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Abstract— Evolutionary algorithms are commonly used to
createhigh-performing strategiesor agentsfor computer games.
In this paper, we instead chooseto evolve the racing tracks
in a car racing game. An evolvable track representation is
devised, and a multiobjective evolutionary algorithm maximises
the entertainment value of the track relative to a particular
human player. This requiresa way to createaccurate modelsof
players' driving styles,as well as a tentative de nition of when
a racing track is fun, both of which are provided. We believe
this approach opensup interesting new reseach questionsand
is potentially applicable to commercial racing games.

Keywords: Car racing, player modelling, entertainment
metrics,contentcreation,evolution.

|I. THREE APPROACHES TO COMPUTATIONAL
INTELLIGENCE IN GAMES

Much of the researchdone under the heading “com-
putationalintelligence and games” aims to optimise game
playing stratgies or game agent controllers. While these
endeaours are certainly worthwhile, there are several other
quitedifferentapproachethatcouldbeatleastasinteresting,
from both an academicand a commercialpoint of view.

In this papermwe discusghreeapproacheto computational
intelligencein games:optimisation,imitation andinnovation.
We describethese approachesas they apply to gamesin
generaland exemplify them as they apply to racing games
in particular We then describean experimentwhere these
approachesare usedin a racing game to augmentplayer
satishction. The taxonomygiven below is of courseneither
nal nor exhaustve, but it is a start.

A. The optimisationappmoach

Most researchinto computationaintelligenceand games
takesthe optimisationapproachywhich meanghatan optimi-
sationalgorithmis usedto tunevaluesof someaspecibf the
game. Examplesaboundof using evolutionary computation
to developgoodgame-playingstratayies,in all sortsof games
from chessto poker to warcraft[1][2].

Several groups of researcherdave taken this approach
towardsracing games.Tanes [3] developedan anticipatory
control algorithm for an R/C racing simulator and used
evolutionary computationto tune the parameterof this al-
gorithmfor optimal lap time. Chaperotand Fyfe [4] evolved
neural network controllersfor minimal lap time in a 3D
motocrossgame, and we previously oursehes investicated
which controllerarchitecturesirebestsuitedfor suchoptimi-
sationin a simpleracinggame[5]. Sometimesoptimisation
is multiobjective, as in our previous work on optimising
controllersfor performanceon particularracingtracksversus

robustnesdn driving on new tracks[6]. And thereare other
things than controllersthat can be optimisedin car racing,
asis demonstratedby the work of Wloch and Bentley, who
optimisedthe parametergor simulatedFormulal carsin a
physically sophisticatedacing game[7].

While gamescan be excellent test-bedsfor evolutionary
and other optimisation algorithms, it can be argued that
improving game-playingagentsis in itself of little prac-
tical value. From the point of view of commercialgame
developers,most game genresare not in a great need of
more effective computercontrolled agentsor stratgies, as
it is alreadyeasyto createcompetitorsthat beatall human
players(thoughthereareexceptionsto this, suchasreal-time
stratgy games,where more effective Al is a hot research
topic [2]). The problemis rather that game agentsdon't
behae interestinglyenough.

From the points of view of evolutionary roboticists,neu-
roscientistsand other cognitive scientistsoptimal behaiour
is oftenuninterestingGamescande nitely be interestingas
ervironmentsin which to studythe emegenceof intelligence
or certain neural mechanismshut this requiresthat both
tness function and ernvironment allows for behaiours of
theright compleity, andthatthe particularphenomendo be
studiedare not “abstractedaway” by the non-computational
intelligencepartsof the game.

B. Theinnovation approac

The boundary betweenthe optimisation approachand
the innovation approachis not clearcut, but the innova-
tion approachis more focusedon generatinginteresting,or
compl, as opposedto optimal behaiour. The innovation
approactseeggyamesaservironmentsfor the developmentof
comple intelligence,ratherthan computationaintelligence
techniquesasmeanf achiezing particularresultsasgames.
(Thoughthetwo perspectiesareof coursenot exclusive, and
mary projectstake both.) Typically this entailsnot knowing
exactly what oneis looking for.

In this approachit is desirablenot to constrainthe creati-
ity of theevolutionaryalgorithm,and,if evolving controllers,
that the controller is situatedwithin a closedsensorimotor
loop [8]. Therefore,the agentsare usually fed relatively
unprocessedata(suchas rst-personvisual or othersensor
data)insteadof abstractand pre-catgorizedrepresentations
of the ervironment(suchastypesand numbersof enemies
around,or parametergiescribingthe racing track), and the
outputsof the controller are treatedas primitive movement
commandgatherthane.g. which planto select.



In car racing we can see examples of the innovation
approachto computationalintelligence in work done by
Floreancetal. [9] on evolving active vision, work which was
undertalen not to producea controller which would follow
optimalrace-linesut to seewhatsortof vision systemwould
emege from the evolutionary process We have previously
studiedthe effect of different tness measuresn competitive
co-evolution of two cars on the sametracks, nding that
qualitatvely different behaiour can emege dependingon
whether controllers are rewarded for relatve or absolute
progresq10].

C. Theimitation approac

While evolutionarycomputationis predominantn thetwo
previous approachegheimitation approactrelieson various
forms of supervisedearning.Typically, whatis imitatedis a
humanplayer but a gameagentcan of courseplausiblytry
to imitate anotheragent.

A major example of the imitation approachto computa-
tional intelligencein racing gamesis the XBox gameForza
Motorsport from Microsoft Game Studios. In this game,
the player can train a “drivatar” to play just like himself,
and then use this virtual copy of himself to get ranked on
tracks he doesnt want to drive himself, or test his skill
agpinst other players' drivatars.Moving from racing games
to real car driving, Pomerleats work on teachinga real car
to drive on highways through supervisedearningbasedon
humandriving datais worth mentioningas an example of
the imitation approach[11]. The reasonfor using imitation
ratherthan optimisationin this casewas probably not that
interesting driving was preferredto optimal driving, but
ratherthat evolution using real carson real roadswould be
costly.

Our own work on imitating the driving styles of real
humanplayers

D. Combiningimitation and innovation for contentcreation

All the abore examplesdeal with designingor tuning
behaiours and other aspectsof agents,i.e. vehicles. But
there are no obvious reasonswhy this should not be done
with otheraspectf racinggames.Indeed,very large parts
of the budgetof a commercialgamego into creatinggame
content,suchaslevels, tracks,and artwork, andthereis no
reasonwhy computationaintelligenceshouldnot be brought
to bearon this domain.

In this paperwe proposea methodfor on-line personalised
automatic content creation, combining the imitation and
innovation approachesThe rst step of this methodis to
acquirea model of the humandriver, which is accuratein
relevant respects.The controller representatiorand racing
game usedfor the modelling is the sameas in our ear
lier experimentsusing the optimisationapproach Next, we
evolve new racingtracksspeci cally tailoredto the modelled
human,using the controller generatedhroughmodelling to
testthe tracks.The tracksare “optimised” for entertainment
value.

Fig. 1. Close-upof the car, anda sectionof thetesttrack. Lines protruding
from the car representhe positionsand rangesof the wall sensors.

This paperis basedon ideasand preliminary experiments
reportedin our earlier workshoppaper[12]. In this paper
we extend the discussion,and report new and signi cantly
different methodsfor both player modelling and track evo-
lution.

Il. RACING GAME, SENSORS, CONTROLLERS

Our experiments malke use of a simple racing game,
which was developed in order to qualitatvely reproduce
the experienceof driving a toy radio-controlledcar on a
tabletop track. The car actuatorsaccepta discrete set of
nine movementcommands correspondingo the keyboard
arrov keys and combinationsof them.A Newtonianphysics
model is implemented,allowing for momentum,skidding,
and compl reboundsfrom collisions with walls or other
vehicles. Apart from walls, tracksalsoconsistof a numberof
waypoints,which the carmustpassin order In our previous
experimentsthe tness of the controller was computedas
the numberof waypointspassedn a certainperiod of time;
belowv we usethe waypointsin a slightly more sophisticated
way.

The controllers are basedon neural networks, and take
sensotinformation as inputs and producesmovementcom-
mandsas outputs.As for the sensorstheseconsistof the
speedof the car, a waypointsensomgiving the anglebetween
the car's headingand the directionto the currentwaypoint,
and a number of wall sensors.The wall sensorsreturn
the approximatedistanceto the nearestwall in a certain
direction,or zeroif no wall is within range.For the current
experimentswe use ten wall sensorson the car, ranges
betweenl100 and 200 pixels and more sensorsin the front
of the car thanin the back. All sensorsare normalisedto
returningvaluesbetween0 and 1, and have a small amount
of noiseaddedto them.

I1l. THE CASCADING ELITISM ALGORITHM

We use arti cial evolution both for modelling players
and constructingnew tracks,and in both caseswe have to
dealwith multiobjective tness functions.While evolutionary
multiobjective optimisationis arich andactive researcheld,
what we needhereis just a simple way of handlingmore
than one tness function. We are not interestedin pareto
fronts; what we are interestedn is specifyingwhich tness
measurefave higherprioritiesthanothers A simplesolution



to this is using an evolution stratgy with multiple elites.In

the caseof three tness measuresit works as follows: out
of a populationof 100, the best 50 genomesare selected
accordingto tness measurd ;. From these50, the 30 best
accordingto tness measurd , areselectedand nally the
best20 accordingto tness measuref 3 are selected.Then
these20 individuals are copiedfour times eachto replenish
the 80 genomesthat were selectedagainst, and nally the
newly copiedgenomesare mutated.

This algorithm, which we call CascadingElitism, is in-
spiredby an experimentby Jirenhedet al. [13].

1) Ontheeffectsof Cascadingzlitism: At eachgeneration
this algorithm selectsthe elite on the basisof whatis a non-
linearcombinationof the tness functions.If we considerthe
extreme caseof two independenttnesses,eachone of the
selectionstepsbehaeslike an independentlitist algorithm
in which part of the elite is randomly removed (by the
other selections)In anotherextreme case,that of inversely
dependenttnesses,the secondselectionstepwould always
pick the worst part (the worst accordingto the rst tness
but the bestaccordingto the second)of the rst elite. The
size of the rst elite and the ratio betweenthe two elites
thereforestartsto be important.

In our situation,like in mostinterestingproblems the t-
nessesreneitherindependennor fully inverselydependent,
and a more in depth and systematicanalysisis neededto
go beyond merespeculationsWhile reservingthis to future
research,in our experimentsthe ratios 3=5 and 2=3 were
arrived at throughmanualtuning.

IV. PLAYER MODELLING

The rst stepin our methodis to acquirea good model of
the humandriver, that canthenbe usedto testtracksduring
evolution. Here, we rst needto de ne what it meansfor
a player modelto be good, and then decidewhat learning
algorithmandrepresentationo use.

A. Whenis a player modeladequate?

The only completemodelof a humanplayeris the human
player himself. This is both becausehuman brains and
sensory systemsare rather more complex than arything
machine learning can learn, and becauseof the limited
amountof training dataavailable from the few laps around
a testtrack which is the mostwe canrealistically expecta
playerto put up with. Further it is likely thata controllerthat
accuratelyreproduceshe players behaiour in somerespects
and circumstancesvork lesswell in others. Thereforewe
needto decidewhatfeaturesve wantfrom the playermodel,
and which featureshave higher priority than others.

As we want to use our model for evaluating tness of
tracksin an evolutionary algorithm, and evolutionary algo-
rithms are known to exploit weaknesse# tness function
design.the highestpriority for our modelis robustnessThis
meanghatthe controllerdoesnotactin waysthataregrossly
inconsistentvith the modelledhuman,especiallythatit does
not crashinto walls whenfacedwith a novel situation.The
seconccriterionis thatthe modelhasthe sameaveragespeed

asthe humanon similar stretchef track, e.g.if the human
drivesfaston straightsegmentsbut slows down well before
sharp turns, the controller should do the same. That the
controllerhasa similar driving styleto thehuman,e.g.drives
in the middle of straightsegmentsbut closeto theinnerwall

in smoothcurves (if the humandoesso), is also important
but hasa lower priority.

B. Direct modelling

Whatwe call directmodellingis whatis arguablythe most
straightforvard way of acquiringa playermodel: usesuper
visedlearningto associat¢he stateof the carwith theactions
the humantake given that car state.We let several human
playersdrive testtracks,andloggedthe speedandtheoutputs
of waypointsensorand the wall sensorgas de ned above)
togethemwith the actiontaken by the humanat eachtimestep.
Two methodsof supervisedearningweretried on this data
set:training a multilayer perceptrorfor usein the controller
with backpropagtion, and using the unprocessedlata for
controlling the car with nearestneighbourclassi cation of
input data. Both methodsresultedin worthlesscontrollers
that rarely completeda whole lap. While the trainedneural
networks wereworthlessin anuninterestingvay, the nearest
neighboutbasedcontrollersreproducedthe modelled play-
ers' driving style almost perfectly until the slight random
perturbationsin the game presentedthe controller with a
situation that differed enoughfrom anything presentin the
training data, and the car crashed.None of the controllers
wereableto recover from crashesasthe humanplayershad
not crashedduring the datacollection,andthusthe situation
was not in the dataset.

We believe this not to be a problem with the particu-
lar supervisedlearning algorithms we used but rather an
unavoidable problem with the direct modelling approach.
As no model is perfect, controllers developed with direct
modellingwill tendto err, which diminishtheir performance
to lower than the modelled human.In general,it is very
unlikely that they will perform better than or as good as
the modelledhuman(thoughit is theoreticallypossiblethat
individual controllerscould perform well), as ary deviance
from correctmodellingwill tend toward randombehaiour.
Suchimperfectcontrollerswill likely crashinto walls, and
will not know how to recover, asthe contollers can't learn
from their mistales

This problemwas recognizedby the developersof Forza
Motorsport,who solved it by placing certainconstraintson
the types of tracks that were allowed in the game, and
then recordingthe players racing line over each possible
track segment. Still, collisions with walls could not be
entirely avoided, so a hard-codedcrash-receery behaiour
was needed[14]. While this modelling method ostensibly
works, it placesfar too mary constraintson the tracksto be
usefulfor our purposes.

C. Indirect modelling

Indirect modelling meansmeasuringcertain propertiesof
the players behaiour and somehav inferring a controller



that displaysthe sameproperties.This approachhas been
taken by e.g. Yannakakisin a simplied version of the

Pacman game [15]. In our case,we start from a neural
network-basedcontroller that has previously been evolved

for robust but not optimal performanceover a wide variety

of tracks, as describedin [6]. We then continue evolving

this controller with the tness function being how well its

behaiour agreeswith certainaspectf the humanplayers

behaiour. This way we satisfy the top-priority robustness
criterion, but we still needto decideon what tness function

to employ in orderfor the controllerto satisfythe two other
criteriadescribedabore, situationalperformanceanddriving

style.

In our earlierpaper[12], we measuredhe averagedriving
speedof the human player on three tracks designedto
representdifferent types of driving challenges,and then
evolved controllersto match that performanceas closely
as possibleon eachof the three tracks. That methodwas
successfulput could be arguedto fail to capturemuch of
the driving style of the player Here we make an attemptto
modelthe driving in moredetail while still usingan indirect
approach.

First of all, we designa testtrack, featuringa numberof
different types of racing challenges.The track, as pictured
in (g 2), hastwo long straight sectionswhere the player
candrive really fast(or choosenot to), along smoothcurve,
and a sequencef nastysharpturns. Along the track are 30
waypoints,and when a humanplayer drives the track, the
way he passesachwaypointis recordedWhatis recorded
is the speedof the car when the waypointis passedand
the orthogonaldeviation from the straightpath betweenthe
waypoints,i.e. how farto theleft or right of thewaypointthe
car passedThis matrix of two times 30 valuesconstitutes
the raw datafor the playermodel.

The actualplayermodelis constructedusing the Cascad-
ing Elitism algorithm, startingfrom a generalcontrollerand
evolving it on thetesttrack. Three tness functionsareused,
basedon minimising the following differencesbetweenthe
real playerandthe controller:

f1: total progress(numberof waypointspassedwithin
1500timesteps),

f,: speedat which eachwaypointwas passed,

f 3: orthogonaldeviation was passed.

The rst and most important tness measureis thus
total progressdifference,followed by speedand deviation
differencerespectiely.

D. Results

In ourexperiments, ve differentplayers'driving wassam-
pledonthetesttrack,andafter 50 generation®f the Cascad-
ing Elitism algorithm with a populationof 100, controllers
whose driving bore an acceptabledegree of resemblance
to the modelled humanshad emeged. The total progress
varied considerablybetweenthe ve players- betweenl.31
and 2.59 laps in 1500 timesteps- and this differencewas
faithfully replicatedn the evolvedcontrollerswhichis to say

Fig. 2. Thetesttrack andthe car
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Fig. 3. Evolving acontrollerto modelaslow, carefuldriver. Sincetheinitial

generalcontroller is quite performing, the evolutionary algorithm quickly
adaptsthe driving style to obtainthe requiredprogressand speedsAt last
alsothe ortogonaldeviation tness improves. SeelV-C for the description
of the tnesses.

that somecontrollersdrove muchfasterthan others(seethe
speedtnessin g.3 and g.4 ) . Progressvas madeon the
two other tness measuresswell, andthoughtherewasstill
some numerical differencebetweenthe real and modelled
speedand orthogonaldeviation at most waypoint passings,
the evolved controllersdo reproducequalitatve aspectsof
the modelled players' driving. For example, the controller
modelledon the rst authordrivesvery closeto the wall in
the long smoothcurwe, very fast on the straight paths,and
smashento the wall at the beginning of the rst sharpturn.
Corversely the controller modelledon the anorymous and
very carefuldriver who scoredthe lowesttotal progresscrept
alongat a steadyspeedalways keepingto the centerof the
track.
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of the modelleddriver is very closeto that of the genericcontrollerusedto
initialise the evolution. SeelV-C for the descriptionof the tnesses.

V. TRACK EVOLUTION

Onceagoodmodelof thehumanplayerhasbeenacquired,
we will usethis modelto evolve new, fun racingtracksfor
the humanplayer In orderto do this, we mustknow what
it is for a racingtrack to be fun, howv we can measurethis
property and how the racing track should be represented
in order for good track designsto be in easyreachof the
evolutionary algorithm. We have not beenableto nd ary
previousresearcton evolving tracks,or for thatsale ary sort
of computergamelevels or ervironments However, Ashlock
etal's paperon evolving path- nding problemsis worthy to
mentionasa an exampleof an approachthat could possibly
be extendedto certaintypesof computergames[16].

A. Whatmalesracing fun?

It is not obvious what factors make a particular racing
trackfun to drive, or how to measurery suchfactors.While
several researchersnotably Malone and Koster have tried
to explain why some gamesare more fun than othersin
the context of computergamesin general,we are aware of
no researchon the particular genre of racing games.The
following discussionis basedon Malone, Koster and our
own obsenrations.

ThomasMalone claims that the factorsthat make games
fun canbeorganizedinto threecateyories:challengefantasy
andcuriosity[17]. The rst thingto point outaboutchallenge
is that the existence of some sort of goal adds to the
entertainmentalue.Further this goalshouldnot betoo hard
or too easyto attain,andthe playershouldnot be too certain
aboutwhat level of successhe will achieve. Translatedto
the context of racing game tracks, this oughtto meanthat
the track should not be too easyor too dif cult to drive,
andthatthe track shouldencouragehe playerto try driving
stratgyiesthat might work, and might not. Thesefactorscan
be estimatedby how closethe meanspeedof the playeron

thetrackis to a pre-settarget speedandashow variablethis
meanspeedis betweenattemptsor laps, respectiely.

Gamesthat include fantasy accordingto Malone, “show
or evoke images of physical objects or social situations
not actually present”. The sensationof being someavhere
else,being someoneelse, doing somethingelse. This is an
importantaspecbf mary racinggames but probablynotone
we caninvestigate in the graphicallylimited simulationwe
are currently using.

Malone's third factor is curiosity He claims that fun
gameshave an “optimal level of informational complexity”
in that their environmentsare novel and surprisingbut not
completelyincomprehensibleTheseare gamesthat invite
exploration, and keepsthe user playing just to see what
happensext. It is not entirely clearhow this insight canbe
transferredo the domainof racinggameslt couldbeargued
that tracks should be varied, combining several different
typesof challengesn the sametrack. It couldalsobe argued
that getting to drive a new track dravn from a limitless
supply when&rer you want, provokes enoughcuriosity, in
which casethe very methodwe are proposingin this paper
is the answerto the curiosity challenge,as evolutionary
algorithms are very good at coming up with unexpected
solutions.

RaphKosterhasa differenttake on fun, when he claims
thatfun is learning,and gamesare moreor lessfun depend-
ing on how good or badteacherghey are[18]. He concurs
with Malonethatthe level of challengein a gameshouldbe
appropriate put further claimsthat the game shoulddisplay
a good learning curve: nen, more comple and rewarding
challengesshould be introducedat the rate old challenges
aremasteredIn the car racingdomainthis could meanthat
a good track designis one which is initially hardto drive,
but which the player quickly learnsto master

An obsenation of our own, con rmed by the opinionsof
anunstructuredelectionof non-eperts,is thattracksarefun
whereit is possibleto drive very faston straightsectionsput
it is necessaryo brake hardin preparationfor sharpturns,
turns which preferablycan be taken by skidding. In other
words,it's fun to almostlose control. However, it is possible
that this is a matterof personality andthat differentplayers
attachvery different valuesto different fun factors. Some
peopleseemto like to be in control of things, and people
have very differentattentionspans which shouldmeanthat
somepeoplewould want tracksthat are easierto learnthan
others.ldentifying different player types and being able to
selecta mix of fun factorsoptimalto theseplayerswould be
aninterestingproject,but we arenot aware of any empirical
studieson that subject.

B. Fitnessfunctions

Developingreliable guantitatve measure®f, andways of
maximising,all the above propertieswould probablyrequire
signi cant effort. For this paperwe chosea set of features
which would be believed not to be too hardto measureand
designeda tness function basedon these.The featureswe
want our track to have for the modelledplayer in order of



decreasingriority, is theright amountof challengeyarying
amountof challengeandthe presencef sectionof thetrack
in whichit is possibleto drive really fast. The corresponding
tness functionsare:

f 1: the negative differencebetweenactualprogressand
target progresg(in this casede ned as 30 waypointsin
700 timesteps),

f,: variancein total progressover ve trials of the same
controlleron the sametrack,

f3: maximumspeed.

C. Track representation

In our earlier paperwe evolved x ed-lengthsequences
of track sggments.Thesesggmentscould have various cur
vaturesand decreaseor increasethe breadthof the track.
While this representatiorhad the adwantageof very good
evolvability in that we could maximise both progressand
progressrariancesimultaneouslythe evolvedtracksdid look
quite jagged,and were not closed;they endedin a different
pointthanthey started sothe carhadto be“teleported”’back
to the beginning of the track. We thereforesetoutto createa
representatiorthat, while retainingevolvability, allowed for
smoother betterlooking tracks where the start and end of
the track connect.

The representationve presenthereis basedon b-splines,
or sequencesf Beziercurvesjoinedtogether Eachsegment
is de ned by two control points,andtwo adjacentsegments
always shareone control point. The remainingtwo control
points necessaryto de ne a Bezier curve are computedin
order to ensurethat the curves have the same rst and
secondderivatives at the point they join, therebyensuring
smoothnessA track is de ned by a b-spline containing30
segments,and mutationis doneby perturbingthe positions
of their control points.

The collision detectionin the cargameworks by sampling
pixels on a carvas, and this mechanismis taken adwantage
of whenthe b-splineis transformednto a track. First thick
walls are dravn at some distanceon each side of the b-
spline, this distancebeing either setto 30 pixels or subject
to evolution dependingon how the experimentis setup. But
whena turn is too sharpfor the currentwidth of the track,
this will resultin walls intruding on the trackandsometimes
blocking the way. The next stepin the constructionof the
trackis therefore“steamrolling”it, or traversingthe b-spline
and painting a thick stroke of white in the middle of the
track. Finally, waypointsare addedat approximatelyregular
distanceslongthe lengthof the b-spline.Theresultingtrack
(see g.2can look very smooth,asevidencedby thetesttrack
whichwasconstructedgimply by manuallysettingthecontrol
pointsof a spline.

D. Initialisation and mutation

In orderto investicatehow bestto leveragethe representa-
tional power of the b-splines,we experimentedwith several
different ways of initialising the tracks at the beginning
of the evolutionary runs, and different implementationsof

Fig. 5. Track evolved using the randomwalk initialisation and mutation.

the mutation operator Three of these con gurations are
describedhere.

1) Straightforwad: The straightforvard initial track
shapeforming a rectanglewith roundedcorners.Eachmu-
tation operationthen perturbsone of the control points by
adding numbersdravn from a gaussiandistribution with
standarddeviation 20 pixels to both x andy axes.

2) Randomwalk: In the randomwalk experiments,mu-
tation proceeddike in the straightforvard con guration, but
the initialisation is different. A roundedrectangletrack is
rst subjectto randomwalk, wherebyhundred=f mutations
are carriedout on a single track, and only thosemutations
that resultin a track on which a genericcontroller is not
ableto completea full lap areretracted.Theresultof sucha
randomwalk is a severely deformedbut still drivable track.
A populationis theninitialised with this track and evolution
proceedsas usualfrom there.

3) Radial: The radial methodof mutationstartsfrom an
equallyspacedadial dispositionof the control pointsaround
the center of the image; the distanceof each point from
the centeris generatedandomly Similarly at eachmutation
operationthe position of the selecteccontrol point is simply
changedrandomlyalong the respectie radial line from the
center Constrainingthe control pointsin a radial disposition
is a simple methodto exclude the possibility of producing
a b-spline containingloops, thereforeproducingtracks that
are alwaysfully drivable.

E. Results

We evolved a number of tracks using the b-spline rep-
resentation,different initialisation and mutation methods,
and different controllers derived using the indirect player
modelling approach.

1) Straightforwad: Overall, the tracks evolved with the
straightforvard methodlooked smooth,andwerejust aseasy
or hardto drive asthey shouldbe:thecontrollerfor which the



Fig. 6. A track evolved (using the radial method)to be fun for the rst
author who plays too mary racing gamesaryway. It is not easyto drive,
which is just asit shouldbe.

Fig. 7. A trackevolved (usingthe radial method)to be fun for the second
author who is a bit more carefulin his driving. Note the absencef sharp
turns.

track was evolved typically madea total progressvery close
to the tamget progress.However, the evolved tracks didn't
differ from eachother as much as we would have wanted.
Thebasicshapeof a roundedrectangleshinesthroughrather
morethanit should.

2) Randomwalk: Tracksevolved with randomwalk ini-
tialisationlook weird (seeb) anddiffer from eachotherin an
interestingway, andso ful | at leastone of our objectives.
However, their evolvability is a bit lacking, with the actual
progressof the controlleroften quite a bit differentfrom the
target progressand maximumspeedow.

3) Radial: With the radial method, the tracks evolve
rather quickly and look decidedly different (see g.6 and
6 dependingon what controller was usedto evolve them,

and can thus be said to be personalisedHowever, thereis
somelack of variety in the endresultsin that they all look
slightly like o wers,clearbiasof the type of mutationused.

4) Comparisonwith segment-basedracks: It is interest-
ing to comparethesetrackswith sometracksevolved using
the segment-basedepresentatiorfrom our previous paper
Thosetracks(see g.8) do shav boththe creatvity evolution
is capableof anda goodability to optimisethe tness values
we de ne. But they don't look like anything you would want
to get out anddrive on.

V1. DISCUSSION

We believe the ideasdescribedin this paperhold great
promise, and that our player modelling method is good
enoughto be usable,but that thereis much that needsto
be donein order for track evolution to be incorporatedin
an actualgame. To start with, the track representatiorand
mutation methodsneedto be developed further, until we
arrive at somethingwhich is asevolvableandvariableasthe
segment-basedepresentatiorbut looks as good as (and is
closedlike) the b-spline-basedepresentationFeaturessuch
as self-intersectioralso needto be allowed.

Further the racinggamewe have usedfor this investigp-
tion is too simple in several ways, not leastgraphically but
alsoin its physics model being two-dimensional A natural
next stepwould be to repeatthe experimentsperformedhere
in a graphically adwancedsimulation basedon an suitable
physics engine,suchas Ageia's PhysX technology[19]. In
sucha simulation,it would be possibleto evolve not only the
trackin itself, but alsootheraspect®of the ervironment,such
ashuildingsin a city in which a racetakesplace.This could
be doneby combiningtheideaof proceduratontentcreation
[20][21] with evolutionary computation. Another exciting
prospectis evolving personaliseccompetitors,building on
the resultsof our earlier investigationsinto co-evolution in
carracing[10].

In the section above on what makes racing fun, we
describea numberof potential measuresof entertainment
value,mostof which arenotimplementedn the experiments
describedchere.De ning quantitatve versionsof thesemea-
sureswould de nitely beinterestingput we believeit is more
urgentto studythe matterempirically Malone's andKosters
oft-cited hypothesesare just hypothesesand as far as we
know there are no psychologicalstudiesthat tell us what
entertainmenimetric would be most suitablefor particular
gamesandtypesof player Real researchon real playersis
needed.Suchresearchcould be in the vein of Yannakakis'
and Hallam's studieson the Pac-Man game [22], where
humanplayers' reportson how much they enjoyed playing
the gameundervariouscon gurationswere correlatedwith
guantitatve approximationsf challengeand curiosity.

Finally we note that althoughwe distinguishedbetween
differentapproacheto computationaintelligenceandgames
in the beginning to this paper mary experimentscan be
viewed from several perspecties. The focus in this paper
on using evolutionary computationfor practical purposes
in gamesis not at all incompatiblewith using gamesfor



Fig. 8. Tracksevolved usingthe segment-basednethod.Track (a) is evolved for a weak player andtracks(b) and(c) for a good player Tracks(a) and
(b) are evolved usingall three tness functionsde ned above, while track (c) is evolved using only progresstness.

studying under what conditions intelligence can evolve, a

perspectie we have taken in someof our previous papers.

On the contrary
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