
Making Racing Fun Through Player Modeling

and Track Evolution

Julian Togelius, Renzo De Nardi, and Simon M. Lucas

Department of Computer Science
University of Essex

Colchester CO43SQ, United Kingdom
{jtogel, rdenar, sml}@essex.ac.uk

Abstract. This paper addresses the problem of automatically construct-
ing tracks tailor-made to maximize the enjoyment of individual players in
a simple car racing game. To this end, some approaches to player mod-
eling are investigated, and a method of using evolutionary algorithms
to construct racing tracks is presented. A simple player-dependent met-
ric of entertainment is proposed and used as the fitness function when
evolving tracks. We conclude that accurate player modeling poses some
significant challenges, but track evolution works well given the right track
representation.

1 Introduction

The video game genre of racing games is almost as old as video games, and
shows no signs of losing popularity; with every generation of new gaming hard-
ware new racing games come out, with more complex physics, graphics and
network connectivity. Whether any real progress is being made in racing game
AI or track design is another matter. We have previously studied the application
of evolutionary robotics techniques to developing controllers for cars in a simple
racing game [1][2][3]. We have two distinct motivations: to create more adapt-
able, believable and entertaining games through using AI, and to explore the
suitability of video games as environments for studying the emergence of general
intelligence. In this paper, we explore the use of the framework developed in our
previous work to create racing tracks tailor-made to maximize the enjoyment of
individual human players.

While the use of logic-based AI in games has a history as long as artificial
intelligence itself, and computational intelligence in games is now an established
field[4], the use of AI techniques to enhance player satisfaction is a relatively
new endeavour[5]. As far as we know, no-one has yet attempted this for racing
games.

This paper is organized as follows: first we comment on the computational
car racing problem in general and our racing game in particular. We then present
the problem of optimizing racing game entertainment, and present our approach
to this: player modeling and track evolution. Next, we briefly describe the car

controllers and evolutionary algorithm used. The following section is on player
modeling, for which three different approaches are compared. Once a player is
modeled, we want to evolve entertaining tracks for this player, so the final section
presents our representation for evolvable racing tracks, our fitness functions and
some results. We conclude with an outlook on possible future work.

With this paper, we are merely dipping our toes in a new and fascinating
area, and both ideas and results are to be considered as preliminary. Due to space
concerns, some technical details have been omitted, but these can be found in
our earlier papers on evolutionary car racing.

2 The car racing problem

The focus of the earlier papers has been the following. We have one or several
tracks, containing free space, non-permeable walls, starting positions of the car,
and a chain of waypoints which the car must pass sufficiently closely in the
correct sequence. We also have either one or two cars, each equipped with a
sensor model that permits it to sense the immediate environment from its own
perspective, and a discrete set of motor and steering commands. The physics of
the simulation are reasonably realistic, accounting for inertia, drift, and semi-
elastic collision between cars, and between cars and walls. The objective of the
game is for the car to progress as far as possible along the track in 700 timesteps,
which corresponds to 35 seconds when run in real-time. Progress is judged by the
number of waypoints passed; for most tracks it is possible to complete several
laps within the allotted time. At every timestep, the task of the controller is
to choose, on the basis of available sensor data, one of three possible motor
commands (forward, neutral or backward) and one of three possible steering
commands (left, center or right). Given the momentum of the car and its turning
radius, the action taken at any single timestep contributes little to the overall
course of the car. The non-holonomic nature of the car and the solidity of the
walls also make the car racing problem considerably harder than many simple
mobile robotics problems, such as wall-following with a typical differential-drive
robot.

In previous work, we compared a number of different controller architectures
and sensor representations for this problem, and concluded that the configuration
described below is the best performer overall[1]. In our experiments, the best
evolved controllers outperformed all human drivers on the tracks tested. We also
proposed methods for scaling up to several tracks[2] and cars[3] simultaneously.

3 What makes racing fun?

We have been unable to find any prior research on what makes it fun to play
a particular racing game, or to drive on a particular track in that game. The
initial hypotheses offered here are therefore based on our own experiences and
on opinions gathered from an unstructured selection of non-experts.

– The sensation of speed is clearly a factor - people like to drive fast. A track
should allow a high maximum speed.

– Driving on an endless straight track is not fun, even when driving at high
speed. Tracks should be challenging to drive.

– Crashing all the time is not fun either. Tracks should have the right amount

of challenge.
– People also tend to like a variety of challenges, so tracks should vary in

character and not repeat the same kind of challenge all the time.
– Drifting or skidding in turns seems to be a major fun factor.

The renowned game designer Raph Koster, writing about video games in general,
offers a different perspective[6]. According to Koster, playing and learning are
intimately connected, and a fun game is one where the player is continually and
successfully learning. One way to interpret this in the context of car racing would
be that a good racing track is one on which the player does pretty poorly the
first time he plays, but quickly and reliably improves in subsequent races.

4 Technicalities: sensors, neural networks and

evolutionary algorithms

4.1 Sensors

For ease of comparison we use the same sensor setup as in earlier papers. All the
control methods used in this paper use information from eight simulated sensors:
the speed of the car, the angle to the next waypoint, and six wall sensors. Each
wall sensor is located at the center of the car, and has two parameters under
evolutionary control: its direction (expressed as the angle it makes with the axis
of the car) and its maximum range, which may be anything between 0 and 200
pixels. A wall sensor returns a value between 0 and 1, depending on whether it
detects a wall within its maximum range, and on the distance of the wall as a
proportion of the maximum range.

4.2 Neural networks

Most of the car control methods are based on neural networks. These networks
are all standard fully connected feedforward nets (MLPs) with the tanh transfer
function. Only the weights of the networks are changed by evolution or backprop-
agation, the topology remaining fixed. Nine inputs (sensors and a bias input),
six interneurons, and two outputs are used. The first output is interpreted as
driving command (less than -0.3 means backward, more than 0.3 means forward
and in between means neutral) and the second as steering command.

4.3 Evolutionary algorithm

Variations on an evolutionary algorithm we call Cascading Elitism (inspired
by [7]) is used to evolve both tracks and controllers, problems which have sev-
eral conflicting fitness measures. The algorithm is essentially an evolution strat-
egy without self-adaptation, but with a simple modification in order to handle

multivariate problems. At the start of the first generation, a population of 100
genomes is created. In each generation, all genomes are evaluated according to
the first fitness criterion, and the 50 best individuals (the first elite) are retained
while the rest are thrown away. If there is a second fitness measure, the first elite
are then sorted according to the new fitness measure and the best 30 individuals
(the second elite) are retained; the same principle is used for the third fitness
measure where the 15 best individuals of the second elite are kept. Mutated
copies of the surviving individuals are then used to fill the population up to the
initial level of 100. To eliminate the risk of disruptive effects such as ‘’competing
conventions”, crossover is not used. We have not studied the effect of varying
certain parameters, such as population size, selection pressure, and order of the
fitness functions. When evolving a car controller, the mutation operator applies
perturbations drawn from a gaussian distribution with standard deviation 0.1
to all weights and parameters. For track mutation methods, see section 6.

5 Player modeling

In order to use evolution to automatically create an entertaining track for a
particular human player, we need to be able to test the generated tracks against
the relevant human player thousands of times. Subjecting any real human to
such treatment would surely remove any entertainment value, so we need a way
of reproducing the player’s driving style on tracks on which he has not yet driven.

Charles and Black[8] survey player modeling in general, and Yannakakis and
Maragoudakis[9] use player modeling for optimising satisfaction in a version
of the Pac-Man predator-prey game. Much closer to our problem domain, the
popular racing game Forza Motorsport for the XBox allows its players to train
a “drivatar” to drive just like them. This is accomplished by dividing all tracks
into segments, and recording the precise path the player takes through each
segment[10]. When the drivatar subsequently drives a track it has not been
trained on, this track is analyzed into segments and a new path is calculated
that the car has to adhere to. Crash recovery is a hard-coded mechanism. While
the Forza approach has proved very successful, it imposes severe constraints
on the track designs, and requires information about the preferred path to be
available to the controller, something we wish to avoid.

Other relevant prior research include the ALVINN experiments, in which
a real car learned to drive on real roads using backpropagation, visual inputs
and human driving, although it should be noted that the objective was to learn
driving in general rather than a particular driving style[11].

5.1 Learning behaviour

Backpropagation Our first attempt at player modeling was very straightfor-
ward: learning a car controller from a human example. A human player drove a
number of laps around a track, while the inputs from sensors and actions taken
by the human were logged at each timestep. This log was then used to train a

neural network controller to associate sensor inputs with actions using a stan-
dard backpropagation algorithm. Several variations on this idea (such as more
sensors, larger networks, and selective editing of the log file before training) were
tried with very little success. Although the training often achieved low error rates
(typically 0.05), none of the trained networks managed to complete even half a
lap. Usually the car just drove straight into a wall, though in some cases it did
not move at all.

Nearest-neighbour classification We also tried controlling the car with a
simple nearest-neghbour classifier. In these experiments, we used the same train-
ing data as in the experiments above, and let the controller choose the outputs
of the training data point that closest matched the current sensor inputs. The
small amount of noise that is applied to sensors guarantees that the car does not
simply replay the human action. The resulting behaviour looked very “human-
like”, indeed very like the driving style of the particular human being modeled.
It was quite good as well, sometimes taking a lap or two at decent speed. But
almost invariably it ended up taking a turn just a bit too early or too late and
therefore crashed into a wall. After that, it was unable to back away from the
wall. Another problem with this control method was that it had serious problems
with generalization.

5.2 Learning characteristics of behaviour

Given the limited success of learning player behaviour directly, we decided to
try an indirect approach, namely identifying measurable characteristics of the
human player’s behaviour, and adapting an evolved controller to reproduce these
characteristics. We decided to use total progress along the track, the variance
of progress along the track between different trials, and the number of action
changes (changing from one driving command to another), as these character-
istics are easily quantifiable and vary considerably with driving styles. In the
evolutionary runs, we started from good pre-evolved controllers, which the multi-
stage evolutionary algorithm further evolve based on logs of human driving.

Results were mixed. While it was not very hard to adapt the controller to
exhibit the same progress as the human on the same tracks, the other characteris-
tics were harder to learn. It was possible to evolve a low variance in progress, but
only occasionally did we manage to evolve a higher variance. Trying to adapt the
controller to produce a given number of action changes was hopeless. One of the
authors changed driving command 69 times in 700 timesteps, while an evolved
network made about 250 changes, a difference which could not be evolved away.

5.3 Learning performance profiles

We then reasoned that if we could not capture the actual driving style of a
human player with the methods at our disposal, we could at least capture the
unique performance profile of that driving style. For example, assume player

A drives rather recklessly, and so does well on straights and broad curves but
often crashes into walls in narrow passages and turns, and player B drives very
carefully and so maneuvers through narrow passages well but doesn’t exploit his
vehicle’s full potential in straights. We would then want the model of player A to
make better progress than B on tracks rich in straights and broad curves, and the
model of B to do better than A on tracks requiring lots of precise maneuvering,
even if the micro-features of the models’ driving look nothing like those of the
corresponding human players. To accomplish this, we designed three test tracks

Fig. 1. Handcrafted test tracks

(see figure 1) to emphasize different aspects of racing skill. The first track consists
of continuous gentle curves, the second track has long straights and sharp turns,
and the third track has lots of narrow passages and obstacles. The progress of
two of the authors on these tracks within 700 timesteps was measured (0.94,
0.86, 0.81, and 1.49, 1.49, 1.46 laps respectively). Controllers that approximated
these performances were found within 100 generations.

5.4 A non-trivial problem

We see our attempts at player modeling as having been a partial success. On
the one hand we have been able to produce controllers that closely match the
performance profile of human players, but on the other hand we failed to model
human driving behaviour more directly. The controllers modelled on performance
profiles differ from humans in their micro-behaviour both qualitatively, in that
their driving looks a bit artificial, and quantitatively, e.g. when counting action
changes. We believe that these problems are due both to the reactive nature
of all the controllers examined so far, and to the limited sensory inputs; the

sensor data we humans use to decide on the car’s movement are much richer,
and our complex neural networks allow such strategies as the construction and
exploitation of forward models of the car. Much work remains to be done here.

6 Track evolution

In this section we define concrete fitness measures based on the considerations
in section 3, and propose an evolutionary approach for track design. Many dif-
ferent representations of the racing track are possible; here, we propose one that
emphasizes smoothness of the fitness landscapes. The track is encoded as a fixed
length sequence of segments, all with the same midline length (the length of
the track is therefore fixed). Each of the segments can represent a short part
of a straight path, or of a curve (three different curvature radii are possible).
In order to allow for more flexible tracks, each segment can have its own final
width (three different widths are possible), subject to the constraint that the
initial width has to match the width of the previous segment. Segments contain-
ing obstacles (in the center or in one side of the track) were also available as
part of the genetic material. The mutation operator used by the evolutionary
algorithm works simply by changing a segment into one of a different type with
uniform probability 0.1. It is clear that the fitness obtained by a car driving
on the mutated track will be similar to its fitness on the original track since,
from the car’s perspective, a large part of the track has not changed at all. This
concept directly translates into a smooth fitness space by minimizing disruptive
mutations. The chosen representation theoretically still allows for the track to
turn back on itself and overlap, but no attempt was made to prevent this; in the
unlikely event of this happening, the fitness obtained by the track would be very
low and so the track would not survive the selection process. To ensure a set of
viable individuals in the starting population, the initial elite consists of tracks
using only straight segments. The tracks produced by this method will not in
general form closed circuits, and so we artificially close the tracks by means of
’teleportation’. As soon as the car reaches the end of a track it is moved to the
start, keeping the same position, velocity, and orientation relative to the track.

Fitness measures Three different fitnesses have been chosen to drive the evolu-
tion process: target final fitness, maximum speed, and maximum fitness variance.
The first and most important fitness used, is given by f1 = 1− | pf − pt |, where
pf is the final progress (fractional number of laps) and pt is the desired target
progress. In order to smooth the effect of the sensor noise, the progress fitness of
the single track is averaged over 10 repetitions. The final progress is intimately
related to the average speed achieved during the test, therefore setting the target
final progress corresponds to setting the type of track (slow or fast) that we are
trying to produce. The second fitness measure is the maximum speed achieved
within the trial; the aim of this fitness is to force the inclusion in the track of at
least one section on which the player could possibly reach a very high speed. To
drive the search towards challenging tracks, the third fitness selects for tracks

with a high variance in the final progress. Other fitness measures considered
include speed variance and number of turns taken.

Results In general terms the track evolution process was considered success-
ful; the evolutionary algorithm is indeed able to produce a track on which the
player-modeled controller achieves the desired progress fitness. Changing the fi-
nal progress target allows the production of a low speed or high speed track. We
have already commented on the weaknesses of our player modeling approach,
particularly in replicating the driving style of the human player, and so we were
surprised to find that its performances in these experiments were close to those
of its human counterparts. In several instances in which one of the authors was
testing a track tailored to the model of his own driving, he would obtain a final
progress quite close to the target for which the track had been evolved. This typ-
ically happened only on the first trial on the new track; in subsequent attempts
on the same track, the player would generally improve on his first trial by ex-
ploiting his accumulated knowledge of the track, an impossibility for a reactive
controller.

In figure 2(a) we can see plotted the evolution of the three distinct fitnesses
of the best individual throughout the evolutionary run (10 evolutionary runs
are averaged) when only the final progress fitness is in the selection mechanism;
figure 2(b) shows instead the evolution of the fitnesses when all of the fitnesses
are employed in the selection. As can be seen, in figure 2(a) the progress fit-
ness quickly converges to 1 in the first tens of generations. Top speed and final
progress standard deviation instead reduce in favour of the final progress opti-
mization. When optimization for top speed and progress variance is also enforced

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
(a)

Generations

Fi
tn

es
s

0 5 10 15 20 25 30 35 40 45 50
3

3.5

4

4.5

5

5.5

progress

progress s.d.

top speed

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
(b)

Generations

Fi
tn

es
s

0 5 10 15 20 25 30 35 40 45 50
3

3.5

4

4.5

5

5.5

progress

progress s.d.

top speed

Fig. 2. Fitnesses of the best individual (average of 10 evolutionary runs): (a) selection
based only on track progress finess, (b) selection based on all the three fitnesses.

(figure 2(b)), it seems clear that these fitness measures are in direct competition.
The evolutionary algorithm drives the progress fitness toward the requirement,
settling at fitness 0.6, a reasonable value since the final progress standard de-
viation is equal to 0.4. The initial population is constituted by straight tracks,
the top speed is therefore close to the maximum since the early generations; the

evolutionary selection can be seen to guarantee the top speed not to be dropped
in favour of the other fitnesses.

In figure 3 are displayed three tracks that evolution tailored on the player
model of two of the authors; track ((a)) is evolved for a final progress of 1.1
(since the respective human player was not very skilled), track (b) and (c) are
instead evolved on a model of a much skilled player for final progress 1 1.5. For
track (a) and (b) all the three fitness measure were used, while for track (c) only
progress fitness was used.

The main difference between tracks (a) and (b) is that track (a) is broader
and has fewer tricky passages, which makes sense as the player model used to
evolve (a) drives slower. Both contain straight paths that allow the controller to
achieve high speeds. In track (b) we can definitely notice the presence of narrow
passages and sharp turns, elements that force the controller to reduce speed
but only sometimes causes the car to collide. Those elements are believed to
be the main source of final progress variability. These features are also notably
absent from track c, on which the good player model has very low variability.
The progress of the controller is instead limited by many broad curves.

Fig. 3. Three evolved tracks: ((a)) evolved for a bad player with target progress 1.1,
(b) evolved for a good player with target fitness 1.5, (c) evolved for a good player with
target progress 1.5 using only progress fitness.

7 Conclusions

We have shown that we can evolve tracks that, for a given controller, will yield a
predefined progress for the car in a given time, while maximizing the maximum

1 The target progress is set between 50 and 75 percent of the progress achievable by
the specific controller in a straight path. As a comparison, in Formula 1 races this
ratio (calculated as ratio between average speed and top speed) is about 70 percent,
and for the latest Need for Speed game it is between 50 and 60 percent.

speed and the standard deviation of the progress. The tracks produced are all
drivable for a human player, and appear quite well designed, to our eyes at
least. We do not yet know whether we have succeeded in automatically creating
entertaining tracks for particular players, for the simple reason that we have not
done any empirical studies on actual human players (apart from ourselves) to
find out what they like. This is something that definitely needs to be done.

Our approach using player modeling works less well, but we can at least
reliably produce controllers that make the same progress as the corresponding
human player on a number of tracks, even though the driving styles differ from
human driving. We found this level of modelling to be sufficient for track evo-
lution, though of course we would like to be able to model human driving more
closely. The failure of our supervised learning approaches to player modelling is
probably due to the simplicity of the rangefinder sensors compared to human
vision, and of the feedforward neural networks compared to human cognitive
capacities, but additional experiments need to be done using recurrent neural
networks and detailed visual inputs for the controllers to establish this.

Some interesting and relatively simple extensions of this research would be
to evolve appropriate opponents in a multi-car race, and also to evolve tracks
for learnability, following Koster’s theory of what makes a game fun.

Acknowledgement Thanks to Owen Holland for stimulating discussions.

References

1. Togelius, J., Lucas, S.M.: Evolving controllers for simulated car racing. In: Pro-
ceedings of the Congress on Evolutionary Computation. (2005) 1906–1913

2. Togelius, J., Lucas, S.M.: Evolving robust and specialized car racing skills. In:
Proceedings of the IEEE Congress on Evolutionary Computation. (2006)

3. Togelius, J., Lucas, S.M.: Arms races and car races. In: Submitted. (2006)
4. Kendall, G., Lucas, S.M., eds.: Proceedings of the First IEEE Symposium on

Computational Intelligence and Games. IEEE Press (2005)
5. Yannakakis, G.N.: AI in Computer Games: Generating Interesting Interactive

Opponents by the use of Evolutionary Computation. PhD thesis, School of Infor-
matics, University of Edinburgh (2005)

6. Koster, R.: A Theory of Fun for Game Design. Paraglyph Press (2004)
7. Jirenhed, D.A., Hesslow, G., Ziemke, T.: Exploring internal simulation of per-

ception in mobile robots. In: Proceedings of the Fourth European Workshop on
Advanced Mobile Robots. (2001) 107–113

8. Charles, D., Black, M.: Dynamic player modelling: A framework for player-centred
digital games. In: Proceedings of the International Conference on Computer
Games: Artificial Intelligence, Design and Education. (2004) 29–35

9. Yannakakis, G., Maragoudakis, M.: Player modeling impact on players entertain-
ment in computer games. In: Proceedings of the 10th International Conference on
User Modeling. (2005) 74–78

10. Herbrich, R.: personal communication (2006)
11. Pomerleau, D.A.: Neural network vision for robot driving. In: The Handbook of

Brain Theory and Neural Networks. (1995)

