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Abstract— Evolutionary algorithms are commonly used to
createhigh-performing strategiesor agentsfor computer games.
In this paper, we instead chooseto evolve the racing tracks
in a car racing game. An evolvable track representation is
devised,and a multiobjecti ve evolutionary algorithm maximises
the entertainment value of the track relative to a particular
human player. This requiresa way to createaccuratemodelsof
players' dri ving styles,as well as a tentative de�nition of when
a racing track is fun, both of which are provided. We believe
this approach opensup interesting new research questionsand
is potentially applicable to commercial racing games.

Keywords: Car racing, player modelling, entertainment
metrics,contentcreation,evolution.

I . THREE APPROACHES TO COMPUTATIONAL

INTELLIGENCE IN GAMES

Much of the researchdone under the heading “com-
putational intelligenceand games” aims to optimise game
playing strategies or game agent controllers. While these
endeavoursarecertainlyworthwhile, thereareseveral other
quitedifferentapproachesthatcouldbeat leastasinteresting,
from both an academicanda commercialpoint of view.

In this paperwe discussthreeapproachesto computational
intelligencein games:optimisation,imitation andinnovation.
We describetheseapproachesas they apply to gamesin
generaland exemplify them as they apply to racing games
in particular. We then describean experimentwhere these
approachesare used in a racing game to augmentplayer
satisfaction.The taxonomygiven below is of courseneither
�nal nor exhaustive, but it is a start.

A. Theoptimisationapproach

Most researchinto computationalintelligenceand games
takestheoptimisationapproach,which meansthatanoptimi-
sationalgorithmis usedto tunevaluesof someaspectof the
game.Examplesaboundof using evolutionary computation
to developgoodgame-playingstrategies,in all sortsof games
from chessto poker to warcraft [1][2].

Several groups of researchershave taken this approach
towardsracing games.Tanev [3] developedan anticipatory
control algorithm for an R/C racing simulator, and used
evolutionary computationto tune the parametersof this al-
gorithmfor optimal lap time. ChaperotandFyfe [4] evolved
neural network controllers for minimal lap time in a 3D
motocrossgame, and we previously ourselves investigated
whichcontrollerarchitecturesarebestsuitedfor suchoptimi-
sationin a simple racinggame[5]. Sometimesoptimisation
is multiobjective, as in our previous work on optimising
controllersfor performanceon particularracingtracksversus

robustnessin driving on new tracks[6]. And thereareother
things than controllersthat can be optimisedin car racing,
as is demonstratedby the work of Wloch andBentley, who
optimisedthe parametersfor simulatedFormula 1 carsin a
physically sophisticatedracinggame[7].

While gamescan be excellent test-bedsfor evolutionary
and other optimisation algorithms, it can be argued that
improving game-playingagentsis in itself of little prac-
tical value. From the point of view of commercialgame
developers,most game genresare not in a great need of
more effective computer-controlled agentsor strategies, as
it is alreadyeasyto createcompetitorsthat beatall human
players(thoughthereareexceptionsto this,suchasreal-time
strategy games,where more effective AI is a hot research
topic [2]). The problem is rather that game agentsdon't
behave interestinglyenough.

From the points of view of evolutionary roboticists,neu-
roscientistsandothercognitive scientists,optimal behaviour
is oftenuninteresting.Gamescande�nitely be interestingas
environmentsin which to studytheemergenceof intelligence
or certain neural mechanisms,but this requires that both
�tness function and environment allows for behaviours of
theright complexity, andthat theparticularphenomenato be
studiedarenot “abstractedaway” by the non-computational
intelligencepartsof the game.

B. The innovation approach

The boundary between the optimisation approachand
the innovation approachis not clear-cut, but the innova-
tion approachis more focusedon generatinginteresting,or
complex, as opposedto optimal behaviour. The innovation
approachseesgamesasenvironmentsfor thedevelopmentof
complex intelligence,ratherthancomputationalintelligence
techniquesasmeansof achieving particularresultsasgames.
(Thoughthetwo perspectivesareof coursenotexclusive,and
many projectstake both.)Typically this entailsnot knowing
exactly what one is looking for.

In this approach,it is desirablenot to constrainthecreativ-
ity of theevolutionaryalgorithm,and,if evolving controllers,
that the controller is situatedwithin a closedsensorimotor
loop [8]. Therefore, the agentsare usually fed relatively
unprocesseddata(suchas�rst-personvisual or othersensor
data)insteadof abstractandpre-categorizedrepresentations
of the environment(suchas typesand numbersof enemies
around,or parametersdescribingthe racing track), and the
outputsof the controller are treatedas primitive movement
commandsratherthane.g.which plan to select.



In car racing we can see examples of the innovation
approachto computationalintelligence in work done by
Floreanoet al. [9] on evolving active vision,work which was
undertaken not to producea controller which would follow
optimalrace-linesbut to seewhatsortof visionsystemwould
emerge from the evolutionary process.We have previously
studiedtheeffect of different�tness measuresin competitive
co-evolution of two cars on the sametracks, �nding that
qualitatively different behaviour can emerge dependingon
whether controllers are rewarded for relative or absolute
progress[10].

C. The imitation approach

While evolutionarycomputationis predominantin thetwo
previousapproaches,theimitation approachrelieson various
formsof supervisedlearning.Typically, what is imitatedis a
humanplayer, but a gameagentcanof courseplausibly try
to imitate anotheragent.

A major exampleof the imitation approachto computa-
tional intelligencein racinggamesis the XBox gameForza
Motorsport from Microsoft Game Studios. In this game,
the player can train a “drivatar” to play just like himself,
and then use this virtual copy of himself to get ranked on
tracks he doesn't want to drive himself, or test his skill
against other players' drivatars.Moving from racing games
to real car driving, Pomerleau's work on teachinga real car
to drive on highways throughsupervisedlearningbasedon
humandriving data is worth mentioningas an example of
the imitation approach[11]. The reasonfor using imitation
rather than optimisationin this casewas probablynot that
interesting driving was preferred to optimal driving, but
ratherthat evolution using real carson real roadswould be
costly.

Our own work on imitating the driving styles of real
humanplayers

D. Combiningimitation and innovation for contentcreation

All the above examples deal with designingor tuning
behaviours and other aspectsof agents,i.e. vehicles. But
there are no obvious reasonswhy this should not be done
with otheraspectsof racinggames.Indeed,very large parts
of the budgetof a commercialgamego into creatinggame
content,suchas levels, tracks,and artwork, and thereis no
reasonwhy computationalintelligenceshouldnot bebrought
to bearon this domain.

In thispaper, weproposeamethodfor on-linepersonalised
automatic content creation, combining the imitation and
innovation approaches.The �rst step of this method is to
acquirea model of the humandriver, which is accuratein
relevant respects.The controller representationand racing
game used for the modelling is the sameas in our ear-
lier experimentsusing the optimisationapproach.Next, we
evolve new racingtracksspeci�cally tailoredto themodelled
human,using the controllergeneratedthroughmodelling to
test the tracks.The tracksare“optimised” for entertainment
value.

Fig. 1. Close-upof thecar, anda sectionof thetesttrack.Linesprotruding
from the car representthe positionsandrangesof the wall sensors.

This paperis basedon ideasandpreliminaryexperiments
reportedin our earlier workshoppaper[12]. In this paper,
we extend the discussion,and report new and signi�cantly
different methodsfor both player modelling and track evo-
lution.

I I . RACING GAME, SENSORS, CONTROLLERS

Our experiments make use of a simple racing game,
which was developed in order to qualitatively reproduce
the experienceof driving a toy radio-controlledcar on a
tabletop track. The car actuatorsaccepta discreteset of
nine movementcommands,correspondingto the keyboard
arrow keys andcombinationsof them.A Newtonianphysics
model is implemented,allowing for momentum,skidding,
and complex reboundsfrom collisions with walls or other
vehicles.Apart from walls, tracksalsoconsistof a numberof
waypoints,which thecarmustpassin order. In our previous
experimentsthe �tness of the controller was computedas
the numberof waypointspassedin a certainperiodof time;
below we usethe waypointsin a slightly moresophisticated
way.

The controllersare basedon neural networks, and take
sensorinformation as inputs and producesmovementcom-
mandsas outputs.As for the sensors,theseconsistof the
speedof thecar, a waypointsensorgiving theanglebetween
the car's headingand the direction to the currentwaypoint,
and a number of wall sensors.The wall sensorsreturn
the approximatedistanceto the nearestwall in a certain
direction,or zero if no wall is within range.For the current
experimentswe use ten wall sensorson the car, ranges
between100 and 200 pixels and more sensorsin the front
of the car than in the back. All sensorsare normalisedto
returningvaluesbetween0 and1, andhave a small amount
of noiseaddedto them.

I I I . THE CASCADING ELITISM ALGORITHM

We use arti�cial evolution both for modelling players
and constructingnew tracks,and in both caseswe have to
dealwith multiobjective �tness functions.While evolutionary
multiobjective optimisationis a rich andactive research�eld,
what we needhere is just a simple way of handlingmore
than one �tness function. We are not interestedin pareto
fronts; what we are interestedin is specifyingwhich �tness
measureshavehigherprioritiesthanothers.A simplesolution



to this is usingan evolution strategy with multiple elites.In
the caseof three�tness measures,it works as follows: out
of a populationof 100, the best 50 genomesare selected
accordingto �tness measuref 1. From these50, the 30 best
accordingto �tness measuref 2 areselected,and �nally the
best20 accordingto �tness measuref 3 are selected.Then
these20 individualsarecopiedfour timeseachto replenish
the 80 genomesthat were selectedagainst, and �nally the
newly copiedgenomesaremutated.

This algorithm, which we call CascadingElitism, is in-
spiredby an experimentby Jirenhedet al. [13].

1) Ontheeffectsof CascadingElitism: At eachgeneration
this algorithmselectsthe elite on the basisof what is a non-
linearcombinationof the�tness functions.If we considerthe
extremecaseof two independent�tnesses,eachone of the
selectionstepsbehaves like an independentelitist algorithm
in which part of the elite is randomly removed (by the
other selections).In anotherextremecase,that of inversely
dependent�tnesses,the secondselectionstepwould always
pick the worst part (the worst accordingto the �rst �tness
but the bestaccordingto the second)of the �rst elite. The
size of the �rst elite and the ratio betweenthe two elites
thereforestartsto be important.

In our situation,like in most interestingproblems,the �t-
nessesareneitherindependentnor fully inverselydependent,
and a more in depth and systematicanalysisis neededto
go beyond merespeculations.While reservingthis to future
research,in our experimentsthe ratios 3=5 and 2=3 were
arrived at throughmanualtuning.

IV. PLAYER MODELLING

The �rst stepin our methodis to acquirea goodmodelof
the humandriver, that canthenbe usedto test tracksduring
evolution. Here, we �rst needto de�ne what it meansfor
a player model to be good, and then decidewhat learning
algorithmandrepresentationto use.

A. Whenis a player modeladequate?

Theonly completemodelof a humanplayeris thehuman
player himself. This is both becausehuman brains and
sensory systemsare rather more complex than anything
machine learning can learn, and becauseof the limited
amountof training dataavailable from the few laps around
a test track which is the most we can realistically expect a
playerto put up with. Further, it is likely thata controllerthat
accuratelyreproducestheplayer'sbehaviour in somerespects
and circumstanceswork less well in others.Thereforewe
needto decidewhatfeatureswe wantfrom theplayermodel,
andwhich featureshave higherpriority thanothers.

As we want to use our model for evaluating �tness of
tracks in an evolutionary algorithm, and evolutionary algo-
rithms are known to exploit weaknessesin �tness function
design,thehighestpriority for our modelis robustness.This
meansthatthecontrollerdoesnotactin waysthataregrossly
inconsistentwith themodelledhuman,especiallythat it does
not crashinto walls when facedwith a novel situation.The
secondcriterionis thatthemodelhasthesameaveragespeed

asthe humanon similar stretchesof track,e.g. if the human
drives faston straightsegmentsbut slows down well before
sharp turns, the controller should do the same.That the
controllerhasa similar driving styleto thehuman,e.g.drives
in themiddleof straightsegmentsbut closeto the innerwall
in smoothcurves (if the humandoesso), is also important
but hasa lower priority.

B. Direct modelling

Whatwe call directmodellingis whatis arguablythemost
straightforward way of acquiringa playermodel:usesuper-
visedlearningto associatethestateof thecarwith theactions
the humantake given that car state.We let several human
playersdrive testtracks,andloggedthespeedandtheoutputs
of waypoint sensorand the wall sensors(as de�ned above)
togetherwith theactiontakenby thehumanat eachtimestep.
Two methodsof supervisedlearningwere tried on this data
set: training a multilayer perceptronfor usein the controller
with backpropagation, and using the unprocesseddata for
controlling the car with nearestneighbourclassi�cation of
input data. Both methodsresultedin worthlesscontrollers
that rarely completeda whole lap. While the trainedneural
networkswereworthlessin anuninterestingway, thenearest
neighbour-basedcontrollersreproducedthe modelledplay-
ers' driving style almost perfectly, until the slight random
perturbationsin the game presentedthe controller with a
situation that differed enoughfrom anything presentin the
training data,and the car crashed.None of the controllers
wereableto recover from crashes,asthehumanplayershad
not crashedduring the datacollection,andthusthe situation
wasnot in the dataset.

We believe this not to be a problem with the particu-
lar supervisedlearning algorithms we used but rather an
unavoidable problem with the direct modelling approach.
As no model is perfect, controllers developed with direct
modellingwill tendto err, which diminish their performance
to lower than the modelled human. In general,it is very
unlikely that they will perform better than or as good as
the modelledhuman(thoughit is theoreticallypossiblethat
individual controllerscould perform well), as any deviance
from correctmodelling will tend toward randombehaviour.
Such imperfectcontrollerswill likely crashinto walls, and
will not know how to recover, as the controllers can't learn
from their mistakes.

This problemwas recognizedby the developersof Forza
Motorsport,who solved it by placing certainconstraintson
the types of tracks that were allowed in the game, and
then recording the player's racing line over eachpossible
track segment. Still, collisions with walls could not be
entirely avoided, so a hard-codedcrash-recovery behaviour
was needed[14]. While this modelling methodostensibly
works, it placesfar too many constraintson the tracksto be
useful for our purposes.

C. Indirect modelling

Indirect modellingmeansmeasuringcertainpropertiesof
the player's behaviour and somehow inferring a controller



that displays the sameproperties.This approachhas been
taken by e.g. Yannakakisin a simpli�ed version of the
Pacman game [15]. In our case,we start from a neural
network-basedcontroller that has previously beenevolved
for robust but not optimal performanceover a wide variety
of tracks, as describedin [6]. We then continue evolving
this controller with the �tness function being how well its
behaviour agreeswith certainaspectsof the humanplayer's
behaviour. This way we satisfy the top-priority robustness
criterion,but we still needto decideon what �tness function
to employ in orderfor the controllerto satisfythe two other
criteriadescribedabove, situationalperformanceanddriving
style.

In our earlierpaper[12], we measuredtheaveragedriving
speed of the human player on three tracks designedto
representdifferent types of driving challenges,and then
evolved controllers to match that performanceas closely
as possibleon eachof the three tracks. That methodwas
successful,but could be argued to fail to capturemuch of
the driving style of the player. Herewe make an attemptto
modelthedriving in moredetailwhile still usingan indirect
approach.

First of all, we designa test track, featuringa numberof
different typesof racing challenges.The track, as pictured
in (�g 2), has two long straight sectionswhere the player
candrive really fast(or choosenot to), a long smoothcurve,
anda sequenceof nastysharpturns.Along the track are30
waypoints,and when a humanplayer drives the track, the
way he passeseachwaypoint is recorded.What is recorded
is the speedof the car when the waypoint is passed,and
the orthogonaldeviation from the straightpathbetweenthe
waypoints,i.e. how far to theleft or right of thewaypointthe
car passed.This matrix of two times 30 valuesconstitutes
the raw datafor the playermodel.

The actualplayermodel is constructedusing the Cascad-
ing Elitism algorithm,startingfrom a generalcontrollerand
evolving it on thetesttrack.Three�tness functionsareused,
basedon minimising the following differencesbetweenthe
real playerand the controller:

� f 1: total progress(numberof waypointspassedwithin
1500timesteps),

� f 2: speedat which eachwaypointwaspassed,
� f 3: orthogonaldeviation waspassed.

The �rst and most important �tness measureis thus
total progressdifference,followed by speedand deviation
differencerespectively.

D. Results

In ourexperiments,� vedifferentplayers'driving wassam-
pledon thetesttrack,andafter50 generationsof theCascad-
ing Elitism algorithm with a populationof 100, controllers
whose driving bore an acceptabledegree of resemblance
to the modelled humanshad emerged. The total progress
variedconsiderablybetweenthe � ve players- between1.31
and 2.59 laps in 1500 timesteps- and this differencewas
faithfully replicatedin theevolvedcontrollers,which is to say

Fig. 2. The test track and the car.
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Fig. 3. Evolving acontrollerto modelaslow, carefuldriver. Sincetheinitial
generalcontroller is quite performing, the evolutionary algorithm quickly
adaptsthe driving style to obtain the requiredprogressandspeeds.At last
also the ortogonaldeviation �tness improves.SeeIV-C for the description
of the �tnesses.

that somecontrollersdrove muchfasterthanothers(seethe
speed�tness in �g.3 and�g.4 ) . Progresswasmadeon the
two other�tness measuresaswell, andthoughtherewasstill
somenumericaldifferencebetweenthe real and modelled
speedand orthogonaldeviation at most waypoint passings,
the evolved controllersdo reproducequalitative aspectsof
the modelledplayers' driving. For example, the controller
modelledon the �rst authordrivesvery closeto the wall in
the long smoothcurve, very fast on the straightpaths,and
smashesinto thewall at thebeginningof the �rst sharpturn.
Conversely, the controller modelledon the anonymousand
very carefuldriver who scoredthelowesttotal progresscrept
alongat a steadyspeed,alwayskeepingto the centerof the
track.
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Fig. 4. Evolving acontrollerto modelagooddriver. Thelackof progresson
minimising the progressdifferenceis the resultof the fact that the progress
of the modelleddriver is very closeto that of the genericcontrollerusedto
initialise the evolution. SeeIV-C for the descriptionof the �tnesses.

V. TRACK EVOLUTION

Onceagoodmodelof thehumanplayerhasbeenacquired,
we will usethis model to evolve new, fun racing tracksfor
the humanplayer. In order to do this, we must know what
it is for a racing track to be fun, how we can measurethis
property, and how the racing track should be represented
in order for good track designsto be in easyreachof the
evolutionary algorithm. We have not beenable to �nd any
previousresearchon evolving tracks,or for thatsake any sort
of computergamelevelsor environments.However, Ashlock
et al.'s paperon evolving path-�nding problemsis worthy to
mentionasa an exampleof an approachthat could possibly
be extendedto certaintypesof computergames[16].

A. Whatmakesracing fun?

It is not obvious what factors make a particular racing
trackfun to drive,or how to measureany suchfactors.While
several researchers,notably Malone and Koster, have tried
to explain why some gamesare more fun than others in
the context of computergamesin general,we are aware of
no researchon the particular genre of racing games.The
following discussionis basedon Malone, Koster and our
own observations.

ThomasMalone claims that the factorsthat make games
fun canbeorganizedinto threecategories:challenge,fantasy,
andcuriosity[17]. The�rst thing to pointoutaboutchallenge
is that the existence of some sort of goal adds to the
entertainmentvalue.Further, this goalshouldnot betoo hard
or too easyto attain,andtheplayershouldnot betoo certain
about what level of successhe will achieve. Translatedto
the context of racing game tracks, this ought to meanthat
the track should not be too easyor too dif�cult to drive,
andthat the track shouldencouragethe playerto try driving
strategiesthat might work, andmight not. Thesefactorscan
be estimatedby how closethe meanspeedof the playeron

thetrack is to a pre-settargetspeed,andashow variablethis
meanspeedis betweenattemptsor laps,respectively.

Gamesthat include fantasy, accordingto Malone, “show
or evoke images of physical objects or social situations
not actually present”. The sensationof being somewhere
else,being someoneelse,doing somethingelse.This is an
importantaspectof many racinggames,but probablynot one
we can investigate in the graphically limited simulationwe
arecurrentlyusing.

Malone's third factor is curiosity. He claims that fun
gameshave an “optimal level of informationalcomplexity”
in that their environmentsare novel and surprisingbut not
completely incomprehensible.Theseare gamesthat invite
exploration, and keeps the user playing just to see what
happensnext. It is not entirely clearhow this insight canbe
transferredto thedomainof racinggames.It couldbeargued
that tracks should be varied, combining several different
typesof challengesin thesametrack.It couldalsobeargued
that getting to drive a new track drawn from a limitless
supply whenever you want, provokes enoughcuriosity, in
which casethe very methodwe areproposingin this paper
is the answer to the curiosity challenge,as evolutionary
algorithms are very good at coming up with unexpected
solutions.

RaphKosterhasa different take on fun, when he claims
that fun is learning,andgamesaremoreor lessfun depend-
ing on how goodor bad teachersthey are [18]. He concurs
with Malonethat the level of challengein a gameshouldbe
appropriate,but further claimsthat the gameshoulddisplay
a good learning curve: new, more complex and rewarding
challengesshould be introducedat the rate old challenges
aremastered.In the car racingdomainthis could meanthat
a good track designis one which is initially hard to drive,
but which the playerquickly learnsto master.

An observation of our own, con�rmed by the opinionsof
anunstructuredselectionof non-experts,is thattracksarefun
whereit is possibleto drive very faston straightsections,but
it is necessaryto brake hard in preparationfor sharpturns,
turns which preferablycan be taken by skidding. In other
words,it' s fun to almostlosecontrol.However, it is possible
that this is a matterof personality, andthat differentplayers
attachvery different values to different fun factors.Some
peopleseemto like to be in control of things, and people
have very differentattentionspans,which shouldmeanthat
somepeoplewould want tracksthat areeasierto learn than
others.Identifying different player typesand being able to
selecta mix of fun factorsoptimal to theseplayerswould be
an interestingproject,but we arenot awareof any empirical
studieson that subject.

B. Fitnessfunctions

Developingreliablequantitative measuresof, andwaysof
maximising,all the above propertieswould probablyrequire
signi�cant effort. For this paperwe chosea set of features
which would be believed not to be too hardto measure,and
designeda �tness function basedon these.The featureswe
want our track to have for the modelledplayer, in order of



decreasingpriority, is the right amountof challenge,varying
amountof challenge,andthepresenceof sectionsof thetrack
in which it is possibleto drive really fast.Thecorresponding
�tness functionsare:

� f 1: the negative differencebetweenactualprogressand
target progress(in this casede�ned as30 waypointsin
700 timesteps),

� f 2: variancein total progressover � ve trials of thesame
controlleron the sametrack,

� f 3: maximumspeed.

C. Track representation

In our earlier paper we evolved �x ed-lengthsequences
of track segments.Thesesegmentscould have variouscur-
vaturesand decreaseor increasethe breadthof the track.
While this representationhad the advantageof very good
evolvability in that we could maximiseboth progressand
progressvariancesimultaneously, theevolvedtracksdid look
quite jagged,andwerenot closed;they endedin a different
point thanthey started,sothecarhadto be“teleported”back
to thebeginningof thetrack.We thereforesetout to createa
representationthat, while retainingevolvability, allowed for
smoother, better-looking tracks where the start and end of
the track connect.

The representationwe presenthereis basedon b-splines,
or sequencesof Beziercurvesjoined together. Eachsegment
is de�ned by two control points,andtwo adjacentsegments
always shareone control point. The remainingtwo control
points necessaryto de�ne a Bezier curve are computedin
order to ensure that the curves have the same �rst and
secondderivatives at the point they join, therebyensuring
smoothness.A track is de�ned by a b-splinecontaining30
segments,and mutationis doneby perturbingthe positions
of their control points.

Thecollision detectionin thecargameworksby sampling
pixels on a canvas, and this mechanismis taken advantage
of when the b-splineis transformedinto a track. First thick
walls are drawn at some distanceon each side of the b-
spline, this distancebeing either set to 30 pixels or subject
to evolution dependingon how theexperimentis setup. But
when a turn is too sharpfor the currentwidth of the track,
this will resultin walls intrudingon the trackandsometimes
blocking the way. The next step in the constructionof the
track is therefore“steamrolling” it, or traversingtheb-spline
and painting a thick stroke of white in the middle of the
track.Finally, waypointsareaddedat approximatelyregular
distancesalongthelengthof theb-spline.Theresultingtrack
(see�g.2can look very smooth,asevidencedby thetesttrack
whichwasconstructedsimplyby manuallysettingthecontrol
pointsof a spline.

D. Initialisation and mutation

In orderto investigatehow bestto leveragetherepresenta-
tional power of the b-splines,we experimentedwith several
different ways of initialising the tracks at the beginning
of the evolutionary runs, and different implementationsof

Fig. 5. Track evolved using the randomwalk initialisation andmutation.

the mutation operator. Three of these con�gurations are
describedhere.

1) Straightforward: The straightforward initial track
shapeforming a rectanglewith roundedcorners.Eachmu-
tation operationthen perturbsone of the control points by
adding numbersdrawn from a gaussiandistribution with
standarddeviation 20 pixels to both x andy axes.

2) Randomwalk: In the randomwalk experiments,mu-
tation proceedslike in the straightforward con�guration, but
the initialisation is different. A roundedrectangletrack is
�rst subjectto randomwalk, wherebyhundredsof mutations
are carriedout on a single track, and only thosemutations
that result in a track on which a genericcontroller is not
ableto completea full lap areretracted.Theresultof sucha
randomwalk is a severely deformedbut still drivable track.
A populationis theninitialised with this track andevolution
proceedsasusualfrom there.

3) Radial: The radial methodof mutationstartsfrom an
equallyspacedradialdispositionof thecontrolpointsaround
the center of the image; the distanceof each point from
the centeris generatedrandomly. Similarly at eachmutation
operationthe positionof the selectedcontrol point is simply
changedrandomlyalong the respective radial line from the
center. Constrainingthecontrolpointsin a radialdisposition
is a simple methodto exclude the possibility of producing
a b-splinecontainingloops, thereforeproducingtracksthat
arealways fully drivable.

E. Results

We evolved a numberof tracks using the b-spline rep-
resentation,different initialisation and mutation methods,
and different controllers derived using the indirect player
modellingapproach.

1) Straightforward: Overall, the tracksevolved with the
straightforwardmethodlookedsmooth,andwerejust aseasy
or hardto driveasthey shouldbe:thecontrollerfor which the



Fig. 6. A track evolved (using the radial method)to be fun for the �rst
author, who plays too many racing gamesanyway. It is not easyto drive,
which is just as it shouldbe.

Fig. 7. A track evolved (usingthe radial method)to be fun for the second
author, who is a bit morecareful in his driving. Note the absenceof sharp
turns.

track wasevolved typically madea total progressvery close
to the target progress.However, the evolved tracks didn't
differ from eachother as much as we would have wanted.
Thebasicshapeof a roundedrectangleshinesthroughrather
more than it should.

2) Randomwalk: Tracksevolved with randomwalk ini-
tialisationlook weird (see5) anddiffer from eachotherin an
interestingway, and so ful�l at leastone of our objectives.
However, their evolvability is a bit lacking, with the actual
progressof the controlleroften quite a bit differentfrom the
target progressandmaximumspeedlow.

3) Radial: With the radial method, the tracks evolve
rather quickly and look decidedly different (see �g.6 and
6 dependingon what controller was usedto evolve them,

and can thus be said to be personalised.However, there is
somelack of variety in the end resultsin that they all look
slightly like �o wers,clearbiasof the type of mutationused.

4) Comparisonwith segment-basedtracks: It is interest-
ing to comparethesetrackswith sometracksevolved using
the segment-basedrepresentationfrom our previous paper.
Thosetracks(see�g.8) do show boththecreativity evolution
is capableof anda goodability to optimisethe�tness values
we de�ne. But they don't look like anything you would want
to get out anddrive on.

VI . DISCUSSION

We believe the ideasdescribedin this paperhold great
promise, and that our player modelling method is good
enoughto be usable,but that there is much that needsto
be done in order for track evolution to be incorporatedin
an actualgame.To start with, the track representationand
mutation methodsneed to be developed further, until we
arrive at somethingwhich is asevolvableandvariableasthe
segment-basedrepresentationbut looks as good as (and is
closedlike) the b-spline-basedrepresentation.Featuressuch
asself-intersectionalsoneedto be allowed.

Further, the racinggamewe have usedfor this investiga-
tion is too simple in several ways,not leastgraphicallybut
also in its physics model being two-dimensional.A natural
next stepwould be to repeattheexperimentsperformedhere
in a graphically advancedsimulation basedon an suitable
physics engine,suchas Ageia's PhysX technology[19]. In
sucha simulation,it would bepossibleto evolve not only the
trackin itself, but alsootheraspectsof theenvironment,such
asbuildings in a city in which a racetakesplace.This could
bedoneby combiningtheideaof proceduralcontentcreation
[20][21] with evolutionary computation.Another exciting
prospectis evolving personalisedcompetitors,building on
the resultsof our earlier investigations into co-evolution in
car racing [10].

In the section above on what makes racing fun, we
describea number of potential measuresof entertainment
value,mostof which arenot implementedin theexperiments
describedhere.De�ning quantitative versionsof thesemea-
sureswouldde�nitely beinteresting,but webelieve it is more
urgentto studythematterempirically. Malone's andKoster's
oft-cited hypothesesare just hypotheses,and as far as we
know there are no psychologicalstudiesthat tell us what
entertainmentmetric would be most suitablefor particular
gamesand typesof player. Real researchon real playersis
needed.Suchresearchcould be in the vein of Yannakakis'
and Hallam's studies on the Pac-Man game [22], where
humanplayers' reportson how much they enjoyed playing
the gameundervariouscon�gurationswere correlatedwith
quantitative approximationsof challengeandcuriosity.

Finally we note that althoughwe distinguishedbetween
differentapproachesto computationalintelligenceandgames
in the beginning to this paper, many experimentscan be
viewed from several perspectives. The focus in this paper
on using evolutionary computationfor practical purposes
in gamesis not at all incompatiblewith using gamesfor



Fig. 8. Tracksevolved usingthe segment-basedmethod.Track (a) is evolved for a weakplayer, andtracks(b) and(c) for a goodplayer. Tracks(a) and
(b) areevolved usingall three�tness functionsde�ned above, while track (c) is evolved usingonly progress�tness.

studying under what conditions intelligence can evolve, a
perspective we have taken in someof our previous papers.
On the contrary.
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