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Abstract— Neural network-based controllers are evolved for or learn from other drivers (humans or machines) on the
racing simulated R/C cars around several tracks of varying |nternet.
difficulty. The transferability of driving skills acquired when The benefits for evolutionary robotics might require some

evolving for a single track is evaluated, and different ways of - . . .
evolving controllers able to perform well on many different explanation. While evolutionary robotics has successfully

tracks are investigated. It is further shown that such generally been used for various interdisciplinary investigations (e.g. of
proficient controllers can reliably be developed into specialized memory mechanisms, neural architectures and evolutionary
controllers for individual tracks. Evolution of sensor parameters dynamics), and for parameter tuning of some more complex
together with network weights is shown to lead to higher final = qqo)iers, its approximately 15 years of development have
fitness, but only if turned on after a general controller is . .

developed, otherwise it hinders evolution. It is argued that not sgen much scaling up[2]. That is, we hav_e yet to see the
simulated car racing is a scalable and relevant testbed for €volution of robot controllers (as opposed to just parameters

evolutionary robotics research, and that the results of this of such) for any really complex problem - problems where

research can be useful for commercial computer games. artificial evolution becomes a superior alternative to manual
Keywords: Evolutionary robotics, games, car racing,design of controllers.
driving, incremental evolution We believe that some of the reason for this lack of progress
is the limited environments, sensor data, embodiments, and
|. INTRODUCTION tasks in most evolutionary robotics experiments. A typical

such experiment uses a semi-holonomic robot operating in

Car racing is a remarkably popular preoccupation - both tgn impoverished environment (in many ways resembling
watch and to participate in - be it in a computer simulation, “Skinner box”, the simplistic boxes pioneered by B. F.
or in the “real world”. But it is not only popular, it is Skinner for studying operant conditioning[3]), using simple,
also challenging: racing well requires fast and accuraigw-bandwidth sensor input, doing a task that is hard to incre-
reactions, knowledge of the car's behaviour in differenfnentally scale up. The car racing task uses a more complex
environments, and various forms of real-time planning, sucind interesting robot morphology, as a car is more complex
as path planning and deciding when to overtake a competitgs control than a semi-holonomic robot, but at the same
In other words, it requires many of the core componenigme it has more capabilites. While a simple racing track
of intelligence being researched within computational inmight be as impoverished an environment as ever a Skinner
telligence and robotics. The success of the recent DARFfpy, it can be scaled up. A controller might be evolved
Grand Challenge[1], where completely autonomous real cag§ race a simple track, which can then be progressively
raced in a demanding desert environment, may be taken @mplexified (by adding competitors, gears, crossroads, blind
a measure of the interest in car racing within these researgheys, bridges, jumps etc.) up to and above the level of the
communities. DARPA Grand Challenge, without ever changing the nature

This paper deals with using evolutionary algorithms t@f the fitness function, thus ensuring smooth scaling up.
create neural network controllers for simulated car racinghis solution to the problems of the environment and task
Specifically, we evolve controllers that have robust perforscalability does come at cost: the car will probably need ever
mance over different tracks, and can be specialized to workore sophisticated sensors, including high-bandwitdh visual
better on particular tracks. input, to navigate more complex tracks. But such input can be

Evolutionary robotics (the use of evolutionary algorithmssupplied, if we use one of today’s graphically sophisticated
for embodied control problems) and simulated car racingacing games as experimental environment. This shifts the
are in many ways ideal companions. The benefit for thproblem to one of controller encodings that can handle such
development of racing games and simulations is clear: evoemplex input.
lutionary robotics offers a way to automatically develop .
controllers, possibly specialized for specific tracks or typed: Prior research
of tracks, driving styles, skill levels, competitors etc. One 1) Evolutionary car racing: A few investigations into
could envision a racing simulator where the user is allowed ®volutionary car racing can be found in the recent litera-
construct his own tracks and cars, and the game automaticatlye. Togelius and Lucas[4] investigated various controller
develops a set of controllers to drive these tracks. The gamechitectures and sensor input representations for simulated
could also automatically adapt to the user’'s driving stylezar racing. It was concluded that the only combination out



of those studied that allows evolution to reliably producecquired his or her individual driving style.
good racing controllers uses neural networks informed by Supervised learning, however, ultimately suffers from re-
egocentric information from range-finder sensors. Best pequiring good training data. Sometimes such training data
formance was achieved by making ranges and angles of tisesimply not available, at other times it is prohibitively
rangefinders evolvable, and providing the network with @&xpensive to obtain, and at yet other times imitating human
further sensor indicating angle to the next waypoint. Thdrivers is simply not what we want.
controllers were only tried on one track, but some nois
was introduced into the environment and the track was
surrounded by impenetrab]e walls. The best of the evolved While the research referred to above has shown the useful-
controllers outperformed all of a small sample human confiess of evolutionary robotics techniques for car racing, the
petitors. controllers have in all those cases only been tested on a single
Stanleyet al[5] used a similar setup - neural networks in-track, and sometimes with severe simplifying assumptions,
formed by range-finders - in an experiment aimed at evolving/Ch as being able to drive through walls. Thus, the first
both controllers and crash-warning systems for subsequenfipi€ctive of the research reported in this paper is to evolve
impaired controllers. The experiment was conducted on ural network controllers each capable of competitively and
single track in simulation (using the RARS simu|ator[6]),rellably navigating a variety qf different tracks, including
and the track was not surrounded by walls, so the car wi&cks they have not been trained on. Based on the range-
allowed (at a fitness penalty) to venture outside the track. finding and aimpoint sensors proposed in[4], we investigate

In another interesting experiment, Floreagtoal. evolved which sensor setup and evolutionary sequence allows us to

neural networks for simulated car racing using first-persof €até such controllers. _ _
A second objective is to investigate whether evolution of

visual input from the driving simulator Carworld[7][8]. How- o ) .
ever, only 5 x 5 pixels of the visual field was used as input§ specialized controller, i.e. one performing very well on a

for the network; the position of these pixels was dynamicall?"jlrtICUIar track, can be sped up by starting from an already

selected by the network, in a process known as active visio?\‘./OIVecj general” controller. Such a process could be useful

. . . or example in a racing game, where users are allowed to
A different approach to evolutionary car racing was take b 99

by Tanevet al, who evolved parameters for a hand-code(rﬁleSIgn tracks and a controller providing good performance
on such tracks needs to be created on the fly.

racing car controller, using anticipatory modeling of the .
9 9 patory 9 The concrete questions we pose and try to answer are

car's position[9]. While the amount of human input into S . . :
. . . C the following: How robust is the evolutionary algorithm,
the controller design process is arguably higher in this casg,_, . . . .
that is, how certain can we be that a given evolutionary

this approach allowed evolution of controllers for real radio;un will produce a proficient controller for a aiven track?
controlled cars without an intermediary simulation step. P P g )

: s the layout of the racing track directly influencing the
Also related is the work of Wioch and Bentley, who use4itness landscape so that some tracks are much harder than

a human-designed coln.tr.oller buiIt. into a high quality ra(.:in%thers to evolve, while not being impossible to drive? What
simulator, but used artificial evolution to optimize all physma‘S the transferability of knowledge gained in evolving for

and me((:jhta nical param_e%ers of thfe carE_lO]. tEhV?[IUt'Ofn herﬁje track in terms of performance on other tracks? Can we
managed o come up with car contigurations that pertormeg;qyye controllers that can proficiently race all tracks in our

better than any of the stock cars in the simulator. training set? How? Can such generally proficient controllers
2) Supervised learning and real-world applicationsta-  pe ysed to reliably create specialized controllers that perform
chine learning techniques have also been used in real-woylgh||, put only on particular tracks? Finally, can this be done
car driving and racing applications, though these techniquggen for tracks for which it is not possible to evolve a good
have been forms of supervised learning rather than evggntroller from scratch?
lutionary learning. Perhaps most well-known of these is e this investigation primarily addresses the scalability
Pomerleau’s use of backpropagation to train neural networks tne problem domain (and to some extent of the sen-
to associate pre-processed video input with a human drivegg/network combination), it may also be of use for practical

actions, leading to a controller able to keep a real car Ofypjications such as racing games to find out the most
the road and take curves appropriately[11]. More recentlygjigple ways to evolve proficient controllers.
the winning team in the DARPA Grand Challenge made

extensive use of machine learning in developing their cd¢. Overview of the paper
controller. The paper is laid out as follows: first, we describe the
Going from physical reality to virtual reality, the Mi- characteristics of the car racing simulation we will be using,
crosoft's Xbox video game Forza Motorsport is worthyincluding sensor models, tracks, and how this models differs
of mention, as all the opponent car controllers have bedrom the problem of racing real radio-controlled cars. The
trained by supervised learning of human player data, insteaéxt section details the neural networks and evolutionary al-
of the usual racing game technique of blindly followinggorithm we employ. We then proceed to describe experiments
precalculated racing lines[12]. The player can even train hin evolving controllers optimized for the individual tracks
own “drivatars” to race tracks in his place, after they havéom scratch, followed by a section where we investigate

Motivations for this paper



damaging such cars in collisions is harder due to their low
weight.

The dynamics of the car are based on a reasonably detailed
mechanical model, taking into account the small size of the
car and bad grip on the surface, but is not based on any actual
measurement [13][14]. The model is similar to that used in
[4], and differs mainly in its improved collision handling;
after more experience with the physical R/C cars the collision
response system was reimplemented to make collisions more
realistic (and, as an effect, more undesirable). Now, a collison
may cause the car to get stuck if the wall is struck at an
unfortunate angle, something often seen in experiments with
physical cars.

A track consists of a set of walls, a chain of waypoints,
and a set of starting positions and directions. When a car
is added to a track in one of the starting positions, with
corresponding starting direction, both the position and angle
being subject to random alterations. The waypoints are used
for fitness calculations.

For the experiments we have designed eight different
tracks, presented in figure 1. The tracks are designed to
vary in difficulty, from easy to hard. Three of the tracks
are versions of three other tracks with all the waypoints
in reverse order, and the directions of the starting positions
reversed.

The main differences between our simulation and the
real R/C car racing problem have to do with sensing. As
reported in Tanev et al. as well as [4], there is a small but
not unimportant lag in the communication between camera,
computer and car, leading to the controller acting on outdated

, . . gerceptions. Apart from that, there is often some error
Fig. 1. The eight tracks. Notice how tracks 1 and 2 (at the top), 3 an

4,5 and 6 differ in the clockwise/anti-clockwise layout of waypoints and"! estimations of the car's position _and \{elocny from an
associated starting points. Tracks 7 and 8 have no relation to each oti@rerhead camera. In contrast, the simulation allows instant
apart from both being difficult. and accurate information to be fed to the controller.
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[1l. EVOLVABLE INTELLIGENCE
how to evolve controllers that provide robust performanc
over several tracks. These controllers are then validated g‘n Sensors
tracks for which they have not been evolved. Finally, these The car experiences its environment through two types
controllers are further evolved to provide better fitness oaf sensors: the waypoint sensor, and the wall sensors. The
specific tracks, conclusions are drawn, and further researslaypoint sensor gives the difference between the car’s cur-
is suggested. rent orientation and the angle to the next waypoint (but not
the distance to the waypoint). When pointing straight to a
Il. THE CAR RACING MODEL waypoint, this sensor thus outputs 0, when the waypoint is
The experiments in this article were performed in do the left of the car it outputs a positive value, and vice versa.
2-dimensional simulator, intended to qualitatively if notAs for the wall sensors, each sensor has an angle (relative to
guantitatively, model a standard radio-controlled (R/C) toyhe orientation of the car) and a range, between 0 and 200
car (approximately 17 centimeters long) in an arena withixels. The output of the wall sensor is zero if no wall is
dimensions approximately 3*2 meters, where the track iencountered along a line with the specified angle and range
delimited by solid walls. The simulation has the dimensionfom the centre of the car, otherwise it is a fraction of one,
400*300 pixels, and the car measures 20*10 pixels. depending on how close to the car the sensed wall is. A small
R/C toy car racing differs from racing full-sized cars inamount of noise is applied to all sensor readings, as it is to
several ways. One is the simplified controls; many R/C catarting positions and orientations.
have only three possible drive modes (forward, backward, In some of the experiments the sensor parameters are
and neutral) and three possible steering modes (left, rightutated by the evolutionary algorithm, but in all experiments
and center). Other differences are that many toy cars hatreey start from the following setup: one sensor points straight
bad grip on many surfaces, leading to easy skidding, and tifatward (0 radians) in the direction of the car and has



Track | 10 50 100 200 Pr.
1 0.32 (0.07)| 0.54 (0.2) | 0.7 (0.38) | 0.81(0.5) | 2
2 0.38 (0.24) | 0.49 (0.38) | 0.56 (0.36)| 0.71 (0.5) | 2
3 0.32 (0.09) | 0.97 (0.5) | 1.47 (0.63)| 1.98 (0.66)| 7
4 0.53 (0.17)| 1.3(0.48) | 1.5(0.54) | 2.33(0.59)| 9
5 0.45 (0.08) | 0.95 (0.6) | 0.95(0.58)| 1.65 (0.45)| 8
& 7 6 0.4 (0.08) | 0.68 (0.27)| 1.02 (0.74)| 1.29 (0.76)| 5
§ 7 0.3 (0.07) | 0.35(0.05)| 0.39 (0.09)| 0.46 (0.13)| O
8 0.16 (0.02) | 0.19 (0.03)| 0.2 (0.01) | 0.2(0.01) | O

TABLE |
THE FITNESS OF THE BEST CONTROLLER OF VARIOUS GENERATIONS ON
THE DIFFERENT TRACKS AND NUMBER OF RUNS PRODUCING

1

PROFICIENT CONTROLLERS FITNESS AVERAGED OVER10 SEPARATE
Fig. 2. The initial sensor setup, which is kept throughout the evolutionar)';voLUT'ONARY RUNS; STANDARD DEVIATION BETWEEN PARENTHESES
run for those runs where sensor parameters are not evolvable. Here, the car

is seen in close-up moving upward-leftward. At this particular position, the

front-right sensor returns a positive number very close to 0, as it detects a

wall near the limit of its range; the front-left sensor returns a number close . . .
to 0.5, and the back sensor a slightly larger number. The front, left and rigﬂassed' divided by the number of waypoints in the track,

sensors do not detect any walls at all and thus return 0. plus an intermediate term representing how far it is on its way
to the next waypoint, calculated from the relative distances
between the car and the previous and next waypoint. A
range 200 pixels, as has three sensors pointing forwarfitness of 1.0 thus means having completed one full track
left, forward-right and backward respectively. The two othewithin the alloted time. Waypoints can only be passed in the
sensors, which point left and right, have reach 100; this isorrect order, and a waypoint is counted as passed when the
illustrated in figure 2. centre of the car is within 30 pixels from the waypoint. In
the evolutionary experiments reported below, each car was
allowed 700 timesteps (enough to do two to three laps on
The controllers in the experiments below are based amost tracks in the test set) and fitness was averaged over
neural networks. More precisely, we are using multilayethree trials.
perceptrons with three neuronal layers (two adaptive layers)
and tanh activation functions. A network has at least three V. EVOLVING TRACK-SPECIFIC CONTROLLERS
inputs: one fixed input with the value 1, one speed input The first experiments consisted in evolving controllers for
in the approximate range [0..3], and one input from theéhe eight tracks separately, in order to the test the software
waypoint sensor, in the rangell-1I]. In addition to this, in general and to rank the difficulty of the tracks.
it might have any number of inputs from wall sensors, in For each of the tracks, the evolutionary algorithm was run
the range [0..1]. All networks have two outputs, which arg0 times, each time starting from a population of “clean”
interpreted as driving commands for the car. controllers, with all connection weights set to zero and sensor
i i parameters as explained above. Only weight mutation was
C. Evolutionary algorithm allowed. The evolutionary runs were for 200 generations
The genome is an array of floating point numbers, ofach.
variable or fixed length depending on the experimental setup.
Apart from information on the number of wall sensors and: Fixed sensor parameters
hidden neurons, it encodes the orientation and range of thel) Evolving from scratchThe results are listed in table I,
wall sensors, and weights of the connections in the neurahich is read as follows: each row represents the results for
network. one particular track. The first column gives the mean of the
The evolutionary algorithm used is a kind of evolutionanyfitnesses of the best controller of each of the evolutionary
strategy, withy = 50 and 6 = 50. In other words, 50 runs at generation 10, and the standard deviation of the
genomes (the elite) are created at the start of evolution. fitnesses of the same controllers. The next three columns
each generation, one copy is made of each genome in theesent the results of the same calculations at generations 50,
elite, and all copies are mutated. After that, fitness value 00 and 200, respectively. The “Pr” column gives the number
calculated for each genome, and the 50 best individuals of proficient best controllers for each track. An evolutionary
all 100 form the new elite. run is deemed to have produced a proficient controller if
There are two mutation operators: Gaussian mutatiats best controller at generation 200 has a fitness (averaged,
of all weight values, and Gaussian mutation of all sens@s always, over three trials) of at least 1.5, meaning that it
parameters (angles and lengths), which might be turned eompletes at least one and a half lap within the allowed time.
or off. In both cases, the standard deviation of the GaussianFor the first two tracks, proficient controllers were pro-
distribution was set to 0.3. duced by the evolutionary process within 200 generations,
Last but not least: the fitness function. The fithess of but only in two out of ten runs. This means that while it is
controller is calculated as the number of waypoints it hagossible to evolve neural networks that can be relied on to

B. Neural networks



Track | 10 50 100 200 Pr. . . .
1 0.3 (0.05) [ 0.58 (0.17)] 0.65 (0.18)| 0.89 (04) | 1 sensors. However, there are some interesting differences, and
2 0.32 (0.09) | 0.72 (0.4) | 0.81 (0.49)| 0.91 (0.6) | 3 the controllers evolved for track 1, 2 and 6 (but not the others)
i ggg Eg-ggg %gg Eg-g}lg gg Eg-g% %-22 &8-2}) Io actually perform better on tracks for which they were not
5 0.4 (0.07) | 0.64 (0.35)| 0.95 (0.55)| 1.31 (0.66)| 4 evolved. It is quite hard to see any kind of logic in which
6 0.48 (0.12)| 0.7 (0.29) | 0.83 (0.39) | 0.99 (0.65)| 2 controllers will do well on which tracks, except those they
7 0.33(0.11)| 0.43 (0.08)| 0.44 (0.08)| 0.5(0.15) | O were evolved for, and more data would definitely be needed
8 0.16 (0.02) | 0.21 (0) 0.21 (0) 0.21 (0) 0 to resolve this.
TABLE 1lI

EVOLVING CONTROLLERS FOR INDIVIDUAL TRACKS FROM SCRATCH V. EVOLVING ROBUST DRIVING SKILLS

WITH SENSOR MUTATION TURNED ON FORMAT AS IN TABLE . The next suite of experiments were on evolving robust

controllers, i.e. controllers that can drive proficiently on a
large set of tracks.

race around one of these track without getting stuck or takirfy. Simultaneous evolution
excessively long time, the evolutionary process in itself is Qur first attempt consisted in evolving controllers on all
not reliable. In fact, most of the evolutionary runs are falsgacks at once. For this purpose, we ran several evolutionary
starts. For tracks 3, 4, 5 and 6, the situation is differenuns where each controller was tested on all the first six
as at least half of all evolutionary runs produce proficienfracks, each for three trials, and the fitness was averaged over
controllers. The best evolved controllers for these tracks gafl these trials. We ran several evolutionary runs with this
around the track fairly fast without colliding with walls. For setup, and with both evolvable and fixed sensor parameters,
tracks 7 and 8, however, we have not been able to evolygr long periods of time, but found very little progress - no
proficient controllers from scratch at all. The “best” (leastontroller reached an average fitness above 1.
bad) controllers evolved for track 7 might get halfway around )
the track before getting stuck on a wall, or losing orientatio: ncremental evolution
and starting to move back along the track. Abandoning this method, we tried incremental evolution.
2) Generality of evolved controllerdNext, we examined The idea here was to evolve a controller on one track, and
the generality of these controllers by testing their perfowhen it reached proficiency (mean fitness above 1.5) add
mance of the best controller for each track on each of thenother track to the training set - so that controllers are
ten tracks. The results are presented in figure Il, and cleamhpw evaluated on both tracks and fitness averaged - and
show that the generality is very low. No controller performeaontinue evolving. This procedure is then repeated, with a
very well on any track it had not been evolved on, with thenew track added to the fithess function each time the best
interesting exception of the controller evolved for track lcontroller of the population has an average fitness of 1.5 or
that actually performed better on track 3 than on the trackver, until we have a controller that races all of the first
for which it had been evolved, and on which it had a rathesix tracks proficiently. The order of the tracks was 5, 6,
mediocre performance. It should be noted that both track 4, 1 and finally 2, the rationale being that the balance
1 and track 3 (like all odd-numbered tracks) run countebetween clockwise and counterclockwise should be as equal
clockwise, and there indeed seems to be a slight bias for the possible in order to prevent lopsided controllers, and that
other controllers to get higher fitness on tracks running irasier tracks should be added to the mix before harder ones.
the same direction as the track for which they were evolved. This approach turned out to work much better than si-

We have not analysed this further. multaneous evolution. Several runs were performed, and
while some of them failed to produce generally proficient
B. Evolved sensor parameters controllers, some others fared better. A successful run usually

1) Evolving from scratch: Evolving controllers from takes a long time, on the order of several hundred gener-
scratch with sensor parameter mutations turned on resulteddtions, but it seems that once a run has come up with a
somewhat lower average fitnesses and numbers of proficierntroller that is proficient on the first three or four tracks,
controllers, as can be seen in table lll. The controllers thit almost always proceeds to produce a generally proficient
reached proficiency seemed to be roughly equally fit as thosentroller. One of the successful runs is depicted in figure 3,
evolved with fixed sensors, but more evolutionary runs gaind the mean fitness of the best controller of that run when
stuck in some local optimum and never produced proficienésted on all eight tracks separately is shown in IV. As can
controllers when sensor parameters were evolvable. It is no¢ seen from this table, the controller does a good job on the
known whether this is simply because of the increase isix tracks for which it was evolved, bar that it occasionally
search space dimensionality caused by the addition of sengmts stuck on a wall in track 2. It never makes its way around
parameters, or if they complicate the evolutionary process track 7 or 8.
some other way. The successful runs were all made with sensor mutation

2) Generality of evolved controllersControllers evolved turned off. Some runs of incremental evolution were made
with evolvable sensor parameters turn out to generalize reallyith sensor mutation allowed; however, they failed to pro-
badly, almost as badly as the controllers evolved with fixeduce any proficient controllers. We speculate that this is



Evo/Test | 1 2 3 4 5 6 7 8

1 1.02 (0.14)| 0.87 (0.1) | 1.45 (0.18)| 0.52 (0) 1.26 (0.17)| 0.03 (0) 0.2 (0.18) | 0.13 (0)

2 0.28 (0.06)| 1.13 (0.35)| 0.18 (0.1) | 0.75 (0.26)| 0.5 (0.13) | 0.66 (0.19)| 0.18 (0.15)| 0.14 (0.02)
3 0.58 (0.16)| 0.6 (0.22) | 2.1 (0.48) | 1.45 (0.66)| 0.62 (0.13)| 0.04 (0.1) | 0.03 (0.09)| 0.14 (0.02)
4 0.15 (0.01)| 0.32 (0.02)| 0.06 (0.05)| 1.77 (0.52)| 0.22 (0.1) | 0.13 (0.13)| 0.07 (0.09)| 0.13 (0.02)
5 0.07 (0.02)| -0.02 (0) | 0.05 (0) 0.2 (0.11) | 2.37 (0.28)| 0.1 (0.04) | 0.03 (0.05)| 0.13 (0.01)
6 1.33 (0.18)| 0.43 (0.07)| 0.4 (0.2) | 0.67 (0.22)| 1.39 (0.42)| 2.34 (0.05)| 0.13 (0.13)| 0.14 (0.11)
7 0.45 (0.11)| 0 (0.07) 0.6 (0.18) | 0.03 (0.04)| 0.36 (0.08)| 0.07 (0.03)| 0.22 (0.15)| 0.08 (0)

8 0.16 (0.03)| 0.28 (0.04)| 0.09 (0.07)| 0.29 (0.18)| 0.21 (0.03)| 0.08 (0.1) | 0.1 (0.09) | 0.13 (0)

TABLE Il

THE FITNESS OF EACH CONTROLLER ON EACH TRACKEACH ROW REPRESENTS THE PERFORMANCE OF THE BEST CONTROLLER OF ONE
EVOLUTIONARY RUN WITH FIXED SENSORS EVOLVED THE TRACK WITH THE SAME NUMBER AS THE ROW EACH COLUMN REPRESENTS THE
PERFORMANCE OF THE CONTROLLERS ON THE TRACK WITH THE SAME NUMBER AS THE COLUMNEACH CELL CONTAINS THE MEAN FITNESS OF50
TRIALS OF THE CONTROLLER GIVEN BY THE ROW ON THE TRACK GIVEN BY THE COLUMNCELLS WITH BOLD TEXT INDICATE THE TRACK ON WHICH
A CERTAIN CONTROLLER PERFORMED BEST

Track 1 2 3 4 5 6 7 8
Fitness/sd| 1.66 (0.08)| 1.48 (0.25)| 2.56 (0.2)| 2.49 (0.15)| 2 (0.25)| 2.02 (0.42)| 0.4 (0.21)| 0.16 (0.07)

TABLE IV
FITNESS OF AN INCREMENTALLY EVOLVED GENERAL CONTROLLER WITH FIXED SENSOR PARAMETERS ON THE DIFFERENT TRACKSOMPOUND
FITNESS OVER ALL8 TRACKS 1S2.01 (0.11).

Fig. 4. Sensor setup of the further evolved general controller analysed in
table V. Only three sensors seem to be long enough to of any use, and
all of those point to the right or front-right. The asymmetry and "waste”
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-0.5 is somewhat surprising, as the controller performs well on all the first six
tracks (but it does do slightly better on clockwise than on anti-clockwise
Fig. 3. A successful incremental run, producing a generally proficierffacks).

controller. New tracks were added to the fithess function when fitness of
the best controller reached 1.5; this happened at generations 53, 240, 253,

394 and 536. Maximum fitness continued to increase for approximately 50 . .
generations after that. The graph show the fitness of the best controller (d&?ntm"ers evolved using the incremental method as the seed
line) and the mean fitness of the population. for a new evolutionary run, with sensor mutation turned
on and controllers tested on all six tracks simultaneously.
The results was an increase in mean fitness, as can be seen
because these runs suffer from "premature specialization’in V. Although the mean fithess does not increase on every
after evolving a good controller for the first track, the sensasingle track, the best controller of the last generation races
setup might not be suited for good driving on the secondll the tracks more reliably, and is very rarely observed to
track, and changing the parameters would diminish fithegsash into a wall in such a way that the car gets stuck. The
on the first track, thus creating a local optimum. That thevolved sensors of this controller showed little similiarity to
first two tracks are, from the point of view of the car, mirrorthe original sensor setup, described above - see figure 4 for
images of each other, adds plausibility to this hypothesis. an example.

C. Further evolution VI. EVOLVING SPECIALIZED CONTROLLERS

Evolving sensor parameters can be beneficial, however,In order to see whether we could create even better
when this is done for a controller that has already reachembntrollers, we used one of the further evolved controllers
general proficiency. We used one of the generally proficieifvith evolved sensor parameters) as basis for specializing



Track 1 2 3 4 5 6 7 8
Fitness (sd) 1.66 (0.12)| 1.86 (0.02)| 2.27 (0.45)| 2.66 (0.3)| 2.19 (0.23)| 2.47 (0.18)| 0.22 (0.15)| 0.15 (0.01)

TABLE V
FITNESS OF A FURTHER EVOLVED GENERAL CONTROLLER WITH EVOLVABLE SENSOR PARAMETERS ON THE DIFFERENT TRACKSOMPOUND FITNESS

2.22 (0.09).

Track | 10 50 100 200 Pr.

1 1.9 (0.1) 1.99 (0.06) | 2.02 (0.01)| 2.04 (0.02) | 10 4

2 2.06 (0.1) | 2.12 (0.04)| 2.14 (0) 2.15 (0.01)| 10

3 3.25 (0.08) | 3.4 (0.1) 3.45(0.12)| 3.57 (0.1) | 10

4 3.35(0.11) | 3.58 (0.11)| 3.61 (0.1) | 3.67 (0.1) | 10

5 2.66 (0.13)| 2.84 (0.02) | 2.88 (0.06) | 2.88 (0.06)| 10

6 2.64 (0) 2.71 (0.08)| 2.72 (0.08) | 2.82 (0.1) | 10 g

7 1.53 (0.29) | 1.84 (0.13)| 1.88 (0.12) | 1.9 (0.09) | 10

8 0.59 (0.15)| 0.73 (0.22) | 0.85(0.21)| 0.93 (0.25)| O

TABLE VI
FITNESS OF BEST CONTROLLERSEVOLVING CONTROLLERS
3

SPECIALISED FOR EACH TRACK STARTING FROM A FURTHER EVOLVED
GENERAL CONTROLLER WITH EVOLVED SENSOR PARAMETERS . . .
Fig. 6. Sensor setup of a controller specialized for, and able to consistently
reach good fitness on, track 7. Presumably the use of all but one sensor and
their angular spread reflects the large variety of different situations the car
I has to handle in order to navigate this more difficult track.

Fig. 5. Sensor setup of controller specialized for track 5. While more or

less retaining the two longest-range sensors from the further evolved general |
controller it is based on, it has added medium-range sensors in the front and
back, and a very short-range sensor to the left. Fig. 7. Sensor setup of another controller specialized for track 7, like the

one in figure 6 seemingly using all its sensors, but in a quite different way.

controllers. For each track, 10 evolutionary runs were made,
where the initial population was seeded with the genera}/”'
controller and evolution was allowed to continue for 200 It has previously been found that the evolutionary approach
generations. Results are shown in table VI. The mean fitnegsed in this paper can produce controllers that outperform
improved significantly on all six first tracks, and much ofhuman drivers[4]. To corroborate this result, one of the
the fitness increase occured early in the evolutionary ruauthors measured his own performance on the various tracks,
as can be seen from a comparison with table V. Furthedriving the car using keyboard inputs and a suitable delay
the variability in mean fitness of the specialized controllersf 50 ms between timesteps. Averaged over 10 attempts,
from different evolutionary runs is very low, meaning that thehe author’s fitness on track 2 was 1.89, it was 2.65 on
reliability of the evolutionary process is very high. Perhapgack 5, and 1.83 on track 7, numbers which compare rather
most surprising, however, is that all 10 evolutionary runsinfavourably with those found in table VI. The responsible
produced proficient controllers for track 7, on which theauthor would like to believe that this says more about the
general controller had not been trained (and indeed had vetgipabilities of the evolved controllers than those of the
low fitness) and for which it had previously been found tauthor.
be impossible to evolve a proficient controller from scratch. Traces of steering and driving commands from the evolved
Analysis of the evolved sensor parameters of the specialentrollers show that they often use a PWM-like technique,
ized controllers show a remarkable diversity, even amorig that they frequently - sometimes almost every timestep -
controllers specialized for the same track, as evident ichange what commands they issue. For example, the general
figures 5, 6 and 7. Sometimes, no similarity can be foundontroller used as the base for the specializations above
between the evolved configuration and either the originamploys the tactic of constantly alternating between steering
sensor parameters or those of the further evolved geneteft and right when driving parallell to a wall, giving the
controller the specialization was based on. appearance that the car is shaking. Frequently alternating
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between neutral and forward drive is also used a way dlfie same track. Further, we are planning to use this model to
keeping a certain speed; an approach many engineers woirdestigate controller architectures permitting internal state,
use when designing a controller for a vehicle that can onlguch as plastic networks[15] or recurrent networks. We are
be controlled with discrete inputs. Doing so is howevealso planning to compare evolutionary learning to other
practically impossible for a human driver, and analysis oforms of reinforcement learning, such as TD-learning, which
action traces for human drivers shows much fewer changbas been shown to be considerably faster in some domains.
to the commands given; as an example, one of the authorsHowever, to be able to handle really complex environ-
changes drive command only four times per lap when racingent, the controller will need high-bandwidth sensor data
on track 3. of some kind, without which complex object recognition
and resolution of perceptual aliasing is impossible. We are

VIIl. CONCLUSIONS AND FUTURE WORK . . . . .

_ therefore working towards incorporating visual or visual-

We believe that the results presented above answer, at leggt input, using either the current 2D simulation, or some
in part, the several questions posed in section I-B. Differenfiner 3p-enabled simulator. We have previously tried the
tracks can indeed be constructed that have various difficuléy5iye” approach of connecting high-bandwidth (on the order

levels, in terms of the probability that an evolutionary rumg oo inputs) 2D vision directly to evolvable single- or
starting from scratch will produce a proficient controllenyti-layer perceptrons, but only had limited success. An
within a given number pf.generatlons, and the mean fitness FPlftegraI part of the ongoing project is therefore to develop
evolved controllefs. Difficulty .Ievels range from very easyq modular architecture which can reuse weights so as to
where the evolutionary algorithm almost always succeedg,qyce the dimensionality of space in which to search for

to very hard, for which no successful controllers have beeg),ch controllers.

found, and agree with intuitive human difficulty ratings of
the same tracks. These skills are, however, not transferable:
a controller evolved from scratch to perform well on ajy
given track usually performs very poorly on all other tracks.
Evolving sensor parameters along with network Weights.[2
makes for fewer proficient controllers (probably because of3)
more local optima), a results which is not inconsistent with
the good controllers that do emerge being slightly superi0|[4]
to fixed-sensor ones, as found in [4].

As for the question on whether we can automatically[5]
create controllers with driving skills so general that they can
proficiently race all tracks in our training set, this can be done
by using incremental evolution, going from simpler to morel6]
complex tracks, with sensor mutation turned off. Attempts,
to evolve general controllers with sensor mutation turne
on failed, as did attempts to evolve controllers on all tracks
simultaneously. Once a general controller has been createl!
its fitness can be increased through continued evolution witip;
sensor mutation turned on. Specialized controllers can be
created by further evolving a general controller, using only
one track in the fitness function. These specialized controllefsy
invariably have very high fithess. Much to our surprise, this
was true even for one hard track which the general controller
had not been evolved on and which it had very low fitnesgi)
on, and for which we have not been able to evolve proficient
controllers from scratch. Apparently, the general controllf?
is somehow closer in search space to a proficient controllge)
for that track, even though it has no proficiency itself on th&f4]
track. Exactly how this works remains to be found out. 15]

We hope that our results are relevant to both game A{I
development, as it suggests a way of using already evolved
solutions as bases for further evolution to quickly and reliably
produce specialized solutions for particular tasks, and to
evolutionary robotics, as it goes some way to demonstrate
the scalability and generality of car racing as an ER testbed.

Currently, our efforts are focused on extending the model
to allow competitive coevolution between several vehicles on
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