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Abstract— Multi-population competitive co-evolution is ex- for algorithms for learning control. Another is to develop
plored as a way of developing controllers for a simple (but ways for generating interesting racing game content, both
definitely not trivial) car racing game. The three main USes o controllers and other sorts of content, such as racing

we see for this method are to evolve more complex general tracks. But th iginal and ti tant tivation is t
intelligence than would be possible with other methods, to racks. but the original and most important motvation IS 10

compare different evolvable architectures for controllers, and mak? progress on the grand goal of evolving complex gengral
to develop behaviourally diverse populations of agents for com- intelligence. We believe much can be learned from studying
puter games. Nine-population co-evolution is compared with evolution of game playing agents, as computer games are in

s[ngle-populatlon co-evolutlon_ and standard evolution strate- many respects ideal for evolving intelligence in.
gies, steady-state and generational versions of the algorithm ar

compared, and a number of different controller architectures

are compared with each other. B. Choosing a controller architecture

Although we have shown that we can evolve neural
I. INTRODUCTION network-based controllers that successfully tackle cffie

Can we use competitive co-evolution to develop complexar racing problems, this is by no means the final word on
high-performing artificial intelligence for computer gamehow to construct such controllers. In theory, evolvable-con
agents? Further, can we use it to develoferestingand trollers could be represented in innumerable ways inctydin
entertaininggame agent Al? The answer to the first questiogenetic programming and nearest-neighbour classifierat Th
seems to be yes, at least for some games under soff@dforward multi-layer perceptrons (MLPs) are sufficiemt
conditions - see e.g. recent experiments with board ganjes fie control task in question does not by any means imply that
and space shooters [2]. But competitive co-evolution has ithey are optimal. In fact, several objections can be raised.
own set of problems, notably the cycling problem, which Firstly, MLPs are stateless, and a controller based only on
most likely need to be sorted out before we can make furthéh MLP is reactive and thus unable to integrate information
progress. The second question seems hardly to have béagr time. Being able to do this might well give a competitive
addressed at all in the literature. edge in certain car racing tasks, whenever the information

This paper concerns the evolution of game agent Al, mo@vailable from the sensors at any one time is insufficient
specifically car racing controllers, through multi-potida  for a given action. An example could be estimating whether

competitive co-evolution. The originality lies mainly iheé @ competing car is accelerating or decelerating (based on
use of more than two populations in the competitive coinstantaneous velocities) so as to know whether to overtake

evolution, something which is severely understudied. Another issue is modularity. In an MLP, every neuron in
_ _ a layer is connected to every other. However, many studies
A. Evolutionary car racing have shown that having too many connections can actually

We have in a series of papers over the last two years inve®ake learning harder, whether evolution or some other
tigated the application of evolutionary algorithms (andhso learning algorithm is used [8]. The solution here is to divid
other forms of machine learning) to car racing simulatiohs dhe network into sub-networks, or otherwise modularise the
modest complexity. The basic experiments, reported in [3¢ontroller.
showed that very good controllers based on neural networksAnd let us not forget something so simple as the size of
can be evolved for a single car racing on a single track, usirige controller, and therefore the search space. Can larger
only progress on the track as the fitness function. In furtheontrollers represent more complex strategies? Furtiser, i
experiments, we studied the incremental evolution of mordere a tradeoff between the size of the controller and the
general driving skills [4], and single-population co-auibn learnability? There is no consensus on this topic, but note
of car controllers for two-car races in [5]. Some other récerthe concept of thextradimensional bypasshich suggests
papers deal with modelling the driving style of human playerthat larger neural networks could learn faster by avoiding
and evolving tracks that are fun to drive [6], and modellingocal minima [9].
the dynamics of real toy cars so as to be able to transfer . )
evolved controllers from simulation to reality [7]. C. Competitive co-evolution

The evolutionary car racing project has at least three Competitive co-evolution is when the fitness function of an
different motivations. One is to develop a set of benchmarkgdividual is made dependent on other individuals, eitimer i

the same population, or in a different population altogethe
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The idea is to encourage an evolutionary “arms raceE. Multi-population co-evolution
where improvements in some individuals cause further im- The vast majority of experiments imompetitive co-

provements in other individuals, and vice-versa. . evolution use one or two populations only (even though
It quickly became clear however, that such C,O'eVOIU_t'ona%ere are several examples of collaborative multi-pojrat

schemes can be prone to CO”.‘p'eX Qynam|cs, which C%'Zﬁ—evolution). That this territory seems so uncharted s su

thwart gI.obaI. progress toyvards higher f|tne§s. There has aIBrising, as there are reasons to believe that there could be

been al|mpI|C|t assumptlon th‘,"‘t an evolu't|onary arms.ra%any advantages to competitively co-evolving more than two

leads directly to an increase in complexity, though this 'Bopulations. Janzen distinguished betwtrer and ordiffuse

not always the case. co-evolution [12] in the context of evolutionary biologyofn

hAn fe“xamlple”%f a poteg_t;fal problem W.'th le'eVP':ﬁt'oT 'Scomputer science). The former is defined as evolutionary
that of “cycling” between different strategies. I an indiva change in a specific trait of one population in response to

devek.)ps. a strategy 'Fhat affords it a higher fitnes; re!adve change in a specific trait of another population; the latter i
other individuals, it will spread through the populatiorhieh defined ason-specificevolutionary change in response to a
will stabilise until a strategy arises that exploits a wezda %roup of traits

in the previous one. There is then another rapid replaceme tBuIIock argued that diffuse rather than true co-evolution

of |nd|V|d_uaIs. However, there IS no guarantee that the N€Would be desirable from an engineering standpoint, ass#ffu
strategy is better than the one its predecessor replaced,

. o " . ) . @%evolution should lead to more robust solutions [13]. fAul
the dominance relation is intransitive. It is entirely pgbks

. . population co-evolution could be a way to achieve this.
for the population to cycle through the same set of possib

. ” ._This was done by Hornby and Mirtich in a predator-prey
strategies, each exploiting the weaknesses of the previoys, iation [14]. Our own take on this is to use multiple
one, without any global increase in fitness.

. opulations to try to force diffuse symmetric co-evolution
Another problem that can occur in the case of more th P y y !

S : . t also to use it to compare controller architectures. (In
one population iglisengagement loss of selective gradient. Hornby and Mirtich's work, only one controller architectur
This is when individuals in one population consistentlytbe '

dvas used.) In the process, we compare two different setectio
individuals in another population, destroying the setatti ) P ! P

A strategies: steady-state and generational selection.
pressure on those individuals. ) - . .
Our main hypothesis is that using many populations, on
Several attempts have been made to address these prob- . ; .
. . ) .a problem where different strategies are possible, would
lems, the most prominent of which was invented by ROSIr:Jlutomaticall lead to diversificatiohetween(although not
and Belew: the “hall of fame” [10]. This technique has y g

the individuals of the current generation compete not Onlneccessanly within) the populations. This diversity ebul

: L : : Mave several uses. First of all, it could help counteract
against other current individuals, but also against a telec . L : S
o : . cycling. If all individuals are tested against individuai$
of good individuals from previous generations. Exactly how

this should be done has been the subject of several studiaII other populations, and thus against a number of diferin

and it seems the proposed solution poses its own proble Eﬁ ategies, a narrow-focused strategy that only beats a par
prop P P MReular other strategy would have little luck. The seleatio

D. Steady-state versus generational selection pressure would instead be on a good general strategy, that

Standard co-evolution proceeds in generations. In ea§a(S as many as possible of the other strategies. At the
generation there is a period of evaluation, followed byame time, all populations would probably not converge to
population decimation and replacement. the same strategy, because as soon as an empty niche in

Though this generational scheme is the standard approst¥fAtegy space appears it would be most advantageous to fill
to co-evolution in use today, it is not the only way that cothat niche.
evolution can proceed. In nature, the process of replacemenApart from potentially helping us overcome the cycling
is usually less dramatic - populations usually remain stabProblem, the diversity between the populations could be
and there is continuous replacement of individuals. interesting in itself, especially from a computer game per-
Miconi and Channon [11] introduce one method of perspective. The challenging part of developing controllens f
forming steady-state co-evolution. THé-strikes-out algo- COMputer game agents is often not to make the agent play
rithm they propose performs both evaluation and replacemehe game as well as possible, but to make the agent play
asynchronously, on an individual basis. To the authordn as interesting a manner as possible, thus heightening the
knowledge, this is the first truly steady-state co-evohaiy Satisfaction of the human player. To take car racing as a not
algorithm. very far fetched example, we might want to let the player
This asynchronous updating means that the selection larfg2Mpete against a starting field of diverse drivers, thaheac
scape Changes gradua”y’ in effect acting as a self mainmin drive the track well but use different Strategies to takesur
archive of previous fit individuals, and avoiding the need foand overtake other cars.
a hall of fame. The moativation is that this will discourage )
exploits of the current champion’s weaknesses, as there fis SCOP€ Of this paper
more likely to be other high fitness individuals which don’t The main question we address in this paper is what is
share that specific weakness. it possible to do with many-population co-evolution. Can



we evolve controllers that perform better than those ewblvewall collisions are not implemented, but car-to-car cadlis
with solo-evolution, or one- or two-population co-evotrt? are possible and result in both vectorial and angular ingetu
Can we use many-population co-evolution to investigate the Despite its apparent simplicity, this game has plenty of
relative benefits of different controller architectures?efvh hidden depth. On one level it is just about driving straight
seeding a number of populations with the same architectufer the current waypoint. Or, it would be, if it wasn't for the
can we evolve a behaviourally diverse set of controllers? skidding at high speeds; an unsophisticated controller tha
We are also interested in the relative performancdoesn't slow down or reverse when the way point is within
of the steady-state and generational multi-population cdhe turning radius for the current speed will end up orbiting
evolutionary algorithms. Particularly, we wonder whetttes the way point. And then there is the issue of passing the
N-strikes selection mechanism manages to further alleviateirrent way point at such an angle and speed that reaching
the cycling problems. the next way point is as easy as possible. Adding another car
And in addition to the issue of how to best compare a nunsontrolled by a competing controller to the game increases
ber of controller architectures, we are of course intetestéhe complexity further, as the next way point will become the
in the results of the comparison: which of the implementedurrent whichever car reaches it first. So when the other car
controller architectures is best for the task given? Fothes, is likely to reach the current way point first, it will probgbl
underlying motivation is to be able to evolve complex geherde a good idea to the head for the next way point directly.
intelligence; studying the properties of particular cotier  But being able to accurately predict whether this would be
architectures and evolutionary algorithms is a means tb théne case would require knowing not only the position, angle

end, rather than the other way around. and speed of your competitor, but also its behaviour, and of
course the dynamics of the cars. In fact, in some cases the
Il. METHODS best strategy might be to block your competitor by colliding

dith it, providing you can predict and leverage the outcome

Below, we describe the agent, its environment, the fitne .
of the collision to your advantage...

function, the various ways of representing the controlliees
we implemented, and our co-evolutionary algorithms. B. Controller architectures

A number of evolvable controller architectures were im-
plemented, for purposes of comparing speed and quality of

The racing game in which we evolve controllers, andearning. All controller architectures are based on one or
the fitness function with which we score them, is thawo evolvable function approximators (in all cases except
very same as was used for the Car Racing Competitigthe these are neural networks), and in an all cases the main
at the IEEE Computational Intelligence and Games Synmfunction approximator outputs two real numbers. These two
posium, organized by two of the authors and building oAumbers are interpreted as follows: if the first output isvabo
the experiences from earlier experiments in evolutionary 3, the driving force is set to forward, if below -0.3 the
car racing. More details about the competition can beriving is to backward, and otherwise driving set to neutral
gathered and its complete source code downloaded fromhe second output decides whether to set the steering for
http://julian.togelius.com/cig2007competition. current timestep to left, right or centre in the same way.

In this game, one or two cars compete to reach as many1) MLP controllers: The MLP controller is based on
way points as possible within a set time. The basic fithess af standard multi-layer perceptron with 8 inputs, 6 hidden
a controller is calculated as the mean number of way pointgurons, 2 outputs aridnhactivation function. The inputs to
reached in five trials of 1000 time steps each. Way points atke network are the speed of the car, the angle to the current
randomly positioned within a circular radius at the start ofvay point, the distance to the current way point, the angle
each trial; at any point two way points are visible to humaro the next way point, the distance to the next way point,
or algorithmic players, but only one way point (the currenthe angle to the other vehicle, and the distance to the other
way point) can be “taken” by a car at any occasion. As soovehicle (both the last values are set to 0 if there is no other
as the current way point is reached, the way point counteghicle present). Apart from these inputs, a bias inputggsw
is incremented for that car, the other visible way point (thget to 1) is added to the all neural networks described in this
next way point) becomes the current, and a new next wayaper. All angles are calculated as the difference betwsen t
point is generated at a random position. orientation of the car and a straight line to the waypoint or

The car control is intended to qualitatively mimic that ofcompetitor car in question.
real radio-controlled toy cars, and so the cars have bang-At the start of an evolutionary run, all connection weights
bang control: back, back-right, back-left, neutral, nelikeft, of all neural networks are set to zero. Mutation consists of
neutral-right, forward, forward-left and forward-righteathe adding random numbers drawn from a Gaussian distribution
available actions to take at any time step. The dynamicseof thvith standard deviation 0.1.
car are reasonably realistic, so acceleration and detielera 2) Recurrent controllers: Most of the controllers are
take time, and turning while traveling at high speed wilbased on simple recurrent neural networks, commonly known
cause considerable skidding. Turning on the spot is céytainas Elman networks [15]. The recurrent neural networks are
not possible. As this version of the car simulation lackdsyal implemented as standard MLPs, with extra connections from

A. Car racing task



the hidden layer of the last time step to the hidden layer &ADF with a higher id than itself.
the current time step.

Several controller architectures based on such networks Co-evolutionary algorithms
are compared. The RMLPSmall, RMLP and RMLPBIg con- |n this paper we compare two different co-evolutionary

trollers are all based on recurrent networks with exact®y thyigorithms: generational and steady-state co-evolution.
same inputs and outputs as the MLP controllers describedl) Generational: We used a standard evolution strategy.
above, but differ in the size of its hidden layer, being 4, 8 angq, single population co-evolution, the steps are:

16 units respectively. Two additional controller architees

were also based on recurrent networks but with impoverished ™
inputs: the RMLP1WPOnly has only 6 inputs to its network,

as angles and distances are given only to the current way™"
point and the competitor’s car, and the SimpleRMLP does
not even input angle and distance to the competitor car to its 3. Start another generation.

network, which only has 4 inputs. . ; ] o .
For multi-population co-evolution, a similar procedure is

3) Modular controllers: The modular controllers repre-]c llowed. onl h individual i luated inst
sent an incorporation of domain knowledge into the con— OWed, only now €ach individual Is evaluated against one

troller architecture. The design is based on the observati@’ the fitter individuals from each population.

that the most important task for a good controller, besides 2) Stéady-state:We use a modified version of tha'-
driving to a particular way point as quickly and reliably asstrlkes—out algorl_thm, as detalled. by Miconi and .Channon.
possible, is to choose which way point to go for: the currenth€ one-population version consists of the following steps
or the next? Assuming that these two tasks are reasonablyl. Pick two individuals A and B from the population at
separable, the modular controllers are based on one MLP, random.

that decides which way point to go for, and a SimpleRMLP 2. Pit them against each other; determine the winner and
controller that controls the car. The MLP receives three  the loser of the confrontation (if any).

inputs: a bias, the distance to the current way point divided 3. If the loser has been defeatéd times over its entire
by the distance to the other car, and the speed of the car history, delete it and replace with a new individual.
divided by the speed of the other car. If the only output of 4. Start another comparison.

the MLP is above 0, the angle and distance to the current|n the two population case, Miconi and Channon found
way point is fed to the SimpleRMLP, otherwise those of thgnhat a naive approach of comparing one random individual
next way point are fed. from each population caused disengagement, resultingin th
Two versions of the modular architecture are tested: thgeaker population losing any selection gradient.
ModularRMLP is initialised with all connection weights in  They overcame this by comparing two individuals from
both networks set to empty. The PrimedModular controlleropulation A against an individual from population B. The
on the other hand, are initialised with a “blank” MLP butwinner and loser were determined by which of the population
a SimpleRMLP that has already been solo-evolved to gooaindividuals scored best against the individual from papul
fitness as an independent controller. tion B. This process was then reversed, and two individuals
4) GP-based controllersFinally, one controller architec- from B were evaluated against an individual from A. The
ture was based on genetic programming. Each controllg¥embers of a population were thus only competing against
consists of two function trees (evaluating to the two owput each other, rather than other populations. We follow a simil
which are then interpreted as driving and steering) andethr@pproach in this paper, generalisednt@opulations.
automatically defined functions (ADFs). The function trees One concern with the algorithm is that with a noisy
are initialised randomly, and mutated with single-pointnea fitness function, high fitness individuals can still be beate
mutation, where a randomly selected node in each tree ¢scasionally by lower fitness individuals. Because indiiid
replaced with a randomly generated node. The trees adee deleted after a certain small number of defeats, this
limited to a depth of 5 in order to make the computationatvould mean losing desirable individuals. As suggested in
expense of these controllers on par with the neural networkt1], one way around this would be to introduce the concept
based controllers. When it comes to the node types, the sit‘forgetting’ old defeats.
of terminals consists of sensor inputs (any of the eighttspu The approach we took was to havelefeat factor which
given to the MLP and recurrent controllers), constants-(ranwve multiplied the number of losses by at each comparison. If
domly initialised to values between 0 and 2) and ADF calldgess than 1, this should cause the number of losses to decay
the set of non-terminals consists of arithmetic functigrieg, towards zero, being topped up by new losses. It means old
minus, multiplication and protected division), trigoname defeats would be considered less important.
functions (sin, cos, tan and tanh) and an if-then-else fanct  Another concern we had was that selection had no direct
(if the first child evaluates to more than 0, return the valfie alependence on absolute fitness (an individual’'s score on the
the second child, otherwise the third child). To avoid Igopdrack). In theory, a controller could win many comparisons
the ADF calls are restricted so that an ADF can only call ahy blocking the other controller so it achieved a low score.

Evaluate each individual against another chosen at ran-
dom from the best performing half of the population.
Pick the fittest half of the population to keep, and
replace the other half with mutated versions of the
fittest half.



This would mean individuals that scored lower could still »
win lots of contests, and spread through the population. 0l
This should be more of a concern with the single popu-
lation N-strikes, but it could still be an issue in the multi-

population case.

To combat this, we decided to make the defeat factor
dependent on absolute fitness. We want individuals with a
high apparent fitness to be given more evaluations before
deletion, and low fitness individuals to quickly be replaced

We therefore made the defeat factérfor an individual j
have the form: ) A

oL ‘

L L L L
= — (1) 0 20 40 60 80 100 120 140 160 180 200
eli—T Number of Generations

Wherez; is the fithess of the individual, angd is the mean Fig. 1.
fithess of its population.
This means the defeat factor will be large in low-fitness
individuals, and small for high-fitness individuals, imiplg The generational algorithm had less parameters to adjust.
more rapid forgetting of old defeats. We decided on a population size of 30, and at least 5 games
In order to adjust this parameter in a convenient manngser comparison, to allow direct comparison with the
we introduced a defeat factor multipliér, as shown below: strikes-out algorithm.
F = 1 2) Il

eD(zi—7)
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. RESULTS

Our experiments proceeded as follows: first, to establish a
WhenD is 0, we get plainN-strikes behaviour. Whe®  paseline for the experiments with the many-population co-
is greater than zero, we get an increasing contribution @yolutionary algorithms, we tested each of the controller
absolute fitness. architectures independently. This was done using both solo

One advantage of this form is that it retains the pregyolution and single-population co-evolution. We theedri
dictability of the number of deletions. In plaiN-strikes, the using both the generational and steady-state multi-ptipala
number of deletions should be approximately the number @fgorithms to compare controller architectures. A single
comparisons divided by. We found that this behaviour was controller architecture was then used to seed all populgtio
preserved by using this form of the defeat factor. of both multi-population evolutionary algorithms. The ade

3) Parameter tuning:One of the features of th&-strikes  here was to investigate diversification between population

out algorithm is its flexibility - there are many parametéiatt and the extent to which multi-population competition helps
can be varied. In initial parameter tuning we tried varyingyolve complex general behaviour.

the following parameters for the single-population case:
population sizeP, number of strikes resulting in deletion A- Solo evolution of controller architectures
N, the number of trials during an evaluation, and the value Our first set of experiments concerned the evolution of
of the defeat factor multiplieD. controllers for the single-car version of the task. All nine
Preliminary results suggested that a large population meagontroller architectures described above were evolved in
fitness initially rose slower but reached a higher value thasingle-architecture populations using a standabd+ 15
in a small population. We also found small values Mf evolution strategy for 200 populations. These experiments
performed better than larger values. were all repeated for 20 runs. In figure 1 we have plotted
The only effect of changing the number of trials duringhe fitness growth of five different controller architectire
an evaluation should be on the level of noise in the fitnesSeveral things can be learned from this figure: one is that the
function. We found that in high noise environments (sucl&P controllers consistently reach a much lower final fitness
as using only one trial to compare two individuals), settinghan the other architectures, even though they learn caste f
D = 0.5 caused a quicker rise in fitness than the plain in the first few generations. The PrimedModular controllers
strikes, but both resulted in about the same fitness evéntuaberform slightly better than the others in the end, but this
For subsequent experiments, we chose the valueB ef: is probably because they have effectively evolved for longe
30, N = 2, at least 5 trials per comparison, afd= 0.5. the lower layer being pre-evolved. Other than that, RMLPBIg
The other decision to make was how to perform replacdlarge recurrent network) learns fastest of the contrsller
ment. We used only mutation and not crossover in this In figure 2 we compare the five different controller archi-
paper, so the most straightforward choices were replacemeectures based on monolithic (hon-modular) RMLPs. What
by a mutated version of either the winner or loser of thés remarkable here is how similar their ultimate performeanc
comparison. We chose replacement by a mutation of the. The only difference of any note is in their learning speed
winner, as this should aid the rapid spread of high fithesmnd here we see a clear relation to the size of the network:
through the population. the larger the network is, the faster it learns.
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Fig. 3. Single-population generational co-evolution afedse architectures.
Fig. 5. Single-population steady-state co-evolution edie architectures.

B. Single-population co-evolution _ _ _
Next, we ran a number of experiments where we cgwice as well as the GP controller. One difference is that

. the non-primed modular controller learns much faster with

evolved controllers for the two-car version of the task : : :

. . . . . . Steady-state than with generational co-evolution.
using single-population co-evolution with populations36¥
individuals containing only one controller type each. So iQ:
these runs, the controllers only ever compete against othér
controllers of the same architecture. We did 20 runs for each And so, at last, we come to the multi-population co-
architecture, using both the generational and the stetadg-s evolution. We used nine populations for these experiments,
co-evolutionary algorithms. one population for each controller architecture. In thesesy

1) Generational: In figure 3 we plot the fithess of the which lasted for 500 generations (or steady-state equiva-
best controller of each generation for the same five coetrolllents) each individual of each population is tested against
architectures as in figure 1. As in the solo evolution, the Gindividuals of all other populations, thus controllers df a
controllers start out as fast learners but are by far thetvadrs other architectures. At least 20 runs were made for both the
the lot at the end of 200 generations. Unlike in the solo rungenerational and steady-state algorithms.
we see a very clear superiority of the modular controllers 1) Generational: Figure 6 plots the fitness growth of
over the other architectures. At the end of the runs, thiae populations populated by the main different controller
primed modular controllers do better than the non-primedrchitectures (remember that all nine populations weré par
but the fithness for the non-primed ones is still increasing. of the runs, though only five are plotted). Some of what

Looking at the RMLP-based controllers (figure 4) wewe see here could be expected, given our single-population
see no difference in ultimate fitness and little difference iresults. The modular controllers still win (literally) avthe
learning speed. The larger networks learn somewhat fastesther controllers. But what is unexpected is that the GRedbas

2) Steady-stateThe results of the steady-state runs wereontrollers no longer do worst, indeed they perform almost
very similar, as can be seen from figure 5 (we have omitteas well as the MLP-based controllers at the very end of the
the graph for rmlp-only comparisons out of space consideb00 generations. Instead, the RMLPBigControllers perform
ations). The primed modular controller still performs abho worst by a significant margin.

Multi-architecture multi-population co-evolution
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Fig. 6. Nine-population generational co-evolution of daearchitectures. Fig. 8. Nine-population steady-state co-evolution of dieearchitectures.
Multi-population generational coevolution of RMLP controllers Controller solo | heuristic | fixed | competition
14 T T T T T T T T T score
- n-pop gen MLP 16.86 12.01 | 12.27 13.71
5 7r n-pop gen Modular | 16.49 9.52 | 13.37 13.13
8 n-pop nstr MLP 17.40 11.85 | 12.73 13.99
g or n-pop nstr Modular | 16.59 10.54 | 12.96 13.36
| 1-pop gen Modular | 16.38 6.96 | 13.20 12.18
5 T 1-pop gen RMLPBIig| 14.90 11.30 | 11.89 12.69
3 1-pop nstr Modular | 15.19 10.06 | 10.16 11.80
5 °r 1-pop nstr RMLPBIig| 16.64 11.08 | 11.68 13.13
g Solo Modular 18.50 280 | 3.20 8.17
2 T RULPContoller Solo RMLPBIg 17.35 491 | 6.54 9.60
g .l e pSmacontllr | TABLE |
< RMLP1WPOnlyController
/ SimpleRMLPGontraller ——— COMPETITION SCORE OF A VARIETY OF HIGHPERFORMING
0 0 éo 11‘30 1‘50 2‘00 2;0 3‘00 3‘50 41‘30 4‘50 500 CONTROLLERS
Number of Generations
Fig. 7. Nine-population generational co-evolution of eint rmip-based

architectures.

little differences between the populations in an individua

run. This fitness is around 8, virtually the same as the fitness

This rather surprising resu_lt concerning the RMI_‘PB'%f the RMLPBIg controllers in the multi-architecture runs.
controller architecture is put into context when looking at

figure 7, which compares only the RMLP-based controllerss Comparison of best controllers

Here we see that the smaller the RMLP-based controller o ] )

is, the better ultimate fitness it reaches, with the minigtali At this point, the reader will probably wonder which of the
SimpleRMLPControllers coming out on top. experiments above actually produced the best controkers.

2) Steady-state:The steady-state runs paint a similaralways with co-evolution_, this question is_no_t straightfard
picture. The main difference between figure 8, which show answer. But we've tried to answer this in two ways: by
the fitness growth of the main controller architectures, ani€asuring the competition score of representatively high-
figure 6 is a slower overall fitness growth, and that the Gperforming controllers (the_ best we could find f_rom a limited
controllers as a result don't do any better than the RMLPBi§roPe) from each experiment, and by testing the same
controllers, i.e. not very good at all. controllers against each other in two-car racing.

The graph for the RMLP-based controllers has been omit- Competition score is the score used to rank submitted

ted in order to conserve space, but looks essentially likgontrollers in the league table of the CIG Car Racing
figure 7 but with slower fitness growth. Competition. It is calculated by letting the controller eds00

) ) . ) . trials on its own, and 500 trials each against a rather low-

D. Single-architecture multi-population co-evolution performing hard-coded heuristic controller and a medium-

In the final set of experiments, we filled all nine pop-performing MLP-based controller. Table | shows the com-
ulations with RMLPBIg controllers, as these are in theorpetition score breakdown for the selected high-performing
capable of expressing the most complex strategies. We theontrollers. Judging from these scores, the multi-popat
evolved them for 500 generations, 10 runs each for theins yielded the best overall controllers, the single-atmn
generational and steady-state algorithms. We are not sigowiruns slightly less good and the solo evolutionary runs yeall
any graphs of the same type as for the other experiments, rasher bad controllers. The best controller found seem to be
these would be quite uninteresting: all the populationshieabased on a MLP, but the differences are not great between
the same fitness (of their best individuals) on average, withe architectures.



n-pop n-pop | n-pop n-pop 1-pop 1-pop 1-pop 1-pop Solo
gen gen nstr nstr gen gen nstr nstr | RmlpBig

MLP | Modular | MLP | Modular | Modular | RmlpBig | Modular | RmipBig
n-pop gen MLP| 0.00 -0.75| 0.09 -0.42 -0.81 1.20 2.37 1.17 4.58
n-pop gen Modulan 0.75 0.00| 0.71 0.35 -0.09 1.91 2.65 1.90 5.48
n-pop nstr MLP| -0.09 -0.71| 0.00 -0.53 -0.31 1.08 281 1.50 4.64
n-pop nstr Modular| 0.42 -0.35| 0.53 0.00 0.17 1.06 2.82 1.52 4.31
1-pop gen Modulan 0.81 0.09| 0.31 -0.17 0.00 2.10 0.68 1.77 3.57
1-pop gen RmipBig| -1.20 -1.91| -1.08 -1.06 -2.10 0.00 1.56 0.36 4.15
1-pop nstr Modular| -2.37 -2.65| -2.81 -2.82 -0.68 -1.56 0.00 -1.51 8.02
1-pop nstr RmlpBig| -1.17 -1.90| -1.50 -1.52 -1.77 -0.36 1.51 0.00 3.88
Solo RmlpBig| -4.58 -548| -4.64 -4.31 -3.57 -4.15 -8.02 -3.88 0.00

TABLE Il

SCORE DIFFERENCES IN COMPETITIONS BETWEEN CONTROLLER8VERAGE OF 500 GAMES). A POSITIVE VALUE MEANS THAT THE CONTROLLER OF
THE CURRENT ROW BEATS THE CONTROLLER OF THE CURRENT COLUMN

Table 1l shows the results of direct competition betweestrategies. These strategic niches function as local aptim
these controllers. The differences are sometimes quite dr@s learning a generally better strategy would require first
matic, as when the solo-evolved RMLPBIig gets 8 pointsinlearning the current mediocre strategy. The slow-learni
lower fithess than the single-population-evolved modulasimple controllers are instead forced to learn more general
controller. If a clear winner has to be picked, it is the madul strategies. If this is true, and the effect generalises berot
controller evolved with generational multi-population-co problems, this phenomenon could enhance our understanding
evolution, which does not lose significantly to any other-conof co-evolutionary dynamics.
troller. Generally, the dominance pattern of multi-popiola
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