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Abstract—This paper presents a first attempt at evolving the
rules for a game. In contrast to almost every other paper that
applies computational intelligence techniques to games, we are
not generating behaviours, strategies or environments for any
particular game; we are starting without a game and generating
the game itself. We explain the rationale for doing this and
survey the theories of entertainment and curiosity that underly
our fitness function, and present the details of a simple proof-
of-concept experiment.
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I. INTRODUCTION

Can computational intelligence (CI) help designing
games? One is tempted to answer “Yes, obviously, the
whole field of Computational Intelligence in Games (CIG)
is devoted to this, isn’t it?”

However, the majority of CIG research is concerned with
learning to play particular games as well as possible. There
is nothing wrong with this type of research; indeed, it
is very valuable for the science of artificial intelligence.
Games provide the type of deep but accessible reinforcement
learning problems that we badly need in order to develop
better CI algorithms and controller representations. But these
types of studies are less interesting to game development in
general, and to commercial game developers in particular.

This is because commercial game developers are, in gen-
eral, not interested in ways of making NPCs (non-playing
characters, e.g. opponents) play better. This is because it is
usually possible to make them play well enough using just
a tiny bit of (virtually undetectable) cheating, such as giving
the NPC more information than the human player, or slightly
superior abilities. Further, having NPCs that play as well as
possible is no end in itself; if the opponents are too hard
to beat, the game quickly becomes uninteresting for human
players.

Of course, there are exceptions. In particular, many strat-
egy games (such as Civilization or Starcraft) are so com-
plicated that it’s hard to come up with NPC AI that plays
competitively against good human players, without resorting
to most blatant cheating. In such cases, CI techniques for
beating the game better might contribute to the quality
of the game. And let us not forget that many games are
representations of real-life problems (e.g. battle tactics or
vehicle control), and advances in learning how to play games
might be transferable to related real-life problems. But for
most game genres, such as racing games, platformers, puzzle
games or first person shooters, there does not seem to be any
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interest from game developers in learning to play the game
better per se.

Now, there is certainly other research being carried out
in the CIG field that is more directly relevant to real
game development (and often dependent on research done
in learning to play games, which thus becomes indirectly
relevant to game development). For example, we have CI
techniques proposed to generate NPC controllers that play
interestingly as opposed to just well [1], [2]; CI techniques
for automatically finding exploits/bugs in games [3]; CI
techniques for modelling the behaviour of human players[4],
[5]; CI techniques for making NPCs trainable by human
players [6]; and techniques for generating the content of a
game, such as tracks, levels or mazes [4], [7].

While the above techniques all represent relevant research
directions for game design, they all assume that there is
a game there to begin with. Before we let CI loose on
generating behaviours, strategies or environments, or testing
the game, it needs to have something to play with. However,
game design is concerned with all aspects of the game. In
particular, it is designed with the very heart of every game,
that which defines the game: its rules [8].

Game rules determine when the game begins and when
it ends. They determine what the player can and can’t
do, and (together with the actions of other players) what
happens as a result of the player’s actions. The complexity
of rules vary from something as simple as checkers, which
can be expressed in a paragraph of text, to something as
complex Starcraft, Counter-strike or other modern video
games, where the rules cannot be expressed in its entirety
without describing the whole game engine.

Of course, there are borderline cases regarding what is
and what isn’t a rule. While the set of legal capture moves
in Checkers are clearly rules, would the throwing speed and
blast radius of a grenade on Counter-strike count as rules,
aspects of the environment or something else? In this paper,
we will take a fairly liberal and inclusive view of what
constitutes rules for a game in our argument, whereas in
the experiment we will err on the side of exclusiveness and
adopt a stricter view of what constitutes a rule.

In this paper, we describe an initial proof-of-concept
experiment where we evolve the rules for a game. To our
best knowledge, this represents the first time rules have been
evoled for a single-player game; the first time rules have
been evolved for a non-board game; and the first time a
fitness function based on learning progress has been used for
evolving game rules. An interesting recent study describes
the evolution of board game rules using a fitness function
based on measurements of historical play patterns [9]. It
is worth noting that both the type of game and the fitness



function differ drastically between these two independently
conceived and executed studies.

In the following, we first survey some theories of enter-
tainment in games, and describe how, in general terms, they
could be converted into fitness functions. We then describe
the assumptions we make regarding the games we will create,
and how these constitute a searchable rule space. As our
ruleset fitness function is based on the learning of an agent,
the neural network-based agent architecture and agent fitness
function will be exemplified in the context of a sample game.
Some examples of evolved games are then followed by a
discussion about the many challenges remaining before this
technique becomes practical and the vast impact it could have
on game design once it does.

A. What is fun?

So we want to evolve rule sets that create entertaining
games. But how do we do this? Can we measure entertain-
ment in a quantitative way that does not involve using human
subjects, so that it can be incorporated into a fitness function?
To start with, we need some sort of theory about what makes
a game entertaining.

Fortunately, there are a number of theories from psychol-
ogy and game studies that might be of help here, many of
them focusing on the challenge a human player experiences
when playng the game. One of the oldest and best known
of these is Csikszentmihalyi’s concept of flow, the “optimal
experience” [10]. When in the state of flow, a human is
performing a task (not necessarily a game; the theory was
developed with e.g. the creative process of artists in mind)
such that he is fully concentrated on the task and loses his
sense of self but has a sense of full control. One of the key
prerequisites for reaching flow is that the amount of challenge
of the task is just about right: not too hard, and not too easy.

Malone [11] distinguishes between three factors that make
games engaging: challenge, fantasy and curiosity. While the
right level of challenge is a key component of the flow
concept as well, the other two factors are more game-specific;
fantasy refers to how well the game evokes a sense of being
somewhere else or doing something exotic, whereas curiosity
means that environments should have an “optimal level of
informational complexity”: novel but not incomprehensible.

Sweetser and Wyeth proposed GameFlow as a an adapta-
tion of the flow concept specifically to games [12]. Game-
Flow offers a way of evaluating how entertaining a game
is based on a number of criteria: concentration, challenge,
player skills, control, clear goals, feedback, immersion and
social interaction.

Koster’s informal “theory of fun for game design” also
focuses on the challenge of the game, but in a different way.
Koster sees the learning of how to play a game as its main
source of entertainment; playing is learning, and learning is
fun [13]. For Koster, well-designed games are games that
are easy to start playing, but where the difficulty curve is
such that the player continuously learns something new while
playing. I.e., games that take a minute to learn, but a lifetime
to master.

1) The theory of artificial curiosity: A theory which has
not so far been explored in the context of game design
is Schmidhuber’s theory of artificial curiosity [14]. Unlike
the theories above, it does not focus on the challenge of
the task/game, but instead focuses on the predictability of
environments. Agents prefer environments with some sort of
algorithmic regularity that is not yet known but expected to
be quickly learnable. A curious agent is rewarded whenever
a separate adaptive predictor learns to predict the incoming
data stream better than before. Thus the agent is motivated
to explore those parts of the world that yield temporarily
”interesting” input sequences, maximizing the derivative of
the subjective predictability.

The theory of artificial curiosity has the advantage that it
is quantitative, and a number of variants of it have already
been successfully used in reinforcement learning. Early work
(e.g. [15]) described a predictor based on a recurrent neural
network, predicting inputs and reward signals from the entire
history of previous inputs and actions. The curiosity rewards
were proportional to the predictor errors, that is, it was
implicitly and optimistically assumed that the predictor will
indeed improve whenever its error is high.

Follow-up work [16] pointed out that this approach may
be inappropriate, especially in probabilistic environments:
one should not focus on the errors of the predictor, but on
its improvements. Otherwise the system will concentrate its
search on those parts of the environment where it can always
get high prediction errors due to noise or randomness, or
due to computational limitations of the predictor, which will
prevent improvements of the subjective compressibility of
the data.

Variants of this idea have subsequently found their way
into the mainstream of both reinforcement learning and
developmental robotics. A previous game-related application
of the idea was presented in [17]. There, two agents design
games for each others, realized as algorithms expressed in a
universal programming language. One of the agents proposes
an algorithm to execute, the other chooses whether to accept
it, and modifications are proposed until both agents accept.
As above, the goal is to maximize learning progress: find a
set of rules such that the opponent accepts them because it
thinks it will prevail, as he already knows the aspects of the
world exploited by the current game rules, then surprise it by
playing the game (running the algorithmic experiment) and
winning. The other agent will adapt and next time prefer a
different game because it has learnt something.

The experiment in this paper differs from the above
experiment in generating single-player games rather than
two-player games, in the learning algorithms used, and above
all in the generated games being recognisably “gamey”
rather than algorithms expressed in a universal programming
language.

B. Measuring fun in practice

The psychologically oriented theories discussed above
only talk about fun or interestingness in general, and not
how to measure it for a particular game. In particular, they



don’t tell us how to measure it in the absence of a human
player and a human observer. (Remember that we are talking
about automatic game design here.) The theory of artificial
curiosity has so far been applied mostly to the behaviour
of agents. The following is an example of how fun can be
estimated and optimized for aspects of a game other than
NPC behaviour:

In [4] we presented an approach to evolving interesting
tracks for a driving game, for which we had previously
evolved well-performing neural network-based players [18].
We let a human player drive a test track that contained
different sorts of driving challenges, and measured aspects
of the driving. We then further evolved a previously evolved
controller to conform with these measures, creating an ar-
tificial player that drove similarly to the modelled human.
The fitness function for the track was derived from Malone’s
factors. The fitness of a track was calculated in a rather
indirect way: it depended on how the “human-like” controller
performed on the track. The objectives were for the car to
have the right (not too high, not too low) average speed,
high maximum speed, and high variability in performance
between trials, indicating driving “on the edge”. Tracks were
represented as b-splines. Evolution found tracks whose level
of challenge matched the proficiency of the modelled players,
and possibly more fun for the modelled players in other
respects as well.

The key idea here, which can be transferred to evaluating
the fitness of rulesets as well as other types of environments,
is that fitness is measured indirectly. The genotype to be
evaluated parameterizes some aspects of the game (the en-
vironment, the opponent(s), or the rules of the game itself),
and its fitness is then determined by how the parameterized
game makes an agent behave. The agent is controlled by
a controller, which might or might not be made to imitate
a human player, and might or might not be learning while
playing the game.

For the purposes of constructing fitness functions out of
theories of entertainment, we can divide the theories dis-
cussed above into static and dynamic theories of fun. Static
theories are those that do not require the agent/player to learn
while playing, and can be used to judge the entertainment of
a game versus the capabilites and personality of a player at
a given moment. Of the theories discussed above, Malone’s
theory is clearly a static theory, and for the most part this
goes for GameFlow too. In contrast, dynamic theories puts
learning in focus, and the entertainment of a game could only
be judged by how the agent/player adapts to the game over
time.

This distinction becomes relevant when trying to create
fitness measures for game rules. When evaluating a new
environment or a new opponent, it is perfectly possible to
use a fixed controller for these evaluations, and thus base
the fitness function on a static theory of entertainment. This
is what we did when evolving racing tracks in the example
above. However, when evaluating a complete game, it is
impossible to provide a fixed controller to test the game with

- such a controller does not exist. The controller has to learn
to play the game through (possibly intelligently prejudiced)
trial and error, like a human would do. Apparently, our only
choice is to base the fitness function on a dynamic theory of
entertainment, and a controller incorporating some form of
reinforcement learning.

For the experiment in this paper, we will use the following
implementation of Schmidhuber’s theory of curiosity and
interestingness, which is also a coarse approximation of
Koster’s theory of fun: a game is fun if it is learnable but not
trivial. A game is no fun if it can be won by doing nothing
at all or acting randomly, but it is also no fun if a learning
mechanism cannot learn to beat it within a certain time. For
learning mechanism, we will use evolutionary computation
training a controller based on a neural network. But before
we get to the details of that, we need to explain the rule
space in which to search for games.

II. GAME ENGINE AND RULE SPACE DEFINITION

It would not be possible to evolve a game without any
constraints at all. A number of assumptions must be made,
or in other words, a number of axioms must be laid down
that define the rule space. One can see this as selecting the
genre of the game, but not in the space of traditional genres.
It would be perfectly possible to specify the axioms that
(together with an appropriate simulation API) construct a
rule space of games based on physical simulations, perhaps
containing Asteroids in one end, Breakout in another and a
car racing game somewhere else along the multidimensional
spectrum. A rule space of board games could contain Othello
and Go.

We have settled for a search space that at some points
in space contain Pac-man-like games. The axioms are as
follows:

• The game takes place on a discrete grid with dimensions
15× 15.

• Each cell on the grid is either free space or a wall. In
order to demonstrate that we are evolving rules and not
environments, we have laid out the walls in advance;
this layout can be seen in figure 1 and does not change
regardless of rules or game state.

• A game will run for a finite number of time steps,
starting at t = 0 and continuing until either t = tmax,
score >= scoremax or the flag agent death has been
set.

• If, at the end of a game, score >= scoremax the game
is won; otherwise, the game is lost.

• At the beginning of a game, one of the cells (randomly
selected among the 4×4 centralmost cells) contains the
agent. At any time step, the agent can and must move
one step either up, down, left or right. Any move that
would result in the agent occupying the same cell as a
wall is not executed.

• At the beginning of a game, zero or more cells are
occupied by things. These cells are randomly chosen
from the free space on the grid, except that no thing



starts closer than two steps from the agent. Every thing
can be either red, green or blue. Things can, but must
not, move one step every time step. Like agents, things
can not pass through walls.

• Each colour has an associated movement logic that
determines how things of that colour move; a collision
effects table determines what happens to things when
two things of the same or different colours collide,
or when a thing and the agent collide; a score effects
table determines how the score changes when a collision
between two things or between a thing and the agent
occurs.

In other words, the rule space consists of (1) eight simple
parameters: tmax, scoremax, the number of red, blue and
green things, the movement logic for red, green and blue
things, and (2) two tables: collision effects and score effects.
The max and min values of the simple parameters are as
follows:

• tmax: 0-100
• scoremax: 1-10
• Number of items of each colour: 0-20 (three indepen-

dent values)
• Movement logic for each colour: 1-5 (three independent

values)

The following five movement logics are available:

1) Still: things of this colour do not move.
2) Random short: each thing chooses a new direction each

time step, and tries to move in that direction.
3) Random long: each thing chooses a new movement

direction and a number of steps n between 1 and
10, and for the next n steps it tries to move in that
direction. After n steps, it chooses a new direction and
a new n.

4) Clockwise: each thing chooses an initial movement
direction. Each time step it tries to move in that
direction. If it fails (i.e. bumps into a wall) it chooses
a new direction which is to the right of the current
(up becomes right, right becomes down, down becomes
left, left becomes up).

5) Counterclockwise: like clockwise, except that the
things of this colour turn left rather than right when
they reach a wall.

The collision effects table has dimensions 4×4 and is used
as follows: each time two things (or a thing and the agent)
collide, the effects on both things (or the thing and the agent)
are looked up separately at index (color of first thing, color of
second thing). The axes are number (red, green, blue agent).
So if two red things collide, the effects for both things are
found at (0, 0), and if a green thing collides with the agent,
the effect for the thing is found at (1, 3) and for the agent
at (3, 1). Each of the 16 cells in the table has one of the
following values:

1) None: nothing happens.
2) Death: the thing, or agent, dies. If a thing dies, it

disappears from the grid and cannot interact with any

other thing or with the agent for the rest of the game.
If the agent dies, the game is over.

3) Teleport: the thing, or agent, is moved to a randomly
chosen grid cell. The position is constrained so as not
to be within two cells of the agent.

The score effects table has the same dimensions as the
collision effects table, and is indexed in the same way. The
difference is that the effects are constrained to incrementing
or decrementing the score: the possible values of a cell is
−1, 0 and +1.

Fig. 1. The example game at t = 0. The cyan circle is the agent, the other
circles are things of different colours. Note that all the thing positions are
randomized, whereas the layout of the walls is hard-coded and subject to
neither evolution nor changes during gameplay.

A. An example game

To illustrate the workings of the game engine and one sort
of game that can be found in its rule space, an example game
was hand crafted. Its parameters are:

• tmax : 50
• scoremax : 50
• 3 red things; still
• 2 green things; counterclockwise movement
• 1 blue thing; clockwise movement
• collision: Red, Green → none, teleport, 0, 01

• collision: Red, Blue → none, teleport, 0, 0
• collision: Red, Agent → none, death, 0, 0
• collision: Green, Agent → death, none, 0, -1
• collision: Blue, Agent → none, teleport, 0, 1
All other collisions are left inconsequential (none, none)

and without score effects (0, 0).
The result of these rules is an unremarkable little game

where the agent (which can be controlled by a human player
using the arrow keys of the keyboard) is supposed to catch
the solitary blue thing twice within 50 time steps. This is
made more difficult by the blue thing moving counterclock-
wise (if the player chooses to chase it around the outer walls

1This line should be read as follows: when a red and a green thing end a
time step in the same grid cell, nothing happens to the red thing, the green
thing is teleported to a randomly chosen grid cell, and the score does not
change (0 + 0 = 0)



of the grid he quickly runs out of time, as the agent moves
with the same speed as the thing) and the agent teleporting
to a random place whenever he reaches the blue thing. Also
complicating the matter are the red things which act rather
like land mines in this game, remaining in place and being
deadly to the touch, and the green things that move around
counterclockwise and causes the player to lose score if he
touches them.

Using the current user interface, where time does not pass
independently of the player but waits for his input before
advancing to the next time step, the game is not hard to win
for a player that understands the rules. But it is not altogether
trivial either, and with a real-time interface it would probably
be moderately hard. However, it is not very fun to play. See
figure 1 for a screenshot of the game engine interface when
playing this game.

III. EVOLVABLE CONTROLLERS

Our proposed technique for generating entertaining games
builds on a measure of their learnability. A necessary pre-
liminary step is thus devising a controller representation and
learning mechanism that can learn to play games represented
in the rule space. For this first experiment, we will base
the controllers on neural networks and train them with
evolutionary algorithms.

The neural network is a standard multi-layer perceptron,
with 60 inputs, 10 hidden neurons and 4 outputs. The first
4 × 12 inputs are fed by four different visual fields around
the agent. Each visual field consists of the 12 cells that are
within a (Manhattan) distance of two cells from the agent,
but sees only one colour: red, green, blue or black (walls).
Each input to the neural network from a visual field is set
to one if there is a thing of the correct colour (or a wall, if
the colour of that visual field is black) in the corresponding
cell, and zero other wise.

The next 3 × 4 inputs signify directions to the nearest
thing of each colour. For each colour, there are 4 inputs
representing the four directions; one of them is set to one
and the others to zero. This is calculated through finding the
thing of the specified colour with lowest Manhattan distance
to the agent, and looking at the sign of the axis with largest
difference.

At the other end of the network, the four outputs are in-
terpreted as the desired movement direction of the agent; the
direction associated with the output with highest activation
is greedily chosen.

Learning is done with a standard evolution strategy (ES)
without self-adaptation. Mutation consists in adding Gaus-
sian noise with mean 0 and standard deviation 0.1 to all
weights in the neural network.

The fitness function is defined thus:

fitness =
{
−1 if the agent dies
score/scoremax otherwise,

A. Evolving controllers for the example game

A 50+50 ES was used to evolve controllers (as described
above) for the example game. To counteract the very noisy
fitness evaluations, fitness for each controller was calculated
as the mean of 20 iterations. Using this setup, each gen-
eration takes about two seconds. At the beginning of an
evolutionary run, the best fitness found in the population is
typically around 0.2. At the end of 100 generations, the best
controller found always had significantly higher fitness than
that, typically around 0.6.

This means that while evolution makes steady progress,
it fails to find controllers that reliably win the game. A
typical evolved controller sometimes wins the game, and
other times fails through some mistake of varying severity.
Ocular inspection of the behaviour of evolved controllers
show that the agents often adopt the simple strategy but rather
effective strategy of moving to one of the side walls of the
grid and wait for the blue thing to come around. However,
the movement is seldom in a straight line and typically quite
erratic; sometimes the agent moves back and forth a few
times before continuing, even though nothing in its imme-
diate neighbourhood has changed. Given that the controller
is stateless, it seems that the direction-to-nearest-thing inputs
sometimes confuse the agent. (Removing those inputs did not
significantly improve performance, nor did using recurrent
neural networks, at least in initial experiments.) Moreover,
the avoidance of red and green things is never perfect; it is
quite typical to see the same agent elegantly sidestepping a
moving green thing that comes from above, but just stupidly
standing there when a green thing approaches from below.

While it might be expected that the proposed mechanism
should learn to play such a simple game perfectly, this is
a proof-of-concept study, and so we relegate improving the
performance of controller learning to future work, and move
on the evolving the game rules themselves.

IV. EVOLVING RULES

For rule evolution, the fitness function is defined as
follows: first, the game is tested with two different types
of random controllers (controllers taking moving in random
directions, changing direction either every time step or every
few time steps). If any of these controllers score above 0.3,
averaged over ten games, the game is deemed to easy, and is
assigned a fitness of −1. Otherwise, the fitness is the average
of the best controller fitness fund after 100 generations of
evolution with a 5 + 5 ES, and only 5 trials per fitness
controller evaluation. In other words, the fitness function
gives very low fitness to games that do not require any skill
to play, low fitness to hard and impossible games, and high
fitness to games that can be learnt quickly.

In this initial experiment, we will use a simple hill-climber
to search rule space. The search starts with a randomly
initialized rule set, where all the variables (simple parameters
and parameters in tables) defined in section II are set to
uniformly randomly selected values within their legal ranges.
At each generation, a copy is then made of the rule set, and



the copy is mutated. The mutation operator resets at least one
randomly selected parameter to a legal random value, and as
long as a freshly drawn random number is below 0.8, more
parameters are reset. After the copy is mutated, the fitness of
both the original and the copy is evaluated, and if the copy
does not have lower fitness it replaces the original.

It is obvious that in the current rule space, the vast majority
of games are unplayable; they are either impossible, or the
player wins on walk-over. As hill-climbers are particularly
sensitive to starting positions, this means that many runs of
the hill-climber find only games with zero or negative fitness.
However, other runs do find playable games.

A. Examples of evolved games

The games below are all playable, but surely no Portal.
They do not represent good game design and are not partic-
ularly fun. But they are sampled from a limited number of
runs of the algorithm described above, and are guaranteed
free from human design involvement.

1) Chase the blue:
• tmax = 37
• scoremax = 2
• 0 red things; random long
• 18 green things, counterclockwise
• 1 blue things, counterclockwise
• collision: Red, Green →none, teleport, -1, 0
• collision: Red, Blue → death, teleport, 0, -1
• collision: Red, Agent → teleport, death, 0, 0
• collision: Green, Blue → teleport, none, -1, 1
• collision: Green, Agent → teleport, none, -1, 1
• collision: Blue, Agent → none, teleport, 0, 1
The whole point of this game is to get to catch the blue

thing, twice and fast. It works if you play well and the
blue thing doesn’t start way off. The green things move
around prettily and teleport when you touch them, but are
inconsequential.

2) Red/green suicide:
• tmax = 94
• scoremax = 1
• 4 red things; random long
• 10 green things, clockwise
• 11 blue things, still
• collision: Red, Green → death, death, -1, 1
• collision: Red, Blue → teleport, none, -1, 0
• collision: Red, Agent → none, teleport, 0, -1
• collision: Green, Blue → teleport, none, -1, 0
• collision: Green, Agent → death, none, 0, -1
• collision: Blue, Agent → none, none, 1, 0
This game initially seems impossible. Whatever one does,

the score rapidly drops by several points per time step,
sometimes reaching levels close to −100. However, after a
while, this stops happening, as the red things kill themselves
and bring an equal number of green things with them. The
player can start incrementing the score, with the goal of
bringing it over zero, and usually he is successful in this
through just going back and forth on a blue thing or between

two blue things if they happen to be placed next to each other.
The fact that the agent can kill green things, though losing a
point while doing it, suggests going for the green things as
soon as possible to stop the score dropping sooner. However,
we are not sure this is a better strategy than just going back
and forth on a blue thing.

3) Race against green:
• tmax = 28
• scoremax = 6
• 0 red things, random short
• 4 green things, clockwise
• 9 blue things, still
• collision: Red, Green → none, death, -1, -1
• collision: Red, Blue → death, death, 1, 1
• collision: Red, Agent → death, death, -1, 0
• collision: Green, Blue → none, death, -1, -1
• collision: Green, Agent → teleport, none, -1, 1
• collision: Blue, Agent → death, none, 1, 1
You have only 28 time steps to reach score 6. Fortunately,

the blue things are just lying around, waiting to be picked
up and reward you with two points each. Unfortunately, the
green things are also out to get (though they are just moving
clockwise) the blue things, and when they do, you lose two
points! But if you see a green thing in the vicinity, you can
easily bump him away to another part of the board without
score penalty...

B. Observations on evolved games

Apart from the games described above, many evolutionary
runs get stuck on games on which a good player can score
better than a random player, but which are not winnable.
In some cases there is not enough time to get the required
score, and sometimes things of a particular colour add to the
score only as they are consumed, and there are not enough
of these. In these cases, we have a working game mechanic
with maladjusted parameters. It is currently not clear why the
evolutionary process does not correct these seemingly simple
cases through adding more things of the specified colour,
increasing the time limit or decreasing the score limit.

The evolved games which are winnable are typically very
easy to win. This is no doubt because of the very limited
capability of the current controller learning process; only
games which are very easy to win gets good fitness.

V. DISCUSSION

This paper lays no claim to provide a fully working
technique for creating new game. It merely aims to point out
an new, unexplored research direction, argue for the relevance
of such research, and provide a proof-of-concept experiment
that shows that the main idea is tenable at all. Incidentally,
this experiments highlights some of the challenges we are
facing.

One clear challenge is that an evolutionary process where
the fitness function includes another evolutionary process
takes very long time. The time taken for experiments is the
reason (together with there being a deadline for submission



of the paper) that not more results are included in this paper.
One remedy for this (that does not include using more com-
puter power) could be to replace evolution in the controller
learning “inner loop” with some other reinforcement learning
algorithm. We have previously seen that temporal difference
learning in many cases learn good behaviour much faster
than evolutionary algorithms, but often reaches a lower final
fitness [19].

At the same time, we would like to improve the quality
of the learning in the inner loop. The results in section III-A
are not satisfactory. If our controller learning method cannot
learn to play such a simple game, how could it be a good
guide to which games can be learnable by humans (who
are, after all, quite clever)? The controller architecture and
learning method could probably be improved in many ways.
For example, the state representation seems to be far from
optimal; one could start by introducing symmetry, and then
take cues as to how state is represented to the controller in
published CIG studies on learning to play games of similar
genres, such as Pac-man [20]. Given that the state space
is discrete, a neural network might not be the best way of
representing the controller; quite possibly, expression tree-
based genetic programming or a rule-based system would do
a better job. And a better learning algorithm and controller
representation would probably have resulted in better games
in section IV-A.

A deeper question about the controller learning is to what
extent it is similar to human game learning. It is plausible
that we could develop controller representations and learning
algorithms that learned to play a given game better or worse,
faster or slower than a typical human, or any human in
particular. But would this algorithm have problems with the
same things? Maybe the algorithm and the human learns
to play Asteroids in the same amount of time and to the
same level, but the same algorithm can also learn some
obscure game that just seems random to the human, and the
human can learn games where the algorithm gets nowhere.
This issue requires further study, involving trials with human
subjects. Ideally, we would like to be able to model the
learning profile of individual humans, and base our rule set
fitness function on a “learning model”.

It could be argued that the games described in the section
above are really only minor variations of the same game,
and that the rules of this game are what we choose to call
the axioms for the rule space. This is a valid point to the
extent that the border is a bit arbitrary. But the games above
are arguably as different from each other as Tetris from
Columns or Dr. Mario, or Pong from Breakout: they share an
underlying mechanic, but what objects appear in the game,
its goal and what you need to do to win all differ.

The representation of the rule space in the current ex-
periment is deliberately basic. At least one other attempt to
create a representation for arbitrary game rules exists, namely
the the more complex Lisp-like Game Description Language
used in the AAAI General Game Playing Competition2. It

2http://games.stanford.edu/

would be worth studying the advantages and disadvantages
for expressivity and evolvability of that language versus
simpler representations.

One could also choose to take a more inclusive view
of what constitutes a rule in order to achieve a richer
search space. For the game engine used in this paper, rules
could coevolve (either as a part of the same genotype or
cooperatively) with the layout of the walls. In a car racing
game, the track could coevolve with car parameters (motor
effect, tyre friction, damage tolerance etc.) and aspects of
the game rules (will you get disqualified for pushing your
opponents off the track?).

In a bigger perspective, the question is for what automatic
game design would be useful, given that effective enough
methods were developed.

When a new video game gets a mediocre review in a
newspaper or on a game site, one of the most common
complaints of the reviewer is that the game lacks imagination.
It’s just another game of this or that subgenre (e.g. WWII
shooter); not necessarily bad, but certainly not innovative.
One would be forgiven for thinking that there is simply a
lack of fresh ideas among game developers3. Enter evolu-
tionary computation: what evolutionary algorithms do best
is producing unexpected solutions to problems. Numerous
experiments in evolutionary art testify to this.

One use of automatic game design would be to develop
prototypes of completely new games. The game designer
specifies a game engine (something as simple as in this
paper, or something as sophisticated as the Unreal engine)
and the axioms that define a rule space, and sits back to watch
evolution produce new game ideas. These would naturally
need to be refined and elaborated on by human artists and
programmers.

But it is equally plausible to use automatic game design
at the other end of the design process. After humans have
designed and implemented a game, it could be useful to
automatically be able to fine-tune it; the techniques described
here could be used to ensure that all levels or areas of the
game were playable and of a certain approximate difficulty
level, and implicitly to rid them of bugs.

Finally, it would also be possible to include more than
one learning algorithm in the fitness function, and select for
games that maximize the difference between the different
learning algorithms’ performance. Such games could be very
interesting as reinforcement learning benchmark functions.

VI. CONCLUSION

We have outlined a technique for automatically generating
complete games using evolutionary computation, a described
a proof-of-concept experiment. The main originality in this
paper probably lies in the fitness function for game rules,
which is based on learning progress, and inspired by Koster’s
theory of fun and Schmidhuber’s theory of artificial curiosity.

3Another hypothesis is that making another copycat game pays off better
on average than trying to be innovative, because consumers don’t value
innovations highly enough.



Further, we have argued that this is an important research
direction that might make CIG research more relevant to the
game industry. Our main aim with this paper is to show what
sort of things can be done, and how much there is left to do,
in this exciting new research field. And of course to persuade
you too to do research in automatic game design.

ACKNOWLEDGEMENTS

This research was supported in part by the Swiss National
Science Foundation (SNF) grant number 200021-113364/1.
Thanks to Tom Schaul for insightful discussions.

REFERENCES

[1] G. N. Yannakakis, “Ai in computer games: Generating interesting
interactive opponents by the use of evolutionary computation,” Ph.D.
dissertation, University of Edinburgh, 2005.

[2] B. D. Bryant, “Evolving visibly intelligent behavior for embedded
game agents,” Ph.D. dissertation, Department of Computer Sciences,
University of Texas, Austin, TX, 2006.

[3] J. Denzinger, K. Loose, D. Gates, and J. Buchanan, “Dealing with
parameterized actions in behavior testing of commercial computer
games,” in Proceedings of the IEEE 2005 Symposium on Computa-
tional Intelligence and Games (CIG), 2005, pp. 37–43.

[4] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic
personalised content creation in racing games,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games, 2007.

[5] S. Priesterjahn, “Online imitation and adaptation in modern computer
games,” Ph.D. dissertation, University of Paderborn, Paderborn, Ger-
many, 2008.

[6] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neu-
roevolution in the nero video game.” IEEE Transactions on Evolu-
tionary Computation, vol. 9, no. 6, pp. 653–668, 2005.

[7] D. Ashlock, T. Manikas, and K. Ashenayi, “Evolving a diverse
collection of robot path planning problems,” in Proceedings of the
Congress On Evolutionary Computation, 2006, pp. 6728–6735.

[8] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-
tals. MIT Press, 2004.

[9] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Queensland University of Technology,
Brisbane, Australia, 2008.

[10] M. Csikszentmihalyi, Flow: the Psychology of Optimal Experience.
Harper Collins, 1990.

[11] T. W. Malone, “What makes things fun to learn? heuristics for
designing instructional computer games,” in Proceedings of the 3rd
ACM SIGSMALL symposium and the first SIGPC symposium on Small
systems, 1980, pp. 162–169.

[12] P. Sweetser and P. Wyeth, “Gameflow: A model for evaluating player
enjoyment in games,” ACM Computers in Entertainment, vol. 3, 2005.

[13] R. Koster, A theory of fun for game design. Paraglyph press, 2005.
[14] J. Schmidhuber, “Developmental robotics, optimal artificial curiosity,

creativity, music, and the fine arts,” Connection Science, vol. 18, pp.
173–187, 2006.

[15] ——, “A possibility for implementing curiosity and boredom in
model-building neural controllers,” in Proceedings of the International
Conference on Simulation of Adaptive Behavior: From Animals to
Animats, 1991, pp. 222–227.

[16] ——, “Curious model-building control systems,” in Proceedings of
the International Joint Conference on Neural Networks, 1991, p.
14581463.

[17] ——, “Exploring the predictable,” in Advances in Evolutionary Com-
puting. Springer, 2002, pp. 579–612.

[18] J. Togelius and S. M. Lucas, “Evolving robust and specialized car
racing skills,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2006.

[19] S. M. Lucas and J. Togelius, “Point-to-point car racing: an initial study
of evolution versus temporal difference learning,” in Proceedings of
the IEEE Symposium on Computational Intelligence and Games, 2007.

[20] S. Lucas, “Evolving a neural network location evaluator to play ms.
pac-man,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2005, pp. 203–210.


