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Abstract— Multi-population competitive co-evolution is ex-
plored as a way of developing controllers for a simple (but
definitely not trivial) car racing game. The three main uses
we see for this method are to evolve more complex general
intelligence than would be possible with other methods, to
compare different evolvable architectures for controllers, and
to develop behaviourally diverse populations of agents for com-
puter games. Nine-population co-evolution is compared with
single-population co-evolution and standard evolution strate-
gies, steady-state and generational versions of the algorithm are
compared, and a number of different controller architectures
are compared with each other.

I. I NTRODUCTION

Can we use competitive co-evolution to develop complex,
high-performing artificial intelligence for computer game
agents? Further, can we use it to developinteresting and
entertaininggame agent AI? The answer to the first question
seems to be yes, at least for some games under some
conditions - see e.g. recent experiments with board games [1]
and space shooters [2]. But competitive co-evolution has its
own set of problems, notably the cycling problem, which
most likely need to be sorted out before we can make further
progress. The second question seems hardly to have been
addressed at all in the literature.

This paper concerns the evolution of game agent AI, more
specifically car racing controllers, through multi-population
competitive co-evolution. The originality lies mainly in the
use of more than two populations in the competitive co-
evolution, something which is severely understudied.

A. Evolutionary car racing

We have in a series of papers over the last two years inves-
tigated the application of evolutionary algorithms (and some
other forms of machine learning) to car racing simulations of
modest complexity. The basic experiments, reported in [3],
showed that very good controllers based on neural networks
can be evolved for a single car racing on a single track, using
only progress on the track as the fitness function. In further
experiments, we studied the incremental evolution of more
general driving skills [4], and single-population co-evolution
of car controllers for two-car races in [5]. Some other recent
papers deal with modelling the driving style of human players
and evolving tracks that are fun to drive [6], and modelling
the dynamics of real toy cars so as to be able to transfer
evolved controllers from simulation to reality [7].

The evolutionary car racing project has at least three
different motivations. One is to develop a set of benchmarks
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for algorithms for learning control. Another is to develop
ways for generating interesting racing game content, both
car controllers and other sorts of content, such as racing
tracks. But the original and most important motivation is to
make progress on the grand goal of evolving complex general
intelligence. We believe much can be learned from studying
evolution of game playing agents, as computer games are in
many respects ideal for evolving intelligence in.

B. Choosing a controller architecture

Although we have shown that we can evolve neural
network-based controllers that successfully tackle different
car racing problems, this is by no means the final word on
how to construct such controllers. In theory, evolvable con-
trollers could be represented in innumerable ways including
genetic programming and nearest-neighbour classifiers. That
feedforward multi-layer perceptrons (MLPs) are sufficientfor
the control task in question does not by any means imply that
they are optimal. In fact, several objections can be raised.

Firstly, MLPs are stateless, and a controller based only on
an MLP is reactive and thus unable to integrate information
over time. Being able to do this might well give a competitive
edge in certain car racing tasks, whenever the information
available from the sensors at any one time is insufficient
for a given action. An example could be estimating whether
a competing car is accelerating or decelerating (based on
instantaneous velocities) so as to know whether to overtake.

Another issue is modularity. In an MLP, every neuron in
a layer is connected to every other. However, many studies
have shown that having too many connections can actually
make learning harder, whether evolution or some other
learning algorithm is used [8]. The solution here is to divide
the network into sub-networks, or otherwise modularise the
controller.

And let us not forget something so simple as the size of
the controller, and therefore the search space. Can larger
controllers represent more complex strategies? Further, is
there a tradeoff between the size of the controller and the
learnability? There is no consensus on this topic, but note
the concept of theextradimensional bypasswhich suggests
that larger neural networks could learn faster by avoiding
local minima [9].

C. Competitive co-evolution

Competitive co-evolution is when the fitness function of an
individual is made dependent on other individuals, either in
the same population, or in a different population altogether.
The promise of co-evolution is that linking the fitness in
this way will lead to some form of global improvement, as
individuals compete against each other.



The idea is to encourage an evolutionary “arms race”,
where improvements in some individuals cause further im-
provements in other individuals, and vice-versa.

It quickly became clear however, that such co-evolutionary
schemes can be prone to complex dynamics, which can
thwart global progress towards higher fitness. There has also
been a implicit assumption that an evolutionary arms race
leads directly to an increase in complexity, though this is
not always the case.

An example of a potential problem with co-evolution is
that of “cycling” between different strategies. If an individual
develops a strategy that affords it a higher fitness relativeto
other individuals, it will spread through the population, which
will stabilise until a strategy arises that exploits a weakness
in the previous one. There is then another rapid replacement
of individuals. However, there is no guarantee that the new
strategy is better than the one its predecessor replaced, as
the dominance relation is intransitive. It is entirely possible
for the population to cycle through the same set of possible
strategies, each exploiting the weaknesses of the previous
one, without any global increase in fitness.

Another problem that can occur in the case of more than
one population isdisengagement, a loss of selective gradient.
This is when individuals in one population consistently beat
individuals in another population, destroying the selection
pressure on those individuals.

Several attempts have been made to address these prob-
lems, the most prominent of which was invented by Rosin
and Belew: the “hall of fame” [10]. This technique has
the individuals of the current generation compete not only
against other current individuals, but also against a selection
of good individuals from previous generations. Exactly how
this should be done has been the subject of several studies,
and it seems the proposed solution poses its own problems.

D. Steady-state versus generational selection

Standard co-evolution proceeds in generations. In each
generation there is a period of evaluation, followed by
population decimation and replacement.

Though this generational scheme is the standard approach
to co-evolution in use today, it is not the only way that co-
evolution can proceed. In nature, the process of replacement
is usually less dramatic - populations usually remain stable
and there is continuous replacement of individuals.

Miconi and Channon [11] introduce one method of per-
forming steady-state co-evolution. TheN -strikes-out algo-
rithm they propose performs both evaluation and replacement
asynchronously, on an individual basis. To the authors’
knowledge, this is the first truly steady-state co-evolutionary
algorithm.

This asynchronous updating means that the selection land-
scape changes gradually, in effect acting as a self maintaining
archive of previous fit individuals, and avoiding the need for
a hall of fame. The motivation is that this will discourage
exploits of the current champion’s weaknesses, as there is
more likely to be other high fitness individuals which don’t
share that specific weakness.

E. Multi-population co-evolution

The vast majority of experiments incompetitive co-
evolution use one or two populations only (even though
there are several examples of collaborative multi-population
co-evolution). That this territory seems so uncharted is sur-
prising, as there are reasons to believe that there could be
many advantages to competitively co-evolving more than two
populations. Janzen distinguished betweentrue and ordiffuse
co-evolution [12] in the context of evolutionary biology (not
computer science). The former is defined as evolutionary
change in a specific trait of one population in response to
change in a specific trait of another population; the latter is
defined asnon-specificevolutionary change in response to a
group of traits.

Bullock argued that diffuse rather than true co-evolution
would be desirable from an engineering standpoint, as diffuse
co-evolution should lead to more robust solutions [13]. Multi-
population co-evolution could be a way to achieve this.
This was done by Hornby and Mirtich in a predator-prey
simulation [14]. Our own take on this is to use multiple
populations to try to force diffuse symmetric co-evolution,
but also to use it to compare controller architectures. (In
Hornby and Mirtich’s work, only one controller architecture
was used.) In the process, we compare two different selection
strategies: steady-state and generational selection.

Our main hypothesis is that using many populations, on
a problem where different strategies are possible, would
automatically lead to diversificationbetween(although not
neccessarily within) the populations. This diversity could
have several uses. First of all, it could help counteract
cycling. If all individuals are tested against individualsof
all other populations, and thus against a number of differing
strategies, a narrow-focused strategy that only beats a par-
ticular other strategy would have little luck. The selection
pressure would instead be on a good general strategy, that
beats as many as possible of the other strategies. At the
same time, all populations would probably not converge to
the same strategy, because as soon as an empty niche in
strategy space appears it would be most advantageous to fill
that niche.

Apart from potentially helping us overcome the cycling
problem, the diversity between the populations could be
interesting in itself, especially from a computer game per-
spective. The challenging part of developing controllers for
computer game agents is often not to make the agent play
the game as well as possible, but to make the agent play
in as interesting a manner as possible, thus heightening the
satisfaction of the human player. To take car racing as a not
very far fetched example, we might want to let the player
compete against a starting field of diverse drivers, that each
drive the track well but use different strategies to take turns
and overtake other cars.

F. Scope of this paper

The main question we address in this paper is what is
it possible to do with many-population co-evolution. Can



we evolve controllers that perform better than those evolved
with solo-evolution, or one- or two-population co-evolution?
Can we use many-population co-evolution to investigate the
relative benefits of different controller architectures? When
seeding a number of populations with the same architecture,
can we evolve a behaviourally diverse set of controllers?

We are also interested in the relative performance
of the steady-state and generational multi-population co-
evolutionary algorithms. Particularly, we wonder whetherthe
N -strikes selection mechanism manages to further alleviate
the cycling problems.

And in addition to the issue of how to best compare a num-
ber of controller architectures, we are of course interested
in the results of the comparison: which of the implemented
controller architectures is best for the task given? For us,the
underlying motivation is to be able to evolve complex general
intelligence; studying the properties of particular controller
architectures and evolutionary algorithms is a means to that
end, rather than the other way around.

II. M ETHODS

Below, we describe the agent, its environment, the fitness
function, the various ways of representing the controllersthat
we implemented, and our co-evolutionary algorithms.

A. Car racing task

The racing game in which we evolve controllers, and
the fitness function with which we score them, is the
very same as was used for the Car Racing Competition
at the IEEE Computational Intelligence and Games Sym-
posium, organized by two of the authors and building on
the experiences from earlier experiments in evolutionary
car racing. More details about the competition can be
gathered and its complete source code downloaded from
http://julian.togelius.com/cig2007competition.

In this game, one or two cars compete to reach as many
way points as possible within a set time. The basic fitness of
a controller is calculated as the mean number of way points
reached in five trials of 1000 time steps each. Way points are
randomly positioned within a circular radius at the start of
each trial; at any point two way points are visible to human
or algorithmic players, but only one way point (the current
way point) can be “taken” by a car at any occasion. As soon
as the current way point is reached, the way point counter
is incremented for that car, the other visible way point (the
next way point) becomes the current, and a new next way
point is generated at a random position.

The car control is intended to qualitatively mimic that of
real radio-controlled toy cars, and so the cars have bang-
bang control: back, back-right, back-left, neutral, neutral-left,
neutral-right, forward, forward-left and forward-right are the
available actions to take at any time step. The dynamics of the
car are reasonably realistic, so acceleration and deceleration
take time, and turning while traveling at high speed will
cause considerable skidding. Turning on the spot is certainly
not possible. As this version of the car simulation lacks walls,

wall collisions are not implemented, but car-to-car collisions
are possible and result in both vectorial and angular impetus.

Despite its apparent simplicity, this game has plenty of
hidden depth. On one level it is just about driving straight
for the current waypoint. Or, it would be, if it wasn’t for the
skidding at high speeds; an unsophisticated controller that
doesn’t slow down or reverse when the way point is within
the turning radius for the current speed will end up orbiting
the way point. And then there is the issue of passing the
current way point at such an angle and speed that reaching
the next way point is as easy as possible. Adding another car
controlled by a competing controller to the game increases
the complexity further, as the next way point will become the
current whichever car reaches it first. So when the other car
is likely to reach the current way point first, it will probably
be a good idea to the head for the next way point directly.
But being able to accurately predict whether this would be
the case would require knowing not only the position, angle
and speed of your competitor, but also its behaviour, and of
course the dynamics of the cars. In fact, in some cases the
best strategy might be to block your competitor by colliding
with it, providing you can predict and leverage the outcome
of the collision to your advantage...

B. Controller architectures

A number of evolvable controller architectures were im-
plemented, for purposes of comparing speed and quality of
learning. All controller architectures are based on one or
two evolvable function approximators (in all cases except
one these are neural networks), and in an all cases the main
function approximator outputs two real numbers. These two
numbers are interpreted as follows: if the first output is above
0.3, the driving force is set to forward, if below -0.3 the
driving is to backward, and otherwise driving set to neutral.
The second output decides whether to set the steering for
current timestep to left, right or centre in the same way.

1) MLP controllers: The MLP controller is based on
a standard multi-layer perceptron with 8 inputs, 6 hidden
neurons, 2 outputs andtanhactivation function. The inputs to
the network are the speed of the car, the angle to the current
way point, the distance to the current way point, the angle
to the next way point, the distance to the next way point,
the angle to the other vehicle, and the distance to the other
vehicle (both the last values are set to 0 if there is no other
vehicle present). Apart from these inputs, a bias input (always
set to 1) is added to the all neural networks described in this
paper. All angles are calculated as the difference between the
orientation of the car and a straight line to the waypoint or
competitor car in question.

At the start of an evolutionary run, all connection weights
of all neural networks are set to zero. Mutation consists of
adding random numbers drawn from a Gaussian distribution
with standard deviation 0.1.

2) Recurrent controllers: Most of the controllers are
based on simple recurrent neural networks, commonly known
as Elman networks [15]. The recurrent neural networks are
implemented as standard MLPs, with extra connections from



the hidden layer of the last time step to the hidden layer of
the current time step.

Several controller architectures based on such networks
are compared. The RMLPSmall, RMLP and RMLPBig con-
trollers are all based on recurrent networks with exactly the
same inputs and outputs as the MLP controllers described
above, but differ in the size of its hidden layer, being 4, 8 and
16 units respectively. Two additional controller architectures
were also based on recurrent networks but with impoverished
inputs: the RMLP1WPOnly has only 6 inputs to its network,
as angles and distances are given only to the current way
point and the competitor’s car, and the SimpleRMLP does
not even input angle and distance to the competitor car to its
network, which only has 4 inputs.

3) Modular controllers: The modular controllers repre-
sent an incorporation of domain knowledge into the con-
troller architecture. The design is based on the observation
that the most important task for a good controller, besides
driving to a particular way point as quickly and reliably as
possible, is to choose which way point to go for: the current
or the next? Assuming that these two tasks are reasonably
separable, the modular controllers are based on one MLP,
that decides which way point to go for, and a SimpleRMLP
controller that controls the car. The MLP receives three
inputs: a bias, the distance to the current way point divided
by the distance to the other car, and the speed of the car
divided by the speed of the other car. If the only output of
the MLP is above 0, the angle and distance to the current
way point is fed to the SimpleRMLP, otherwise those of the
next way point are fed.

Two versions of the modular architecture are tested: the
ModularRMLP is initialised with all connection weights in
both networks set to empty. The PrimedModular controllers,
on the other hand, are initialised with a “blank” MLP but
a SimpleRMLP that has already been solo-evolved to good
fitness as an independent controller.

4) GP-based controllers:Finally, one controller architec-
ture was based on genetic programming. Each controller
consists of two function trees (evaluating to the two outputs,
which are then interpreted as driving and steering) and three
automatically defined functions (ADFs). The function trees
are initialised randomly, and mutated with single-point macro
mutation, where a randomly selected node in each tree is
replaced with a randomly generated node. The trees are
limited to a depth of 5 in order to make the computational
expense of these controllers on par with the neural network-
based controllers. When it comes to the node types, the set
of terminals consists of sensor inputs (any of the eight inputs
given to the MLP and recurrent controllers), constants (ran-
domly initialised to values between 0 and 2) and ADF calls;
the set of non-terminals consists of arithmetic functions (plus,
minus, multiplication and protected division), trigonometric
functions (sin, cos, tan and tanh) and an if-then-else function
(if the first child evaluates to more than 0, return the value of
the second child, otherwise the third child). To avoid loops,
the ADF calls are restricted so that an ADF can only call an

ADF with a higher id than itself.

C. Co-evolutionary algorithms

In this paper we compare two different co-evolutionary
algorithms: generational and steady-state co-evolution.

1) Generational: We used a standard evolution strategy.
For single population co-evolution, the steps are:

1. Evaluate each individual against another chosen at ran-
dom from the best performing half of the population.

2. Pick the fittest half of the population to keep, and
replace the other half with mutated versions of the
fittest half.

3. Start another generation.

For multi-population co-evolution, a similar procedure is
followed, only now each individual is evaluated against one
of the fitter individuals from each population.

2) Steady-state:We use a modified version of theN -
strikes-out algorithm, as detailed by Miconi and Channon.
The one-population version consists of the following steps:

1. Pick two individuals A and B from the population at
random.

2. Pit them against each other; determine the winner and
the loser of the confrontation (if any).

3. If the loser has been defeatedN times over its entire
history, delete it and replace with a new individual.

4. Start another comparison.

In the two population case, Miconi and Channon found
that a naive approach of comparing one random individual
from each population caused disengagement, resulting in the
weaker population losing any selection gradient.

They overcame this by comparing two individuals from
population A against an individual from population B. The
winner and loser were determined by which of the population
A individuals scored best against the individual from popula-
tion B. This process was then reversed, and two individuals
from B were evaluated against an individual from A. The
members of a population were thus only competing against
each other, rather than other populations. We follow a similar
approach in this paper, generalised ton populations.

One concern with the algorithm is that with a noisy
fitness function, high fitness individuals can still be beaten
occasionally by lower fitness individuals. Because individuals
are deleted after a certain small number of defeats, this
would mean losing desirable individuals. As suggested in
[11], one way around this would be to introduce the concept
of ‘forgetting’ old defeats.

The approach we took was to have adefeat factor, which
we multiplied the number of losses by at each comparison. If
less than 1, this should cause the number of losses to decay
towards zero, being topped up by new losses. It means old
defeats would be considered less important.

Another concern we had was that selection had no direct
dependence on absolute fitness (an individual’s score on the
track). In theory, a controller could win many comparisons
by blocking the other controller so it achieved a low score.



This would mean individuals that scored lower could still
win lots of contests, and spread through the population.

This should be more of a concern with the single popu-
lation N -strikes, but it could still be an issue in the multi-
population case.

To combat this, we decided to make the defeat factor
dependent on absolute fitness. We want individuals with a
high apparent fitness to be given more evaluations before
deletion, and low fitness individuals to quickly be replaced.

We therefore made the defeat factorF for an individual
have the form:

F =
1

exi−x̄
(1)

Wherexi is the fitness of the individual, and̄x is the mean
fitness of its population.

This means the defeat factor will be large in low-fitness
individuals, and small for high-fitness individuals, implying
more rapid forgetting of old defeats.

In order to adjust this parameter in a convenient manner,
we introduced a defeat factor multiplierD, as shown below:

F =
1

eD(xi−x̄)
(2)

When D is 0, we get plainN -strikes behaviour. WhenD
is greater than zero, we get an increasing contribution of
absolute fitness.

One advantage of this form is that it retains the pre-
dictability of the number of deletions. In plainN -strikes, the
number of deletions should be approximately the number of
comparisons divided byN . We found that this behaviour was
preserved by using this form of the defeat factor.

3) Parameter tuning:One of the features of theN -strikes
out algorithm is its flexibility - there are many parameters that
can be varied. In initial parameter tuning we tried varying
the following parameters for the single-population case:
population sizeP , number of strikes resulting in deletion
N , the number of trials during an evaluation, and the value
of the defeat factor multiplierD.

Preliminary results suggested that a large population meant
fitness initially rose slower but reached a higher value than
in a small population. We also found small values ofN

performed better than larger values.
The only effect of changing the number of trials during

an evaluation should be on the level of noise in the fitness
function. We found that in high noise environments (such
as using only one trial to compare two individuals), setting
D = 0.5 caused a quicker rise in fitness than the plainN -
strikes, but both resulted in about the same fitness eventually.

For subsequent experiments, we chose the values of:P =

30, N = 2, at least 5 trials per comparison, andD = 0.5.
The other decision to make was how to perform replace-

ment. We used only mutation and not crossover in this
paper, so the most straightforward choices were replacement
by a mutated version of either the winner or loser of the
comparison. We chose replacement by a mutation of the
winner, as this should aid the rapid spread of high fitness
through the population.
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Fig. 1. Solo evolution of diverse architectures.

The generational algorithm had less parameters to adjust.
We decided on a population size of 30, and at least 5 games
per comparison, to allow direct comparison with theN -
strikes-out algorithm.

III. R ESULTS

Our experiments proceeded as follows: first, to establish a
baseline for the experiments with the many-population co-
evolutionary algorithms, we tested each of the controller
architectures independently. This was done using both solo
evolution and single-population co-evolution. We then tried
using both the generational and steady-state multi-population
algorithms to compare controller architectures. A single
controller architecture was then used to seed all populations
of both multi-population evolutionary algorithms. The idea
here was to investigate diversification between populations,
and the extent to which multi-population competition helps
evolve complex general behaviour.

A. Solo evolution of controller architectures

Our first set of experiments concerned the evolution of
controllers for the single-car version of the task. All nine
controller architectures described above were evolved in
single-architecture populations using a standard15 + 15

evolution strategy for 200 populations. These experiments
were all repeated for 20 runs. In figure 1 we have plotted
the fitness growth of five different controller architectures.
Several things can be learned from this figure: one is that the
GP controllers consistently reach a much lower final fitness
than the other architectures, even though they learn quite fast
in the first few generations. The PrimedModular controllers
perform slightly better than the others in the end, but this
is probably because they have effectively evolved for longer,
the lower layer being pre-evolved. Other than that, RMLPBig
(large recurrent network) learns fastest of the controllers.

In figure 2 we compare the five different controller archi-
tectures based on monolithic (non-modular) RMLPs. What
is remarkable here is how similar their ultimate performance
is. The only difference of any note is in their learning speed,
and here we see a clear relation to the size of the network:
the larger the network is, the faster it learns.
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B. Single-population co-evolution

Next, we ran a number of experiments where we co-
evolved controllers for the two-car version of the task,
using single-population co-evolution with populations of30
individuals containing only one controller type each. So in
these runs, the controllers only ever compete against other
controllers of the same architecture. We did 20 runs for each
architecture, using both the generational and the steady-state
co-evolutionary algorithms.

1) Generational: In figure 3 we plot the fitness of the
best controller of each generation for the same five controller
architectures as in figure 1. As in the solo evolution, the GP
controllers start out as fast learners but are by far the worst of
the lot at the end of 200 generations. Unlike in the solo runs,
we see a very clear superiority of the modular controllers
over the other architectures. At the end of the runs, the
primed modular controllers do better than the non-primed,
but the fitness for the non-primed ones is still increasing.

Looking at the RMLP-based controllers (figure 4) we
see no difference in ultimate fitness and little difference in
learning speed. The larger networks learn somewhat faster.

2) Steady-state:The results of the steady-state runs were
very similar, as can be seen from figure 5 (we have omitted
the graph for rmlp-only comparisons out of space consider-
ations). The primed modular controller still performs almost
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twice as well as the GP controller. One difference is that
the non-primed modular controller learns much faster with
steady-state than with generational co-evolution.

C. Multi-architecture multi-population co-evolution

And so, at last, we come to the multi-population co-
evolution. We used nine populations for these experiments,
one population for each controller architecture. In these runs,
which lasted for 500 generations (or steady-state equiva-
lents) each individual of each population is tested against
individuals of all other populations, thus controllers of all
other architectures. At least 20 runs were made for both the
generational and steady-state algorithms.

1) Generational: Figure 6 plots the fitness growth of
the populations populated by the main different controller
architectures (remember that all nine populations were part
of the runs, though only five are plotted). Some of what
we see here could be expected, given our single-population
results. The modular controllers still win (literally) over the
other controllers. But what is unexpected is that the GP-based
controllers no longer do worst, indeed they perform almost
as well as the MLP-based controllers at the very end of the
500 generations. Instead, the RMLPBigControllers perform
worst by a significant margin.
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Fig. 6. Nine-population generational co-evolution of diverse architectures.
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Fig. 7. Nine-population generational co-evolution of different rmlp-based
architectures.

This rather surprising result concerning the RMLPBig
controller architecture is put into context when looking at
figure 7, which compares only the RMLP-based controllers.
Here we see that the smaller the RMLP-based controller
is, the better ultimate fitness it reaches, with the minimalist
SimpleRMLPControllers coming out on top.

2) Steady-state:The steady-state runs paint a similar
picture. The main difference between figure 8, which shows
the fitness growth of the main controller architectures, and
figure 6 is a slower overall fitness growth, and that the GP
controllers as a result don’t do any better than the RMLPBig
controllers, i.e. not very good at all.

The graph for the RMLP-based controllers has been omit-
ted in order to conserve space, but looks essentially like
figure 7 but with slower fitness growth.

D. Single-architecture multi-population co-evolution

In the final set of experiments, we filled all nine pop-
ulations with RMLPBig controllers, as these are in theory
capable of expressing the most complex strategies. We then
evolved them for 500 generations, 10 runs each for the
generational and steady-state algorithms. We are not showing
any graphs of the same type as for the other experiments, as
these would be quite uninteresting: all the populations reach
the same fitness (of their best individuals) on average, with
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Fig. 8. Nine-population steady-state co-evolution of diverse architectures.

Controller solo heuristic fixed competition
score

n-pop gen MLP 16.86 12.01 12.27 13.71
n-pop gen Modular 16.49 9.52 13.37 13.13
n-pop nstr MLP 17.40 11.85 12.73 13.99
n-pop nstr Modular 16.59 10.54 12.96 13.36
1-pop gen Modular 16.38 6.96 13.20 12.18
1-pop gen RMLPBig 14.90 11.30 11.89 12.69
1-pop nstr Modular 15.19 10.06 10.16 11.80
1-pop nstr RMLPBig 16.64 11.08 11.68 13.13
Solo Modular 18.50 2.80 3.20 8.17
Solo RMLPBig 17.35 4.91 6.54 9.60

TABLE I

COMPETITION SCORE OF A VARIETY OF HIGH-PERFORMING

CONTROLLERS

little differences between the populations in an individual
run. This fitness is around 8, virtually the same as the fitness
of the RMLPBig controllers in the multi-architecture runs.

E. Comparison of best controllers

At this point, the reader will probably wonder which of the
experiments above actually produced the best controllers.As
always with co-evolution, this question is not straightforward
to answer. But we’ve tried to answer this in two ways: by
measuring the competition score of representatively high-
performing controllers (the best we could find from a limited
probe) from each experiment, and by testing the same
controllers against each other in two-car racing.

Competition score is the score used to rank submitted
controllers in the league table of the CIG Car Racing
Competition. It is calculated by letting the controller race 500
trials on its own, and 500 trials each against a rather low-
performing hard-coded heuristic controller and a medium-
performing MLP-based controller. Table I shows the com-
petition score breakdown for the selected high-performing
controllers. Judging from these scores, the multi-population
runs yielded the best overall controllers, the single-population
runs slightly less good and the solo evolutionary runs really
rather bad controllers. The best controller found seem to be
based on a MLP, but the differences are not great between
the architectures.



n-pop n-pop n-pop n-pop 1-pop 1-pop 1-pop 1-pop Solo
gen gen nstr nstr gen gen nstr nstr RmlpBig

MLP Modular MLP Modular Modular RmlpBig Modular RmlpBig
n-pop gen MLP 0.00 -0.75 0.09 -0.42 -0.81 1.20 2.37 1.17 4.58

n-pop gen Modular 0.75 0.00 0.71 0.35 -0.09 1.91 2.65 1.90 5.48
n-pop nstr MLP -0.09 -0.71 0.00 -0.53 -0.31 1.08 2.81 1.50 4.64

n-pop nstr Modular 0.42 -0.35 0.53 0.00 0.17 1.06 2.82 1.52 4.31
1-pop gen Modular 0.81 0.09 0.31 -0.17 0.00 2.10 0.68 1.77 3.57
1-pop gen RmlpBig -1.20 -1.91 -1.08 -1.06 -2.10 0.00 1.56 0.36 4.15
1-pop nstr Modular -2.37 -2.65 -2.81 -2.82 -0.68 -1.56 0.00 -1.51 8.02
1-pop nstr RmlpBig -1.17 -1.90 -1.50 -1.52 -1.77 -0.36 1.51 0.00 3.88

Solo RmlpBig -4.58 -5.48 -4.64 -4.31 -3.57 -4.15 -8.02 -3.88 0.00

TABLE II

SCORE DIFFERENCES IN COMPETITIONS BETWEEN CONTROLLERS(AVERAGE OF 500 GAMES). A POSITIVE VALUE MEANS THAT THE CONTROLLER OF

THE CURRENT ROW BEATS THE CONTROLLER OF THE CURRENT COLUMN.

Table II shows the results of direct competition between
these controllers. The differences are sometimes quite dra-
matic, as when the solo-evolved RMLPBig gets 8 points
lower fitness than the single-population-evolved modular
controller. If a clear winner has to be picked, it is the modular
controller evolved with generational multi-population co-
evolution, which does not lose significantly to any other con-
troller. Generally, the dominance pattern of multi-population
over single-population over solo evolution persists.

IV. CONCLUSIONS

We set ourselves a handful of questions to solve at the
beginning of the paper, and even though we can draw quite
a few conclusions from our experiments, all the questions
have not been answered. We have seen that when two cars
were involved, the modular controllers outperform all the
other controller architectures. For solo- and single-population
co-evolution, larger controllers learn faster, whereas this
is not always the case for multi-population co-evolution.
It thus seems that to the extent that multi-population co-
evolution is useful for comparing the performance of dif-
ferent controller architectures, it is so in a rather different
way than single-population co-evolution. However, multi-
population co-evolution produces generally better controllers
than either solo evolution or single-population co-evolution,
corroborating one of our main hypotheses.

What we have not had time (and space) to investigate
here is the behavioural diversity between the evolved con-
trollers from the different experiments. Thus, we don’t know
whether the superior performance of the multi-generation co-
evolution is because of increased diversity between popula-
tions, but we still think this is the case.

A major unsolved puzzle is why the RMLP-based con-
trollers did better the simpler they were, in the multi-
population experiments. Our main hypothesis here is that
because the more complex controllers learn faster, they settle
for a particular strategy sooner than the others, and that
this particular strategy is not a very good one because
the other controllers have not yet developed any useful

strategies. These strategic niches function as local optima,
as learning a generally better strategy would require first
unlearning the current mediocre strategy. The slow-learning
simple controllers are instead forced to learn more general
strategies. If this is true, and the effect generalises to other
problems, this phenomenon could enhance our understanding
of co-evolutionary dynamics.
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