
Forcing neurocontrollers to exploit sensory symmetry
through hard-wired modularity in the game of Cellz

Julian Togelius
Department of Computer Science

University of Essex
Colchester, Essex, CO4 3SQ

julian@togelius.com

Simon M. Lucas
Department of Computer Science

University of Essex
Colchester, Essex, CO4 3SQ

sml@essex.ac.uk

Abstract- Several attempts have been made in the past
to construct encoding schemes that allow modularity
to emerge in evolving systems, but success is limited.
We believe that in order to create successful and
scalable encodings for emerging modularity, we first
need to explore the benefits of different types of
modularity by hard-wiring these into evolvable
systems. In this paper we explore different ways of
exploiting sensory symmetry inherent in the agent in
the simple game Cellz by evolving symmetrically
identical modules. It is concluded that significant
increases in both speed of evolution and final fitness
can be achieved relative to monolithic controllers.
Furthermore, we show that simple function
approximation task that exhibits sensory symmetry
can be used as a quick approximate measure of the
utility of an encoding scheme for the more complex
game-playing task.

1 Background

The current interest in exploring and exploiting
modularity in evolutionary robotics can be understood in
several ways: as a way of studying modularity in
biological evolved systems, as a way of making evolution
produce systems which are easier (or at least possible) for
humans to understand and thus to incorporate into other
human-made systems, and as a means of scaling up
evolutionary robotics beyond the simple behaviours which
have been evolved until now. In our opinion, these
perspectives are complementary rather than exclusive.

For those interested in evolving autonomous agents for
computer games, certainly the two latter perspectives are
the most important. Agents will need to be able to perform
complex tasks, such as serving as opponents to human
players, in environments constructed for human players,
and their internal structure should ideally be amenable to
changes or enhancements from game constructors.

The ways in which modularity can help scaling up and
make evolved solutions comprehensible is by improving
network updating speed, reducing search dimensionality,
allowing for reusability, and diminishing neural
interference.

When a neural network is divided up into modules, the
number of connections for the same number of neurons
can be significantly reduced compared to a non-modular,
i.e. a fully connected network. As propagating an

activation value along a connection is the most frequent
operation performed when updating a neural network, the
time needed for updating the network can be likewise
significantly reduced. This not only allows the controller
to be used in time-critical operations, like real-time games,
but it also speeds up evolution.

However, even if a modular network has the same
number of connections as its modular counterpart, as is the
case with the architectures presented in this paper,
evolution can be sped up by modularity. In most
encodings of neural networks, the length of the genome is
directly proportional to the number of connections, but
when several modules share the same specifications, the
genome for a modular network might be significantly
smaller than for a non-modular network with the same
number of connections. This reduces the dimensionality of
the space the evolutionary algorithm searches for the
solution in, which can improve the speed of evolution
immensely.

Neural interference (Calabretta et al. 2003) refers to
the phenomenon that the interconnection of unrelated
parts of a neural network in itself can hamper evolution,
because any mutation is likely to set that interconnection
to a non-zero value, which means that activity in these
non-related parts of the network interfere with each other.
A good modularisation alleviates this problem.

Finally, many problems arising in computer games and
elsewhere have the property that parts of their solutions
can be reused in other problems arising in similar context.
An evolutionary algorithm that could reuse neural
modules in the development of new solutions could cut
evolution time in such circumstances.

The flipside to all this is that not every architecture is a
modular architecture, and constraining your network to
modular topologies means running the risk of ruling out
the best architectural solutions; constraining your network
to weight-sharing (reusable) modules means even more
constraints, as this is optimal only when there is indeed
some repeating problem structure to exploit.

Many attempts have in the past been made to achieve
the benefits outlined above while minimizing the negative
effects of topological constraints. Several of these
attempts try to allow for the division of the
neurocontroller into modules to emerge during evolution,
instead of explicitly specifying the modules. For example,
Cellular Encoding (Gruau 1994), inspired by L-systems
(Lindenmayer 1968) grows neural networks according to
information specified in graphs, allowing segments of the
network to be repeated several times. Gruau’s architecture

has been put to use and expanded by other researchers,
such as Hornby et al. (2001) and Kodjabachian and Meyer
(1995). An alternative modular encoding, called
Automatically Defined Functions (Koza 1994) is used in
Genetic Programming. Bongard (2003) has recently
devised an encoding based on gene regulation, which is
capable of producing modular designs; a good overview
of approaches such as those mentioned above is given in
(Stanley & Miikkulainen 2003).

However, even in these encoding schemes, human
design choices arguably influence the course of evolution;
some forms of modularity are more likely to evolve than
others. For example, a given encoding scheme might be
better suited for evolving modules that connect to each
other in a parallel fashion than for evolving modules that
connect together in a hierarchic fashion. At the same time,
we usually don’t have a theory of what sort of modularity
would best benefit a particular combination of task,
environment and agent. This could be why these
encodings, though mathematically elegant, have failed to
scale up beyond very simple tasks, at least in neural
network-based approaches. Furthermore, these encodings
seem very poor at expressing re-usable modules compared
to languages used for expressing hardware or software
designs, such as VHDL or Java respectively. To properly
express modular designs, it is necessary to allow
specification not only of the details of a module, but also
how modules may be sensibly interconnected together,
and how new module designs may be constructed from
existing ones via delegation and inheritance. The
concepts of evolving objects (Keijzer et al, 2001), or
object-oriented genetic programming (Lucas, 2004)
suggest some promising directions, but more work is
needed in these areas.

We believe that the complementary approach of
explicitly defining and hard-wiring modules and their
interrelations could be useful in investigating what sorts of
modularity are best suited to any particular problem, or
problem class; knowledge which would be useful when
developing new encoding schemes allowing for emergent
modularity. We also believe that explicit modular
definition will scale up better than any other method in use
today.

Raffaele Calabretta and his colleagues have reported
increased evolvability from hard-coded modularity (with
non-identical modules) in different contexts, such as
robotic can-collecting (Calabretta et al. 2000) and a model
of the what and where pathways of the primate visual
system (Calabretta et al. 2003), but note the conflicting
findings of Bullinaria (2002).

Of special interest in our approach are cases where
aspects of the problem or agent show some form of
symmetry, so that identical modules can be evolved and
replicated in several positions in the controller, using
different inputs. Little work seems to have been done on
this, but note Vaughan (2003) who evolves a segmented
robot arm with identical modules, and Schraudolph et al.
(1993) use tiled neural networks that take advantage of the
symmetry inherent in the game Go. However the problem
of playing Go is very different than playing most

computer games. They also use temporal difference
learning rather than evolution.

In this paper, we are comparing the results and
dynamics of evolving monolithic networks (standard
multi-layer perceptrons) of different sizes with those of
evolving modular architectures with identical modules that
exploit sensory symmetry. The evolved neural networks
are compared both in terms of maximum fitness, fitness
growth, and behaviour of the resulting controllers.

As a test bed, we have used the game Cellz, which has
the benefit that the agent has 8-way radial symmetry.
While Cellz was developed especially for testing
evolutionary algorithms, the computational expense can
still be prohibitive for exploring large parameter spaces.
Therefore, we have constructed a simple function
approximation task to have similar difficulty and demands
on network architecture as the Cellz control task, but
which evaluates much faster. Experiments with different
network architectures were carried out first using the
function approximation task, and then using Cellz, and the
qualitative similarity of results using these two tasks were
investigated.

2 Methods

2.1 Cellz
The game of Cellz (Lucas 2004) has been designed as a
test bed for evolutionary algorithms. The game was run as
a competition for the GECCO 2004 conference, and the
source code is available on the web. The elements of the
game are a number of cellz and a number of food
particles, and the objective of the game is for the cellz to
eat as many food particles as possible. A cell eats a food
particle by moving over it, which increases its mass; when
its mass increases over a threshold it splits into two. The
food particle, upon being eaten, vanishes and reappears
somewhere else on the game area. A cell moves by
applying a force vector to itself, which trades some of its
mass for changing its speed – the problem of movement is
not trivial, having to take momentum and friction into
account. Neither is the problem of deciding which food
particles to go for, which in the case of only one cell is an
instance of the travelling salesman problem, but quickly
becomes more complex as other cells are added. A major
problem is not to go for a food particle that another cell
will get to first. Furthermore, each game starts with the
cells and the food in random locations, and each new
piece of food is added in a random location, which means
that evolution should aim to acquire general good
behaviours rather than those that just happen to work well
for a particular game configuration. Figure 1 shows the
trace of a part of a game run using an evolved perceptron
controller (from Lucas 2004), and illustrates how the cells
(thick lines) move in chaotic patterns in their attempts to
eat food (dots) and divide.

Each cell is equipped with eight cell sensors and eight
food sensors spread evenly around its body; (Figure 2)
each sensor measures the distance to and concentration of
other cellz or food in its 45 degree angle. The sensor

arrays are used as inputs to the controllers, and their
outputs are used to generate the force vectors.

The total mass of all cells was used as fitness value for
each game, which was run for 1000 time steps, and the
fitness value for each individual in each generation was
computed as the mean of ten such games in order to
reduce noise.

Figure 1: A sample run of Cellz with an evolved
perceptron controller (from Lucas 2004).

Figure 2: The wrap around input sensors. From
Lucas (2004).

2.2 Neural networks
Four different neural architectures were tested and
compared. In all of them, each neuron implemented a tanh
activation function, and the synapse weights were
constrained to be in the range [-1..1], as were inputs and
outputs.

The first two architectures were standard multi-layer
perceptrons (MLPs). The first MLP consisted of an input
layer of 16 neurons, an 8 neuron hidden layer and an
output layer of two neurons. The second MLP had two
hidden neuron layers of 16 neurons each. In both
architectures, positions 0-7 received inputs from the
”food” input vector of the Cellz agent, positions 8-15
received inputs from the ”cells” input vector, and the two

outputs from the network were used to create the force
vector of the cell.

The other two “convoluted” architectures consist of
eight separate but identical neural network modules - they
share the same genome. Each module can be thought of as
assigned to its own pair of sensors, and thus being at the
same angle r relative to the x axis as those sensors. The
outputs from the each module’s two output units is rotated
–r degrees, and then added to the summed force vector
output of the controller.

In the convoluted architectures, each module gets the
full range of sixteen inputs, but they are displaced
according to the position of the module (e.g. module
number 3 gets food inputs 3, 4, 5, 6, 7, 0, 1, 2, in that
order, while the input array to module 7 starts with sensor
7; Figure 3). In the first convoluted architecture the
modules lack hidden layer, but in the second convoluted
architecture, each has a hidden layer of two neurons.

It is interesting to compare the number of synapses used in
these architectures, as that number determines the network
updating speed and the dimensionality of the search space.
The MLP with 8 hidden neurons has 144 synapses, while
the MLP with two hidden layers totals 544 synapses. The
perceptron-style convoluted controller has 32 synapses per
module, which sums to 256 synapses, and the hidden-layer
convoluted controller has 36 synapses per module, which
sums to 288 synapses. It should be noted that while the
convoluted controllers have little or no advantage over the
MLPs when it comes to updating speed, they present the
evolutionary algorithm with a much smaller search space,
as only 32 or 36 synapses are specified in the genome.

Figure 3: Simplified illustration of the convoluted
architectures, taking only one type of sensor into
account. The connections in black are the
connections from all sensors to one module; this
structure is repeated (grey lines) for each module.

2.3 Function approximation task
Like the Cellz task, the function approximation task
requires the network to have 16 inputs and 2 outputs. The
input array is divided into two consecutive arrays of 8
positions; each position has an associated angle in the
same manner as the Cellz controller. Each time a network
is evaluated, a random position on an imaginary circle, i.e.
a raQGRP� QXPEHU� LQ� WKH� UDQJH� >���� @, is produced. The
network inputs receive activations corresponding in a
nonlinear fashion to their associated angles’ distance to
the target position. The function to be approximated by
the outputs of the network is the sine and cosine of the
target position, and the fitness function is the mean
absolute summed difference between these values and the
actual network outputs. The time it takes to evaluate a
neural network on the function approximation task is on
the order of a thousand times less than the time taken to
evaluate the same network as a neurocontroller for Cellz.

2.4 Evolutionary algorithm
Controllers for the agents were evolved using an
evolutionary algorithm with a population size of 30.
Truncation selection was used, and elitism of 5; at each
generation, the population was sorted on fitness, the worse
half was replaced with clones of the better half, and all
controllers except the top 5 were mutated. Mutation
consisted of perturbing all synaptic weights by a random
value, obeying a Gaussian distribution with mean 0 and
standard deviation 0.1.

3 Results

In all the graphs presented in this section, the dark line
tracks the fitness of the best controller in each generation,
while the other line represents the mean population fitness.

3.1 Evolving function approximators
For the function approximation problem, we define fitness
to be the negative of the mean error – which gives a best
possible fitness of zero. Each figure in this sub-section
depicts the mean of ten evolutionary runs. Both
monolithic (MLP) architectures were evolved for 100
generations. (Figures 4 and 5) They eventually arrived at
solutions of similar quality, though the dual-layer MLP
took longer time to get there.

The perceptron-style convoluted network reached fitness
similar to that of the monolithic networks, but somewhat
faster (Figure 6). The real difference, though, was with the
convoluted network with one hidden layer; it achieved
much higher fitness than any of the three other
architectures, and did so with fewer fitness evaluations
(Figure 7). In this case, we are observing a very clear
benefit of the enforced modular structure. Next we
investigated how well this function approximation task
serves as a test-bed for the real game, which has a
significant degree of noise, together with complex
dynamics. While the network weights to solve each task
are likely to be very different, the overall connection
topologies, and the constraints on those topologies are

likely to be rather similar, based on our construction of the
function approximation task. Hence, while the evolved
weights cannot be transferred from the function
approximation task to the game, it is still possible that the
both the task and the game measure similar qualities of the
encoding schemes.

- 0 .9

- 0 .8

- 0 .7

- 0 .6

- 0 .5

- 0 .4

- 0 .3

- 0 .2

- 0 .1

0

1 1 1 21 3 1 41 5 1 61 7 1 81 9 1

Figure 4: MLP with one hidden layer on the
function approximation task.

- 0 .9

- 0 .8

- 0 .7

- 0 .6

- 0 .5

- 0 .4

- 0 .3

- 0 .2

- 0 .1

0
1 11 21 31 41 51 61 71 81 91

Figure 5: MLP with two hidden layers on the
function approximation task.

- 1

- 0 .9

- 0 .8

- 0 .7

- 0 .6

- 0 .5

- 0 .4

- 0 .3

- 0 .2

- 0 .1

0

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1

Figure 6: Perceptron-style convoluted network on
the function approximation task.

- 0 .9
-0 .8
-0 .7
-0 .6
-0 .5
-0 .4
-0 .3
-0 .2
-0 .1

0

1 11 21 31 41 51 61 71 81 91

Figure 7: Convoluted network with one hidden
layer on the function approximation task.

3.2 Evolving Cellz controllers
The two MLP architectures were evolved for 200
generations. Each figure now shows a single run, but each
experiment was repeated several times, and the graphs
shown are representative. The one-layer MLP evolved
somewhat faster and reached a higher final fitness. Both
evolutionary runs produced good controllers, whose
agents generally head straight for the food, even though
they fairly often fail to take their own momentum into
consideration when approaching the food, overshoot the
food particle and have to turn back. (Figures 8 and 9).

Finally, the two convoluted controllers were evolved
for 100 generations, and quickly generated very good
solutions. The convoluted controller with a hidden layer
narrowly outperformed the one without. Not only did
good solutions evolve considerably faster than in the cases
of the MLPs, but the best evolved convoluted controllers
actually outperform the best evolved MLP controllers with
a significant margin. As the computational capabilities of
any of the convoluted controllers is a strict subset of the
capabilities of the MLP with two hidden layers, this is
slightly surprising, but can be explained with the
extravagantly multidimensional search problems the
MLPs present evolution with – even if a better solution
exists it is improbable that it would be found in reasonable
time.

Figure 8: Evolving an MLP with one hidden layer
for the Cellz game.

0

200

400

600

800

1000

1200

1400

1600

1 21 41 61 81 101 121 141 161 181

Figure 9: Evolving an MLP with two hidden layers
for the Cellz game.

It is also interesting to note that the length of the neural
path from sensor to actuator in the robots (that is, the
number of hidden layers) seems to be of relatively small
importance. (Figures 10 and 11) A comparison between
controllers evolved in this paper, the winner of the
GECCO 2004 Cellz contest, and the hand designed
controllers mentioned in the original Cellz paper (Lucas
2004) is presented in Table 1. Note that the differences
between the best three controllers are not statistically
significant. The convoluted controller with one hidden
layer is one of the best controllers found so far (though the
convolutional aspect of the controller was hand-designed).
Note that the winner of the GECCO 2004 contest was also
partially hand-designed, as a neural implementation of the
hand-coded sensor controller1. So far the purely evolved
neural networks have been unable to compete with the
networks that have been partially hand-crafted.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 11 21 31 41 51 61 71 81 91

Figure 10: Evolving a perceptron-style convoluted
controller for the Cellz game.

1 See:
http://cswww.essex.ac.uk/staff/sml/gecco/results/cellz/Cell
zResults.html

0
200
400
600
800

1000
1200
1400
1600
1800

1 21 41 61 81 101 121 141 161 181

0

500

1000

1500

2000

2500

1 11 21 31 41 51 61 71 81 91

Figure 11: Evolving a convoluted MLP controller
with one hidden layer for the Cellz game.

Controller Fitness S. E.
JB_Smart_Function_v1.1 (Winner of
GECCO 2004 Cellz contest)

1966 20

Convoluted controller with one hidden
layer

1934 18

Hand-coded sensor controller 1920 26
MLP with one hidden layer 1460 13
Hand-coded greedy controller 1327 24
MLP with two hidden layers 1225 14

Table 1: Mean fitness and standard errors over 100
game runs for controllers mentioned in this paper
in comparison to other noteworthy Cellz
controllers.

4 Conclusions

Our results clearly show that hard-coding modularity into
neurocontrollers can increase evolvability significantly, at
least when agents show symmetry, as they do in many
computer games and robotics applications. They also
show that certain types of modularity perform better than
others, depending on the task at hand. Adding hidden
neural layers might either increase or decrease
evolvability, depending on the task. As neural encodings
that intend to let modularity emerge always have certain
biases, these results need to be taken into account when
designing such an encoding.

 We have also seen that the performance of the
different architectures on the fitness approximation task
are qualitatively comparable to the results of the same
networks on the full Cellz task, e.g. the MLP with two
hidden layers evolves more slowly than the MLP with
only one, and the convoluted networks outperform
monolithic networks. This suggests that this much simpler
task can be used to further investigate the merits of
different network architectures for Cellz; in particular, it

might be possible to evolve network architectures for this
simpler task, and later re-evolve the connection strengths
of the evolved architectures for the Cellz task. The
advantage of using the simpler task as a test-bed is that it
is around 1,000 times faster to compute. This method can
probably be used for other games as well.

The research described here is part of the first author’s
doctoral project investigating the role of modularity in
artificial evolution; previous work on evolving layered
structures was reported in Togelius (2004). In the future,
we plan to extend this approach to more complicated tasks
and input representations, such as first-person games with
visual input. Eventually, we aim towards using the results
of those studies as a requirements specification in the
creation of new representations with which to evolve
modular systems.

Bibliography

Bongard, J. C. (2003): Incremental Approaches to the
Combined Evolution of a Robot’s Body and Brain. PhD
dissertation, University of Zurich.

Bullinaria, J. A. (2002): To Modularize or Not To
Modularize? Proceedings of the 2002 U.K Workshop on
Computational Intelligence: UKCI-02.

Calabretta, R., Nolfi, S., Parisi, D., Wagner, G. P. (2000):
Duplication of modules facilitates functional
specialization. Artificial Life, 6(1), 69-84.

Calabretta, R, Di Ferdinando, A. D., Wagner, G. P.,
Parisi, D. (2003): What does it to take to evolve
behaviorally complex organisms? Biosystems 69(2-3):
245-62.

Gruau, F. (1993): Genetic Synthesis of Modular Neural
Networks. In Forrest, S. (Ed.): Proceedings of Fifth
International Conference on Genetic Algorithms. Morgan
Kaufmann, 318-325.

Hornby, G. S., Lipson, H., Pollack, J. B. (2001):
Evolution of Generative Design Systems for Modular
Physical Robots. IEEE International Conference of
Robotics and Automation.

M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer
(2001) Evolving Objects: a general purpose evolutionary
computation library, Proceedings of Evolution
Artificielle. Lecture Notes in Computer Science 2310,
231-244.

Kodjabachian, J. and Meyer, J. A. (1995): Evolution and
development of control architectures in animats. Robotics
and Autonomous Systems, 16, 161-182.

Koza, J. R. (1994): Genetic Programming II: Automatic
Discovery of Reusable Programs. Bradford Books.

Lindenmayer, A. (1968): Mathematical models for
cellular interaction in development: Parts I and II.
Journal of Theoretical Biology, 18, 280-299, 300-315.

Lucas, S. M. (2004): Cellz: A Simple Dynamic Game for
Testing Evolutionary Algorithms. Proceedings of the
Congress on Evolutionary Computation, 1007-1014.

Lucas, S.M. (2004), Exploiting Reflection in Object
Oriented Genetic Programming, Proceedings of the
European Conference on Genetic Programming, 369-378.

Schraudolph, N. N., Dayan, P., Sejnowski, T. J. (1993):
Temporal Difference Learning of Position Evaluation in
the Game of Go. In Cowan et al. (eds): Advances in
Neural Information Processing 6. San Mateo, CA: Morgan
Kaufmann, 817 – 824.

Stanley, K. O. and Miikkulainen, R. (2003): A Taxonomy
for Artificial Embryogeny. Artificial Life, 9(2), 93-138.

Togelius, J. (2004): Evolution of a subsumption
architecture neurocontroller. Journal of Intelligent and
Fuzzy Systems 15(1), 15-20.

Vaughan, E. (2003): Bilaterally symmetric segmented
neural networks for multi-jointed arm articulation.
Unpublished paper, University of Sussex. Available at:
http://www.droidlogic.com/sussex/adaptivesystems/Arm.p
df

