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Abstract- Several attempts have been made in the past 
to construct encoding schemes that allow modularity 
to emerge in evolving systems, but success is limited. 
We believe that in order to create successful and 
scalable encodings for emerging modularity, we first 
need to explore the benefits of different types of 
modularity by hard-wiring these into evolvable 
systems. In this paper we explore different ways of 
exploiting sensory symmetry inherent in the agent in 
the simple game Cellz by evolving symmetrically 
identical modules. It is concluded that significant 
increases in both speed of evolution and final fitness 
can be achieved relative to monolithic controllers.  
Furthermore, we show that simple function 
approximation task that exhibits sensory symmetry 
can be used as a quick approximate measure of the 
utility of an encoding scheme for the more complex 
game-playing task. 

1 Background 

The current interest in exploring and exploiting 
modularity in evolutionary robotics can be understood in 
several ways: as a way of studying modularity in 
biological evolved systems, as a way of making evolution 
produce systems which are easier (or at least possible) for 
humans to understand and thus to incorporate into other 
human-made systems, and as a means of scaling up 
evolutionary robotics beyond the simple behaviours which 
have been evolved until now. In our opinion, these 
perspectives are complementary rather than exclusive. 

For those interested in evolving autonomous agents for 
computer games, certainly the two latter perspectives are 
the most important. Agents will need to be able to perform 
complex tasks, such as serving as opponents to human 
players, in environments constructed for human players, 
and their internal structure should ideally be amenable to 
changes or enhancements from game constructors. 

The ways in which modularity can help scaling up and 
make evolved solutions comprehensible is by improving 
network updating speed, reducing search dimensionality, 
allowing for reusability, and diminishing neural 
interference. 

When a neural network is divided up into modules, the 
number of connections for the same number of neurons 
can be significantly reduced compared to a non-modular, 
i.e. a fully connected network. As propagating an 

activation value along a connection is the most frequent 
operation performed when updating a neural network, the 
time needed for updating the network can be likewise 
significantly reduced. This not only allows the controller 
to be used in time-critical operations, like real-time games, 
but it also speeds up evolution. 

However, even if a modular network has the same 
number of connections as its modular counterpart, as is the 
case with the architectures presented in this paper, 
evolution can be sped up by modularity. In most 
encodings of neural networks, the length of the genome is 
directly proportional to the number of connections, but 
when several modules share the same specifications, the 
genome for a modular network might be significantly 
smaller than for a non-modular network with the same 
number of connections. This reduces the dimensionality of 
the space the evolutionary algorithm searches for the 
solution in, which can improve the speed of evolution 
immensely. 

Neural interference (Calabretta et al. 2003) refers to 
the phenomenon that the interconnection of unrelated 
parts of a neural network in itself can hamper evolution, 
because any mutation is likely to set that interconnection 
to a non-zero value, which means that activity in these 
non-related parts of the network interfere with each other. 
A good modularisation alleviates this problem. 

Finally, many problems arising in computer games and 
elsewhere have the property that parts of their solutions 
can be reused in other problems arising in similar context. 
An evolutionary algorithm that could reuse neural 
modules in the development of new solutions could cut 
evolution time in such circumstances. 

The flipside to all this is that not every architecture is a 
modular architecture, and constraining your network to 
modular topologies means running the risk of ruling out 
the best architectural solutions; constraining your network 
to weight-sharing (reusable) modules means even more 
constraints, as this is optimal only when there is indeed 
some repeating problem structure to exploit. 

Many attempts have in the past been made to achieve 
the benefits outlined above while minimizing the negative 
effects of topological constraints. Several of these 
attempts try to allow for the division of the 
neurocontroller into modules to emerge during evolution, 
instead of explicitly specifying the modules. For example, 
Cellular Encoding (Gruau 1994), inspired by L-systems 
(Lindenmayer 1968) grows neural networks according to 
information specified in graphs, allowing segments of the 
network to be repeated several times. Gruau’s architecture 



has been put to use and expanded by other researchers, 
such as Hornby et al. (2001) and Kodjabachian and Meyer 
(1995). An alternative modular encoding, called 
Automatically Defined Functions (Koza 1994) is used in 
Genetic Programming. Bongard (2003) has recently 
devised an encoding based on gene regulation, which is 
capable of producing modular designs; a good overview 
of approaches such as those mentioned above is given in 
(Stanley & Miikkulainen 2003). 

However, even in these encoding schemes, human 
design choices arguably influence the course of evolution; 
some forms of modularity are more likely to evolve than 
others. For example, a given encoding scheme might be 
better suited for evolving modules that connect to each 
other in a parallel fashion than for evolving modules that 
connect together in a hierarchic fashion. At the same time, 
we usually don’t have a theory of what sort of modularity 
would best benefit a particular combination of task, 
environment and agent. This could be why these 
encodings, though mathematically elegant, have failed to 
scale up beyond very simple tasks, at least in neural 
network-based approaches.  Furthermore, these encodings 
seem very poor at expressing re-usable modules compared 
to languages used for expressing hardware or software 
designs, such as VHDL or Java respectively.  To properly 
express modular designs, it is necessary to allow 
specification not only of the details of a module, but also 
how modules may be sensibly interconnected together, 
and how new module designs may be constructed from 
existing ones via delegation and inheritance.  The 
concepts of evolving objects (Keijzer et al, 2001), or 
object-oriented genetic programming (Lucas, 2004) 
suggest some promising directions, but more work is 
needed in these areas. 

We believe that the complementary approach of 
explicitly defining and hard-wiring modules and their 
interrelations could be useful in investigating what sorts of 
modularity are best suited to any particular problem, or 
problem class; knowledge which would be useful when 
developing new encoding schemes allowing for emergent 
modularity. We also believe that explicit modular 
definition will scale up better than any other method in use 
today. 

Raffaele Calabretta and his colleagues have reported 
increased evolvability from hard-coded modularity (with 
non-identical modules) in different contexts, such as 
robotic can-collecting (Calabretta et al. 2000) and a model 
of the what and where pathways of the primate visual 
system (Calabretta et al. 2003), but note the conflicting 
findings of Bullinaria (2002). 

Of special interest in our approach are cases where 
aspects of the problem or agent show some form of 
symmetry, so that identical modules can be evolved and 
replicated in several positions in the controller, using 
different inputs. Little work seems to have been done on 
this, but note Vaughan (2003) who evolves a segmented 
robot arm with identical modules, and Schraudolph et al. 
(1993) use tiled neural networks that take advantage of the 
symmetry inherent in the game Go.  However the problem 
of playing Go is very different than playing most 

computer games. They also use temporal difference 
learning rather than evolution. 

In this paper, we are comparing the results and 
dynamics of evolving monolithic networks (standard 
multi-layer perceptrons) of different sizes with those of 
evolving modular architectures with identical modules that 
exploit sensory symmetry. The evolved neural networks 
are compared both in terms of maximum fitness, fitness 
growth, and behaviour of the resulting controllers. 

As a test bed, we have used the game Cellz, which has 
the benefit that the agent has 8-way radial symmetry. 
While Cellz was developed especially for testing 
evolutionary algorithms, the computational expense can 
still be prohibitive for exploring large parameter spaces. 
Therefore, we have constructed a simple function 
approximation task to have similar difficulty and demands 
on network architecture as the Cellz control task, but 
which evaluates much faster. Experiments with different 
network architectures were carried out first using the 
function approximation task, and then using Cellz, and the 
qualitative similarity of results using these two tasks were 
investigated. 

2 Methods 

2.1 Cellz 
The game of Cellz (Lucas 2004) has been designed as a 
test bed for evolutionary algorithms. The game was run as 
a competition for the GECCO 2004 conference, and the 
source code is available on the web.  The elements of the 
game are a number of cellz and a number of food 
particles, and the objective of the game is for the cellz to 
eat as many food particles as possible. A cell eats a food 
particle by moving over it, which increases its mass; when 
its mass increases over a threshold it splits into two. The 
food particle, upon being eaten, vanishes and reappears 
somewhere else on the game area. A cell moves by 
applying a force vector to itself, which trades some of its 
mass for changing its speed – the problem of movement is 
not trivial, having to take momentum and friction into 
account. Neither is the problem of deciding which food 
particles to go for, which in the case of only one cell is an 
instance of the travelling salesman problem, but quickly 
becomes more complex as other cells are added. A major 
problem is not to go for a food particle that another cell 
will get to first. Furthermore, each game starts with the 
cells and the food in random locations, and each new 
piece of food is added in a random location, which means 
that evolution should aim to acquire general good 
behaviours rather than those that just happen to work well 
for a particular game configuration.  Figure 1 shows the 
trace of a part of a game run using an evolved perceptron 
controller (from Lucas 2004), and illustrates how the cells 
(thick lines) move in chaotic patterns in their attempts to 
eat food (dots) and divide. 

Each cell is equipped with eight cell sensors and eight 
food sensors spread evenly around its body; (Figure 2) 
each sensor measures the distance to and concentration of 
other cellz or food in its 45 degree angle. The sensor 



arrays are used as inputs to the controllers, and their 
outputs are used to generate the force vectors.   

The total mass of all cells was used as fitness value for 
each game, which was run for 1000 time steps, and the 
fitness value for each individual in each generation was 
computed as the mean of ten such games in order to 
reduce noise. 
 

 

Figure 1: A sample run of Cellz with an evolved 
perceptron controller (from Lucas 2004). 

 

Figure 2: The wrap around input sensors. From 
Lucas (2004). 

 
 

2.2 Neural networks 
Four different neural architectures were tested and 
compared. In all of them, each neuron implemented a tanh 
activation function, and the synapse weights were 
constrained to be in the range [-1..1], as were inputs and 
outputs. 

The first two architectures were standard multi-layer 
perceptrons (MLPs). The first MLP consisted of an input 
layer of 16 neurons, an 8 neuron hidden layer and an 
output layer of two neurons. The second MLP had two 
hidden neuron layers of 16 neurons each. In both 
architectures, positions 0-7 received inputs from the 
”food” input vector of the Cellz agent, positions 8-15 
received inputs from the ”cells” input vector, and the two 

outputs from the network were used to create the force 
vector of the cell. 

The other two “convoluted” architectures consist of 
eight separate but identical neural network modules - they 
share the same genome. Each module can be thought of as 
assigned to its own pair of sensors, and thus being at the 
same angle r relative to the x axis as those sensors. The 
outputs from the each module’s two output units is rotated 
–r degrees, and then added to the summed force vector 
output of the controller. 

In the convoluted architectures, each module gets the 
full range of sixteen inputs, but they are displaced 
according to the position of the module (e.g. module 
number 3 gets food inputs 3, 4, 5, 6, 7, 0, 1, 2, in that 
order, while the input array to module 7 starts with sensor 
7; Figure 3). In the first convoluted architecture the 
modules lack hidden layer, but in the second convoluted 
architecture, each has a hidden layer of two neurons. 

 
It is interesting to compare the number of synapses used in 
these architectures, as that number determines the network 
updating speed and the dimensionality of the search space. 
The MLP with 8 hidden neurons has 144 synapses, while 
the MLP with two hidden layers totals 544 synapses. The 
perceptron-style convoluted controller has 32 synapses per 
module, which sums to 256 synapses, and the hidden-layer 
convoluted controller has 36 synapses per module, which 
sums to 288 synapses. It should be noted that while the 
convoluted controllers have little or no advantage over the 
MLPs when it comes to updating speed, they present the 
evolutionary algorithm with a much smaller search space, 
as only 32 or 36 synapses are specified in the genome. 

 

 

Figure 3: Simplified illustration of the convoluted 
architectures, taking only one type of sensor into 
account. The connections in black are the 
connections from all sensors to one module; this 
structure is repeated (grey lines) for each module. 

 
 



2.3 Function approximation task 
Like the Cellz task, the function approximation task 
requires the network to have 16 inputs and 2 outputs. The 
input array is divided into two consecutive arrays of 8 
positions; each position has an associated angle in the 
same manner as the Cellz controller. Each time a network 
is evaluated, a random position on an imaginary circle, i.e. 
a raQGRP� QXPEHU� LQ� WKH� UDQJH� >���� @, is produced. The 
network inputs receive activations corresponding in a 
nonlinear fashion to their associated angles’ distance to 
the target position. The function to be approximated by 
the outputs of the network is the sine and cosine of the 
target position, and the fitness function is the mean 
absolute summed difference between these values and the 
actual network outputs. The time it takes to evaluate a 
neural network on the function approximation task is on 
the order of a thousand times less than the time taken to 
evaluate the same network as a neurocontroller for Cellz. 

2.4 Evolutionary algorithm 
Controllers for the agents were evolved using an 
evolutionary algorithm with a population size of 30. 
Truncation selection was used, and elitism of 5; at each 
generation, the population was sorted on fitness, the worse 
half was replaced with clones of the better half, and all 
controllers except the top 5 were mutated. Mutation 
consisted of perturbing all synaptic weights by a random 
value, obeying a Gaussian distribution with mean 0 and 
standard deviation 0.1.  

 

3 Results 

In all the graphs presented in this section, the dark line 
tracks the fitness of the best controller in each generation, 
while the other line represents the mean population fitness.   

3.1 Evolving function approximators 
For the function approximation problem, we define fitness 
to be the negative of the mean error – which gives a best 
possible fitness of zero.  Each figure in this sub-section 
depicts the mean of ten evolutionary runs.  Both 
monolithic (MLP) architectures were evolved for 100 
generations. (Figures 4 and 5) They eventually arrived at 
solutions of similar quality, though the dual-layer MLP 
took longer time to get there.   
 
The perceptron-style convoluted network reached fitness 
similar to that of the monolithic networks, but somewhat 
faster (Figure 6). The real difference, though, was with the 
convoluted network with one hidden layer; it achieved 
much higher fitness than any of the three other 
architectures, and did so with fewer fitness evaluations 
(Figure 7).  In this case, we are observing a very clear 
benefit of the enforced modular structure.  Next we 
investigated how well this function approximation task 
serves as a test-bed for the real game, which has a 
significant degree of noise, together with complex 
dynamics.  While the network weights to solve each task 
are likely to be very different, the overall connection 
topologies, and the constraints on those topologies are 

likely to be rather similar, based on our construction of the 
function approximation task.  Hence, while the evolved 
weights cannot be transferred from the function 
approximation task to the game, it is still possible that the 
both the task and the game measure similar qualities of the 
encoding schemes. 
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Figure 4: MLP with one hidden layer on the 
function approximation task. 
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Figure 5: MLP with two hidden layers on the 
function approximation task. 
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Figure 6: Perceptron-style convoluted network on 
the function approximation task. 
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Figure 7: Convoluted network with one hidden 
layer on the function approximation task. 

3.2 Evolving Cellz controllers 
The two MLP architectures were evolved for 200 
generations.  Each figure now shows a single run, but each 
experiment was repeated several times, and the graphs 
shown are representative.  The one-layer MLP evolved 
somewhat faster and reached a higher final fitness. Both 
evolutionary runs produced good controllers, whose 
agents generally head straight for the food, even though 
they fairly often fail to take their own momentum into 
consideration when approaching the food, overshoot the 
food particle and have to turn back. (Figures 8 and 9). 

Finally, the two convoluted controllers were evolved 
for 100 generations, and quickly generated very good 
solutions. The convoluted controller with a hidden layer 
narrowly outperformed the one without. Not only did 
good solutions evolve considerably faster than in the cases 
of the MLPs, but the best evolved convoluted controllers 
actually outperform the best evolved MLP controllers with 
a significant margin. As the computational capabilities of 
any of the convoluted controllers is a strict subset of the 
capabilities of the MLP with two hidden layers, this is 
slightly surprising, but can be explained with the 
extravagantly multidimensional search problems the 
MLPs present evolution with – even if a better solution 
exists it is improbable that it would be found in reasonable 
time. 
 

 

Figure 8:  Evolving an MLP with one hidden layer 
for the Cellz game. 
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Figure 9: Evolving an MLP with two hidden layers 
for the Cellz game. 

It is also interesting to note that the length of the neural 
path from sensor to actuator in the robots (that is, the 
number of hidden layers) seems to be of relatively small 
importance. (Figures 10 and 11) A comparison between 
controllers evolved in this paper, the winner of the 
GECCO 2004 Cellz contest, and the hand designed 
controllers mentioned in the original Cellz paper (Lucas 
2004) is presented in Table 1. Note that the differences 
between the best three controllers are not statistically 
significant.  The convoluted controller with one hidden 
layer is one of the best controllers found so far (though the 
convolutional aspect of the controller was hand-designed).  
Note that the winner of the GECCO 2004 contest was also 
partially hand-designed, as a neural implementation of the 
hand-coded sensor controller1.  So far the purely evolved 
neural networks have been unable to compete with the 
networks that have been partially hand-crafted. 
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Figure 10: Evolving a perceptron-style convoluted 
controller for the Cellz game. 

                                                           
1 See: 
http://cswww.essex.ac.uk/staff/sml/gecco/results/cellz/Cell
zResults.html  
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Figure 11: Evolving a convoluted MLP controller 
with one hidden layer for the Cellz game. 

 

Controller Fitness S. E. 
JB_Smart_Function_v1.1 (Winner of 
GECCO 2004 Cellz contest) 

1966 20 

Convoluted controller with one hidden 
layer 

1934 18 

Hand-coded sensor controller 1920 26 
MLP with one hidden layer 1460 13 
Hand-coded greedy controller 1327 24 
MLP with two hidden layers 1225 14 

Table 1: Mean fitness and standard errors over 100 
game runs for controllers mentioned in this paper 
in comparison to other noteworthy Cellz 
controllers. 

4 Conclusions 

Our results clearly show that hard-coding modularity into 
neurocontrollers can increase evolvability significantly, at 
least when agents show symmetry, as they do in many 
computer games and robotics applications. They also 
show that certain types of modularity perform better than 
others, depending on the task at hand. Adding hidden 
neural layers might either increase or decrease 
evolvability, depending on the task. As neural encodings 
that intend to let modularity emerge always have certain 
biases, these results need to be taken into account when 
designing such an encoding. 

 We have also seen that the performance of the 
different architectures on the fitness approximation task 
are qualitatively comparable to the results of the same 
networks on the full Cellz task, e.g. the MLP with two 
hidden layers evolves more slowly than the MLP with 
only one, and the convoluted networks outperform 
monolithic networks. This suggests that this much simpler 
task can be used to further investigate the merits of 
different network architectures for Cellz; in particular, it 

might be possible to evolve network architectures for this 
simpler task, and later re-evolve the connection strengths 
of the evolved architectures for the Cellz task. The 
advantage of using the simpler task as a test-bed is that it 
is around 1,000 times faster to compute.  This method can 
probably be used for other games as well. 

The research described here is part of the first author’s 
doctoral project investigating the role of modularity in 
artificial evolution; previous work on evolving layered 
structures was reported in Togelius (2004). In the future, 
we plan to extend this approach to more complicated tasks 
and input representations, such as first-person games with 
visual input. Eventually, we aim towards using the results 
of those studies as a requirements specification in the 
creation of new representations with which to evolve 
modular systems. 
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