is available on the car racing

ones are considered first: (1) testing simple candidatester:ompetition web page. The objective of this task is to drive a
to consume less computation, (2) Occam’s Razor suggests

that small networks tend to generalize better. The com&tdai http:/julian.togelius.com/cec2007competition

Algorithm 5: Inverse Memetic Climberr(m) that the standard inputs have a “first-person perspective”:

1 INITIALIZE (champion) all of the values could be obtained from sensors actually
2 fehamp < EVALUATE (champion) mounted on the car. _

3 for i=1 to n do The extended set of inputs consists of the 17 real values;
4 contender— champion the standard inputs plus:

5 WEIGHTMUTATE (contender) INPUT 9: orientation of the car (in Cartesian space)

6 for j=1to n do INPUT 10: angular velocity of the car

7 fentder < EVALUATE (contender) INPUT 11: speed of the other vehicle

8 subcontender— contender INPUT 12: z-coordinate of car position

9 TOPOLOGYMUTATE (subcontender) INPUT 13: y-coordinate of car position

10 fsubent < EVALUATE (subcontender) INPUT 14: z-coordinate of opponent car position

1 if foubent >= fentar then INPUT 15: y-coordinate of opponent car position

12 contender— subcontender INPUT 16: current way point in Cartesian coordinates

13 end INPUT 17: orientation of the car (static reference frame)
14 end These extra inputs provide valuable information about the
15 Sentder — EVALUATE (contender) state of the system that complements the standard inputs, an
16 if fentder >= fenamp then could potentially be used to construct a better performing
17 champion— contender controller than would be possible using only the standard
18 end inputs. However, because most of the extra information
19 end cannot be easily gathered from sensors present on the actual

car (i.e. have a “third-person perspective”) more comjarat
would be needed to make effective use of this information.
ill, one would expect a competent learning algorithm to
Esregard information it cannot handle, and start by using
gse inputs that can easily be exploited.

The two outputs of the network are always interpreted

We use the “competition” version of the task, where &S the ste_ering and driving command of the car, in both
car is evaluated using three different scenarios: (1) on ifé)nf!guratlonsthe network has a hidden Iayelr of six neurons,
own, (2) against an opponent employing a speed-limite'ﬁak'ng for a total of50 a_nd1_14 neural connections (and thus
greedy strategy (going straight for the current way point} e same .number of blt§ in the mask) for the standard and
and (3) against an opponent employing a more sophisticatgfﬁtended inputs, respectively.
strategy that selects which way point to aim for based on IV. EXPERIMENTS
which car is closest to the current way point. When racing In this section, we describe a series of experiments per-
against an opponent, the task gains a strategic componefgtr:med with the ’hiII—cIimber and variations of the memetic
choosing the best next waypoint can require predicting IwhiccIimber Note that only single-search-point (i.e. ontogi)
one the opponent is heading for. The fitness of a controller ' o

) , Search algorithms will be explored here; section V will
is calculated as the average number of way points passgaa 9 P

over ten trials in each of the three scenarios. This versfon oISCUSS extensions of the core technique to populatioaebas

L . : . Search, e.g. genetic algorithms.
the task was used for the initial ranking of competitors in In every experimental run, a total Gf0000 networks

the CEC compehtpn, meaning that there are plenty of goovc\j/ere evaluated. For the hill-climber (algorithm 1) and si-
controllers with which to compare our results. o i . .

: . . multaneous hill-climber (algorithm 2), this means running

Depending on the experiment, we use one of two different

sets of inputs: standard or extended. The standard set thF algorithm f.om = 20000 generations; for the memetic
;) .] climbers (algorithms 3, 4, and 5), the number of local search
inputs is a vector of eight real values:

s stepsm was set to50, for a total ofn = 20000/50 = 400
INPUT 1. constant bias term generations. For theonstrained hill climber the initial size-
INPUT 2: speed of the car _ probabilityp was set td).05, and the number of generations
INPUT 3: angle to the current way point to search this initial sizé was set tod.
INPUT 4: distance to the current way point Each experiment was repeatadl times, and the graphs
INPUT 5: angle and _ show the best fitness and standard deviation per generation
INPUT 6: distance to the next waypoint averaged over ali0 runs.
INPUT 7: angle and

INPUT 8: distance to the other vehicle (if present) A. Hill-climbing in weight space

These inputs are chosen based on the authors’ considerablén order to investigate the effect of different levels of
familiarity with the domain, and provide sufficient informa connectivity in the network, the hill-climber was not only
tion for neural networks to solve the task competently. Noteun with fully connected networks, but also on networks with

car through as many waypoints as possible from a random
generated sequence in a continuous environment with sim
physics. Fitness is defined as the number of waypoints pass'f
in 500 time steps, averaged over several trials.

random connectivity, i.e. where not all of the bits in the knasdifferent picture. None of the configurations manage to find
are set. For the runs with less than full connectivity, a negood weights (a fitness of arourgl0 is only marginally
mask is randomly generated for each run, with a probabilityetter than random driving; compare to fitness in figure 1),
p of each bit being set. though those with fewer connections-£ 0.25 andp = 0.5)
reached markedly higher fitness than those with most of the
connections switched on. Apparently, the extra inputs €aus
the hill-climbers to get stuck in local optima very early on,
before any sensible behavior has evolved. Furthermore, the
final fitness of the runs with low had a standard deviation
that was about as high as the fitness itsél (and 2.3,
respectively), meaning that randomly removing connestion
might in some cases lead to a topology that allows for
reasonably good fitness to evolve, but might just as well lead

1 p=025 | to one where evolvability is virtually zero.

’ / 1 B. Simultaneous hill-climbing in weight and topology space

05 5o 100 10 200 20 30 30 4 As expected, this algorithm does not perform well for
Evaluations x 50 either version of the task. In fact, no significant fithessagio

was seen over many runs of this algorithm. We omit the

Fig. 1. Hill-climber with standard inputs . Each curve shows the average graph.
of 50 runs for a different proportion of connections in théwmk switched
on. Each tick on the x-axis represents 50 generations. C. Memetic climbing in weight and topology space

Figure 1 shows the performance of the simple hill-climber
for four different mask probabilities (1.0, 0.75, 0.5 an@d9),
using the standard set of inputs. The simple hill-climber
performs well on this task when searching the space of 12
weights for fully connected networks using a hand-picked ¢, ,,|
set of inputs. The value at which the fitness levels off is &
just below the lowest fitnesses in the league table for theS 8
CEC car racing competition, and indicates well-tuned, ghou L ©
probably not tactical, driving. 4

In general, the more connections are turned on in the mask,
the better solutions the algorithm is able to find. So simply

14

turning off random connections in the hope of improving °; 0 100 10 200 20 30 0 4
evolvability is, unsurprisingly, not a good idea. Evaluations x 50

25 Fig. 3. Memetic climbers with standard inputs, starting with either
all connections switched on or all switched off. Each tick tbe x-axis
represents one topology mutation and 50 steps of hill-ghignbn weight
2 space. Each curve is the average of 50 runs.

Figure 3 shows the progress of the memetic climber for
networks with standard inputs. We tested two different ways
of initializing the runs: having all connections switchefi o
in the mask, and having all connections switched on. As is
MWWM“NWMWW&WWMWMMWMj apparent from the graphs, the memetic climber works well
under both conditions. The only significant difference iatth

&y p= 0.75 1

p=10
o ‘ ‘ ‘ fithness grows more slowly when connections are initially
0 50 100 150 200 250 300 350 40 Switched Oﬁ.
Evaluations x 50 In figure 4, we plot the performance of the memetic

_ . _ _ climbers for networks with extended inputs, again acthgti
Fig. 2. Hill-climber with extended inputs. Each curve shows the average ith I ti t the start of h ihis i
of 50 runs for a different proportion of connections in thewak switched ~ ©! efr all or none connec '9”5 a gs ?.I’ 0 .eac run. mis
on. Each tick on the x-axis represents 50 generations. mediately clear that there is a qualitative difference leetv
the performance of the memetic climber and that of the hill-
In figure 2, the same four hill-climber configurations areclimber with this larger set of inputs; the memetic climber
plotted working in the space of the larger networks thateaches an order of magnitude higher fitness. The ongoing

make use of the extended inputs. Here, we see a radicadigarch in topology space helps to avoid local minima when

standard

extended

1 1 0

0 I I I I I I
0 50 100 150 200 250 300 350 4 0 50 100 150 200 250 300 350 4

Evaluations x 50 Evaluations x 50

Fig. 4. Memetic climbers with extended input starting with either all Fig. 5. Constrained growth memetic climberswith both standard and
connections on or all connections switched off. Each ticktloa x-axis extended inputs. Each curve is the average of 50 runs.
represents one topology mutation and 50 steps of hill-agligbn weight
space. Each curve is the average of 50 runs.
that the constrained memetic climber learns sparser nkswor

searching in weight space. It is also clear that initiatj;zinthan the memetic climber. With standard inputs, the neta/ork

a run with all connections active results in slower Iearnin@f the f”ﬁa' generation had on a_/era@bis (s.d.1.1) active
than initializing it with all connections off. onnectl_ons, and th.e extended input networks aveal&g@
What the graphs do not show is the number of connectiotd9) active connections. I_:or n(_etworks with extended nput,
active at the end of each run, or how these connections a[ﬂe‘" conne_ctmns_from the first 8 input neurons had probyb_ll_n
distributed. It turns out that regardless of the input setdus 0.33 of being switched on, and the corresponding probability

or the number of connections turned on initially, about halffOr the 9 other input neurons §28. Further study is needed

of the connections are turned on at the end of a success'fﬁl determine whether these simpler networks yield better

run. So for the standard inputs with = 0.0, on average generalization.

31.0 (s.d.3.4) connections are turned on at the end of thg. |nverse memetic climbing
run, and forp = 1.0, 31.0 (3.71) connections are on, out of
a total of 60. Using extended inputs and networks with 114
connections, runs that start with = 0.0 finish with 55.0
(5.6) connections on, and starting wigh= 1.0 finish with 12 standard
54.6 (5.0) active connections.

Looking at the distribution of connections switched on in
the masks of the evolved networks, it is hard to see a cleag) s
pattern. The probability i8.51 that any given outgoing con-
nection from any of the firsg input neurons (corresponding
to the standard inputs) will be switched on. This probapilit 4
drops t00.45 for the 9 input neurons that handle the extra
inputs for the extended input set, a smaller difference than
we exp_e_cted. No _individual_input neuron has a much lower o¢ - 0 im0 200 0 m0 s 4
probability of having outgoing connections than any other. Evaluations x 50
Therefore, it is not the case that evolution simply decides
to turn off certain inputs. It is however possible that cierta Fig. 6. Inverse memetic climberswith both standard and extended input.
inputs are more unanimously turned off at earlier stages fch curve is the average of 50 runs.
the search process, something we have not investigated.

extended B

Sna

6

Fitn

S _ _ Figure 6 shows the performance of the inverse climber

D. Memetic climbing with constrained network growth on both standard and extended input networks. Just like the

Figure 5 plots the performance of the constrained memetither two memetic climbers, this algorithm manages to reach
climber on networks with standard and extended inputs. Thegh fitness in both conditions, and it reaches slightly kbigh
algorithm works well in both cases; however, final fithes§itness using the standard inputs compared to the extended
is on average slightly higher for networks with standardhputs. The resulting networks are somewhat smaller than
inputs than those with extended inputs. One notable diffethose produced by the standard memetic climber, but some-
ence compared to the standard memetic climber is that tidat larger than those produced by the constrained memetic
constrained memetic climber learns more slowly, i.e. takedimber: 27.7 (4.2) for the standard inputs, ar@.8 (5.0)
longer time to reach the same fitness. Another difference fsr the extended inputs. For networks with extended inputs,

connections from the first 8 input neurons had probabilitynote that the memetic climber starts with = 0.0 for
0.48 and from other inputs had probability42. these networks). The most obvious effect here is that all
three memetic climbers vastly outperformed the standard
hill climber. The difference between the memetic climbers
was less pronounced in terms of learning rate, and more
pronounced in terms of final fitness, than is the case for
networks with standard inputs. The inverse memetic climber
came out slightly better than the other two memetic climbers
on both measures; additionally, the standard deviatiomad fi
fitness for the inverse memetic climber was low2d) than

for the standard3(9) or constrained4.0) varieties. The main

1 result, however, is that all three memetic climbers solved t

/] problem reliably, whereas the hill-climber never solved it

constrained growth memetic
2 L/ i V. DISCUSSION
1

! ! ! ! As hypothesized the memetic climber outperforms the
°© S0 100 150 200 250 300 30 4 gtandard hill-climber on both versions of the benchmark.
Evaluations x 50 The modest performance advantage on the standard input
Fig. 7. Algorithm comparison for standard inputs: hill-climber (p = version C?f th_e prob_lem may reflect that the chre attained
1.0), memetic climber = 1.0), inverse memetic climberp(= 0.0) and Dy the hill-climber is already very close to optimal for a
constrained growth memetic climbep & 0.0). Each curve is the average reactive controller using this limited subset of inputsoéa
of 50 runs. controllers that scored above 15 in the 2007 CEC competition
In figure 7 we plot the fitness growth all the climbers@ccessed larger subsets of the game state, and often idclude
(except the simultaneous climber), using the best paramefe Simulation of the complete game environment within the
setting found (for the case where more than one pararfontroller). _
eter setting has been tested). All three memetic climbers The magnitude of the performance increase for the
learn significantly better solutions than the hill-climbghe ~Memetic climber compared to the standard hill-climber when
differences in final fitness between the different types df€ using the extended inputs is somewhat surprising, how-
memetic climbers are very small (though the standard warieEVer- Even more so is the good performance of the inverse
seems marginally better); the differences in learning épegMemetic climber, suggesting that the important factor for
however, are quite large. Only the standard memetic climb&Hccess of this type of algorithm is that the two types of
was able to match the hill-climber’s speed, with the inversg®arch occur at different time scales, and that which type
climber being much slower, and the constrained climbdt@Ppens at which of time scales is less important.

slower still. The standard variety reaches close to finakétn A, Parameter settings

after 50 topology mutations, whereas it is unclear whether st of the parameter settings for the algorithms presented
the constrained variety has leveled off aftéx. above where selected based on intuition, without much kearc
for other settings. Most significantly, this includes thenter

of local search stepsyn, per global search stem, (e.g.
number of weight mutations per topology mutation in the

\ o A A
\ WM/WWW . . .
MQMW | standard memetic climber), and the rate of growth in the
I

F. Comparison of different climbers

16

memetic

14

12
hillclimber

/ /wf
/j;ln%e memetic
[/

/

Fitness

14

inverse memeti

o A~y constrained memetic climber.

$ sl w’ﬂ: constrained growth memetic 1 The number of local search steps per global mutation
= oL / Ve | is probably the most important parameter of this class of
LL memetic algorithms, and should be explored further, including a

1 self-adaptive variation where the ratio between local and
global search changes during the search. Another appealing
possibility is to not have a fixed number of steps to search,
5 s T oo a0 a4 Dut rather continue th.e. local search until no progress has
Evaluations x 50 been made for a specified numbe_r _of steps. o

The modest impact of constraining network size in the
Fig. 8. Algorithm comparison for extended inputs: hill-climber (p = Memetic climber may very well be a result of poor settings
1.0), memetic climber ¢ = 0.0), inverse memetic climberp(= 0.0) and for the growth constraint parameters. For example, the ab-
C?g%"ﬁjgzd growth memetic climbep € 0.0). Bach curve s the average gance of fitness growth at the very beginning of runs of the
° ' constrained memetic climber point to increasing the ihitia

In the same manner, all four types of climbers are conproportion of allowed connections. Again, this merits figrt

pared on networks with extended input sets in figure ifvestigation.

hillclimber

B. Possible extensions to population-based search

While the memetic climber performed very well in the
race car task, it still searches topology space using aesingl
search pointructural hill climbing) and is therefore sus- ~ This research was supported in part by the Swiss National
ceptible to local minima [14]. Applying the principle to a Science Foundation (SNF) grant number 200021-113364/1.
population-based framework would have a clear advantage
in this respect. The simplest such approach would amount to REFERENCES
pargllellzmg the memetic C“_mber’ with successful neteor [1] X.Yao, “Evolving artificial neural networks Proceedings of the IEEE,
having a number of offspring and unsuccessful networks * vol. 87, no. 9, pp. 1423-1447, 1999.
being removed from the population. Introducing crossoveif2] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Effidienon-

. . . linear control through neuroevolution,” Proceedings of the European
into such an algorithm, we could either choose to see each & o = " Sne Learning (ECML), 2006.

network as composed of two “natural” building blocks (the [3] D. B. D’Ambrosio and K. O. Stanley, “A novel generativeceniing for
mask and the connection weights) and perform crossover exploiting neural network sensor and output geometrypPrioceedings

. . of the Genetic and Evolutionary Computation Conference (GECCO
so that a mask from one network was combined with the 2007). New York, NY: ACM, 2007.

weights of another, or restrict crossover to networks Wi t [4] F. Gruau, “Neural network synthesis using cellular efing and the
same or similar masks, in an effort to battle the competing genetic algorithm,” Ph.D. dissertation, Ecole Normale Sigure de
conventions problem. Alternatively, a single mask could be[ﬁ Lyon, 1994.

c

. .] K. O. Stanley, “Efficient evolution of neural networksrdugh com-
used for the whole population, and population-based sear plexification,” Ph.D. dissertation, Department of Compuggiences,

used for the weights only. A yet more interesting prospect is[| University of Texas, Austin, TX, 2004.

. . 6] P. Moscato, “On evolution, search, optimization, genetlgorithms
to cooperatlvely coevolve masks and W8|ghts. and martial arts: Towards memetic algorithms,” Caltech cDorent

Computation Program, Tech. Rep., 1989.
VI. CONCLUSIONS [7] S. Nolfi, “Evolving robots able to self-localize in thexeronment: the
This paper explored the very simple idea of evoIving importance of viewing cognition as the result of process&siong at

. . . different timescales,Connection Science, vol. 14, no. 3, pp. 231-244,
topologies and weights of neural networks on different 555 PP

time scales. The hypothesis being that by only keeping #8] S. M. Lucas and J. Togelius, “Point-to-point car raciag:initial study
topology mutation if a subsequent hill-climb in weight spac of evolution versus temporal difference learning,” Pnoceedings of

ielded . t relative to th . t | t the IEEE Symposium on Computational Intelligence and Games, 2007.
yielded an improvement relative to the previous topolobg, [9] R. Calabretta, A. Di Fernando, G. P. Wagner, and D. Rafisihat

destructive effects of topology mutation could be avoided. does it take to evolve behaviorally complex organismBBSystems,
At the same time, the search in topology space would find = 2002.

. . . 10] R. De Nardi, J. Togelius, O. Holland, and S. M. Lucas, 6Ekxion
topologies that avoided the sort of neural interference thel of neural networks for helicopter control: Why modularityatters,”

often causes local optima for weight space search. Three in Proceedings of the IEEE Congress on Evolutionary Computation,
variations of the this memetic climber were compared tg _ 2006.

. . . . 1] L. A. Levin, “Universal sequential search problem®toblems of
a standard hill-climber on two versions of an establisheld Information Transmission, vol. 9, no. 3, pp. 265—266, 1973

car racing benchmark. The memetic climbers were veny2] J. Schmidhuber, “Optimal ordered problem solvéachine Learning,
competitive when networks were fed low-dimensional sensgr_ Vol 54, pp. 211-254, 2004.

. . . . [13] J. Togelius, “Optimization, imitation and innovatio@omputational
Input, and VaStly OUtperformed the hill-climber when hlgh' intelligence and games,” Ph.D. dissertation, Departméioonputing

dimensional input was used. The memetic climber is a and Electronic Systems, University of Essex, Colchestét, 2007.
simple algorithm with broad applicability, and the coredde [14] P. J. Angeline, G. M. Saunders, and J. B. Pollack, "Anleonary al-

. gorithm that constructs recurrent neural networkEEE transactions
can easily be combined with population-based evolutionary g 'Neyral Networks, vol. 5, pp. 54-65, 1994.

algorithms.

VII. ACKNOWLEDGMENTS

