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Abstract—We consider the problem of generating compact
sub-optimal game-playing heuristics that can be understood
and easily executed by novices. In particular, we seek to find
heuristics that can lead to good play while at the same time
be expressed as fast and frugal trees or short decision lists.
This has applications in automatically generating tutorials and
instructions for playing games, but also in analyzing game design
and measuring game depth. We use the classic game Blackjack
as a testbed, and compare condition induction with the RIPPER
algorithm, exhaustive-greedy search in statement space, genetic
programming and axis-aligned search. We find that all of these
methods can find compact well-playing heuristics under the given
constraints, with axis-aligned search performing particularly well.

I. INTRODUCTION

Much artificial intelligence and game theory research is
focused on quickly finding optimal moves in games; however
discovering optimal moves is often not practical for human
players. Novices look for ways to understand basic concepts,
players may have a limited amount of information in their
working memory, experts may try to trick their opponents
using gambits or other risky moves, and most games are
just too complicated for humans (or machines) to evaluate
in real-time to make optimal moves. In this paper, we focus
on algorithmically generating simple introductory heuristics
for novice players.

Nonetheless, novices are not the only types of players who
use simplified models to make decisions. Instead of humans
acting as purely rational agents making optimal decisions,
the behavioral economic theory of bounded rationality claims
that people make decisions based on a limited amount of
available information and decision-making time [1], [2]. The
process of making best guesses instead of optimally rational
decisions is called satisficing. By using simple heuristics to
make decisions, accuracy can actually improve over more
complicated algorithms because simple guidelines are easier
to execute without errors [3].

Teaching beginners a good simple strategy for a new game
can be a challenge but essential for enjoyment of the game.
Winning a match gives a sense of pleasure, but learning how to
play and improving can lead to a sense of accomplishment [4].
A game in which it is difficult to learn basic strategies may
be overwhelming for new players; a game in which high-
performing strategies are easy to come up with may not be
entertaining in the long run. Strategies that lead to moves that
are effective, simple to execute, easy to remember, and allow
the player to further improve are ideal. Examples of simple
heuristics for well-known games include playing on the middle
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and corners before the sides in Tic-Tac-Toe, while in Chess a
popular heuristic is learning the relative value of the pieces or
simple opening moves to begin the game.

Many well-respected games allow the player to “climb
a heuristic ladder” in which they learn deeper and more
complicated strategies [5]. The length of the heuristic ladder
can give a sense of a game’s depth. Strategies used by beginner
players at Chess may be very different from those used by
professionals. Players look for others of the same skill level to
play against, and as they gather more experience their gameplay
improves leading to more sophisticated and effective moves.
Strategies that once looked overwhelming and confusing can
become accessible. Games such as Chess and Go have such a
high-dimensional game state space that they permit strategies
only accessible to players of significantly higher skill levels,
measurable in Go by the Kyu and Dan rankings and in Chess
by Elo and Titles. On the other hand, easier games like Tic-Tac-
Toe are more accessible for new players for having relatively
simple and effective moves as a result of a low-dimensional
space of strategies. Players of Tic-Tac-Toe don’t need years
of training to improve their strategies to reach an optimal
strategy; therefore they usually stop playing it after learning
or discovering the optimal strategy as there is no longer any
reason to learn and improve.

A Fast and Frugal Tree (FFT) is a particularly good form
of human-usable heuristic and is commonly used in bounded
rationality theory. FFTs are easy to process and in practice have
very good performance over more complicated algorithms [6].
A FFT is a type of binary decision tree where at each decision
node, one path leads to a terminal action and the other path
either leads to a fast and frugal sub-tree or a default action,
as shown Figure 1. These trees can also be implemented as
series of if/elseif/else statements or as a decision list [7], [8].
In this paper, we generate FFTs that can be used by beginners
for effectively playing the game of Blackjack.

In this work we describe some techniques to generate easy to
understand and effective fast and frugal heuristics. We evaluate
and compare the results produced by the various methods.
Our test case game is Blackjack, as a powerful heuristic called
Basic Strategy is already known for the game. This allows us to
verify that our results agree with existing theory on Blackjack
[9]. Additionally, Blackjack is a two player game where the
second player (dealer) must always play by a pre-determined
algorithm only after the first player has completed their actions
— this makes it easier to analyze than games where both players
take turns and are more free in their action selection.

Expert agents to efficiently play games have been explored
for many games, including Chess [10], Othello [11], Check-
ers [12] and Go [13]. These agents are meant to win as often as
possible given an efficient amount of computation, and in many
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Fig. 1. Fast and Frugal Trees are a type of binary decision tree used in
bounded rationality theory. They are effective and easy to learn heuristic for
humans. In this paper, we generate fast and frugal trees — also known as
decision lists — for beginning strategy for Blackjack.

cases they are able to compete on the level of world champion
human players. The game playing heuristics we introduce in
this paper are of much lower skill level as we expect a trade-off
between performance and simplicity. The closer these simple
heuristics get to optimal play in terms of expected value, the
less need a player has to improve, and thus could possibly be
used as a metric to estimate the potential depth of a game.

Evolutionary algorithms are especially effective at devel-
oping strategies for playing games at a high-performing
level. Genetic Programming was used to evolve players for
traditional adversarial board and card games such as Chess
endgame [14], Lose Checkers [15], Backgammon [16] and
Poker [17]. Adversarial video games such as Core War [18]
and Robocode [19] incorporate evolved agents. Other work on
evolving strategies include: Evolution of neurons for a neuro-
network using reinforcement learning to generate controllers
capable of playing levels on a Super Mario Bros clone [20],
using genetic programming to create players for a solo variant
of the game Pong [21], evolving agents to play the game
Pac-Man [22] and evolving controllers with general driving
skills [23]. Blackjack strategies have been evolved using
strategy tables [24], genetic programming trees [25], and neural
networks [26], [27] but these were focused on improving expert
play, not focused on simple guidelines for novices. Blackjack
Als have been used to model and predict human gambling
behaviors [28], in particular the ways that humans process and
recall information [29].

Similarly to Hyper-heuristics [30] we search in heuristic
space, however we only search for novice-friendly heuristics
for a single problem, instead of switching between heuristics.

In the following sections, we first describe the rules of
Blackjack and the Fast and Frugal Tree format we use for
generating novice heuristics. The next four sections each
describe a particular method for generating compact heuristics,
as well as the results from applying these algorithms and
heuristics to Blackjack. Finally we discuss the takeaways of
this comparative study, as well as the prospects for generalizing
the method to other games.

II. BLACKIJACK

For evaluating different methods for generating fast and
frugal heuristics for novice players, we selected Blackjack
as a study case. Blackjack is a well-known gambling game
played all over the world. It uses one or more standard 52
card decks, but 8 decks is typical in modern casinos. In this
paper we assume an infinite number of decks to avoid issues
with counting cards or distributional effects caused by drawing
without replacement.

Blackjack is played against a dealer. The player tries to build
a hand of cards that beats the dealer’s hand, without going
over 21 points. The game starts with a player betting and then
two cards are dealt to the player while the dealer gets one
card face down and one face up. Play proceeds with the player
making all their moves followed by the dealer.

The player has 4 actions to choose from: hit, the player
receives the next card from the deck; stand, the player stops
and plays proceeds to the dealer; double down, the player
doubles their bet, receives exactly one more card and then
plays proceeds to the dealer; and split, the player splits their
two cards into two new hands and the player matches the initial
bet for the new second hand. A player can only split when
they have 2 cards and they are of the same value. The player
loses immediately if they goes over 21 points, called a bust.
After hitting or splitting, the player can continue to make more
actions until they bust or stand.

Cards in Blackjack are worth their face value, independent
of their suit, with the exception of the Jack, Queen and King
which are all worth 10 points and the Ace which is worth
either 1 or 11. The Ace takes on the value of whichever makes
the hand worth the most amount of points without busting. If
the hand contains an Ace that can still change value from 11
to 1 it is called Soft.

After the player made all their moves for a hand, play
proceeds to the dealer. The dealer plays his moves following
an algorithm: they hit while the total amount of points in their
hand is below 17. When they reaches 17 or more they stand.
If the dealer’s score exceeds 21 the dealer busts and the player
wins the hand (if they have not already busted).

There is one special case: when a hand is composed by an
Ace and one other card that is worth 10 points it is considered
a Blackjack. A Blackjack beats any other hand of 21 or less,
except another Blackjack, which results in a tie.

In Blackjack the dealer, who plays for the casino, has the
advantage over the player. That mainly comes from the fact
he plays last and so the player can lose the game by busting
without the dealer ever having to make a move. Although
the game has an element of randomness in the card drawing,
Blackjack has some skill [31]. Strategies for playing the game
to reduce the dealer’s advantage go from what is called Basic
Strategy [9] or Optimum Strategy [32], which closely relates
to the work we do in this paper, to more complex such as card
counting, which we do not address as it is not for novice play.

The Basic Strategy shown on Figure 2 determines the best
move for the player over the hand of the player and the card
the dealer is showing. Special cases occur when the player
holds an Ace or a hand that can be split.
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Fig. 2. The Basic Strategy table. s=stand, h=hit, d=double down and sp=split. By our definition, the table has a fitness of 0 (expected loss of -0.0051875).

Despite being simple to read, the Basic Strategy has several
levels of granularity and so it can be hard to remember all
possible scenarios. Additionally, referring to the card while
playing is allowed but error prone, especially for beginner level
players. In the next sections we present several methods for
generating simple novice level heuristics for Blackjack.

III. HEURISTIC REPRESENTATION

The simple human-playable heuristics we generate can
be represented as fast and frugal trees, decision lists, or
as a series of if/elseif/else statements. For compactness, we
use the if/elseif/else format for this paper but they are all
equivalent. The heuristics are composed of any number of
condition/action pair and a default action. Each condition/action
pair is represented as if/elseif-statements. Conditions are formed
of one or more clauses that must all be true for a condition
to be true. The default action is taken if all the conditions are
not satisfied, and is represented by an else-statement.

Each clause is permitted to analyze P, the total number
of points currently held by the player, and D,;, the number
of points on the dealer’s visible card. P,;, can be compared to
Tlower and Typper, parameterized lower and upper bounds for
Ppis. Oiower and dypper are parameters for lower and upper
bounds for the clauses matching D).

Two conditional boolean statements can also be checked,
canSplit and isSoft. If a player’s hand has two cards and
they are both of the same value, canSplit is True, False
otherwise. If there is still an Ace in the player’s hand that can
change value, isSoft is True, on any other case it is False.

With such, our heuristics are formed as a set of statements
with the following structure:

if CONDITION 1 then ACTION 1

else if CONDITION 2 then ACTION 2

else if ... then ...

else DEFAULT ACTION

where each condition is formed by conjoining together one or
more clauses selected from Tiower < Ppts, Ppts < Tuppers
Otower < Dptsy Dpts < Oupper. canSplit, not canSplit,
isSoft and not isSoft.

We define the complexity of a heuristic by summing up the
total number of clauses plus the number of actions plus 1 for
the default action. This coarse definition does not take into
account that smaller numbers might be easier to memorize

than longer ones, or some orderings of conditions might be
easier to recall. However, our definition allows us a simple
way of comparing more complex heuristics with simpler ones.

We define fitness to be the expected value of the heuristic
minus the expected value of Basic Strategy.

IV. METHODS FOR FAST SIMULATION

In order to evaluate the quality of a heuristic, we need to
test it against a large number of possible hands. We are thus
incentivized to make our simulation run as fast as possible.
We do this by (1) precomputing as many results as possible
and (2) parallelizing the calculation.

Dealer will act only after having complete information of
what the Player’s actions have been. Therefore, given (1) the
final sum of the Player’s cards, (2) assuming an infinite deck
(i.e. choosing with replacement) where the distribution of cards
is the same for every draw, and (3) a fixed algorithm that
the Dealer must follow on their turn, we can precompute all
possible plays for the Dealer once the Player has finished their
turn. This precomputation allows us to store the expected value
of a Player’s final score given the Dealer’s visible card.

We calculate the table of expected values as follows. Given
every possible hand of cards for the Dealer and final score
for the Player, there are a total of 79,489 situations that might
occur. For each possible hand, we know if the game is a win
(+1), tie (0), or loss (-1) given a Player’s final score. For each
final score for the Player and face-up Dealer card, we calculate
the expected value by summing the number of wins minus
losses, dividing by the total number of possible hands given
that first card of the Dealer. We store these expected values
in a table. Instead of playing the Dealer hands, we just look
up the expected value from the table and use the precomputed
result of stopping with that player score against the dealer’s
visible card. Double downs need to multiply the expected value
by 2, and Blackjacks for the Player count as 1.5 wins instead
of 1. Splits require special handling, because the outcome of
the Player’s two hands are not independent. Given the Player’s
two final scores from the split, we calculate the expected value
of the hands together and store this in a separate table.

Unfortunately, we can’t precompute the Player’s hands
because the Player is able to stop at any time which gives
rise to too many possible hands to iterate through (and some
of them are extremely unlikely to occur, such as a hand with
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ten 2’s and one ace). However, we can be sure to deal out all
possible starting 2 cards for the Player and 1 starting card for
the Dealer to ensure the simulations cover a wide range of the
most likely outcomes. For each of these 13*13*13 = 2,197
starting conditions, we simulate between 100 and 500 games,
depending on the speed and accuracy required.

Because every game is independent, we can parallelize
the simulation across multiple cores. We use the python
multiprocessing library to split up the calculation across cores
on a single computer. In addition, we use Cython to compile
the simulation steps into faster C++.

Finally to avoid sampling errors where running equivalent
strategies would give different results depending on which

cards were drawn, we use the same seed for every simulation.

This ensures that equivalent strategies will get exactly the same
fitness every time we run the simulation.

V. INDUCTING HEURISTICS FROM THE BASIC STRATEGY

Following our expressions format we can generate decision
lists [7] as our heuristics, as long as we have a database
to extract our expressions from. For every possible initial
configuration of the game, between the player’s and dealer’s
hands, we simulated 200,000 games of Blackjack for each of
the possible moves for the player’s hand. Starting from the
games with the higher starting hand value and working in
descending order to the games with the lowest value, we tried
to generate a table analogous to the Basic Strategy. From the
average score of the playouts, the move with highest score was
selected. By building the table in descending order of points,
we could reference previous results to decide the next action
to take after a move draws a new card. The database has 550
entries. We compared the results to the moves that would have
been picked by the Basic Strategy. Both pick the same move
for 94% of the entries in the data. The case in which they
differ were mostly when picking split as a move with the Basic
Strategy. With further analysis, we could tell that increasing the
number of simulations would make the diverging data points
converge to the Basic Strategy selections. For this reason, we
decided to generate a database in the same format, but using
the move selection according to the Basic Strategy.

To extract the heuristics from the database we use the
Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) [33] algorithm. The algorithm uses a grow and
prune approach, followed by a revision stage. The database is
split into two, 2 is used in the grow step and the other % in the
prune step. For each class in the data, from the least prevalent
to the most, conditions to classify that class are grown from
the database by adding clauses until maximum information
gain is reached. Pruning is then done on the condition to
maximize a target function. The revision stage then analyzes
each condition, in the order they were learned, and generate
two new candidates for it. One, the replacement, is obtained by
growing and pruning a new condition, where pruning looks to
minimize the error on the set where the condition was replaced
by this new candidate. The other, the revision, is generated
by greedily adding more clauses to the condition. Finally a
decision is made based on a heuristic to decide which to keep,

the original condition, the replacement or the revision. To
the conditions a resulting action is added. For Blackjack, the
possible moves represent the classes. The most prevalent class,
in this case hit, is used as the default move.

if canSplit and 11 < P, < 18 and D,;s < 6 then
SPLIT

else if canSplit and isSoft then SPLIT

else if canSplit and P, <6 and D,;; < 7 then
SPLIT

else if canSplit and P, <8 and 5 < Dy < 6 then
SPLIT

else if canSplit and 13 < P,;; < 18 then SPLIT

else if 10 < Py, <11 and Dy < 9 then
DOUBLEDOWN

else if isSoft and P, < 18 and 5 < D,;; < 6 then
DOUBLEDOWN

else if 9 < P, <11 and 3 < D, < 6 then
DOUBLEDOWN

else if isSoft and 17 < P, < 18 and 3 < Dy < 4

then
DOUBLEDOWN

else if 17 < P,;, then STAND

else if 10 < P, and Dy, < 6 then STAND

else HIT

Fig. 3. The heuristic generated using the RIPPER algorithm. The set correctly
classified 92% of the entries in the database used. It has a fitness of -0.0134.

The results are shown in figure 3. The algorithm came up
with a set of 11 statements, plus the default move. To simplify
readability of the statements, we do a post-processing of the
results: reduce the set of clauses in the conjunctions of a
condition, if there are clauses whose coverage is already part
of another clause in the same condition; reorder the clauses for
readability, ordered from lower to upper bound coverage. Since
one of our goals was to reduce the granularity of heuristic
complexity in respect to the basic strategy, we believe that
the algorithm successfully achieves that up to a point. The
set generated misclassified 8% of the entries, meaning that it
chooses a different move that contained in the database. By
looking at the proximity in fitness, the misclassified scenarios
have a very low impact on the outcome.

In terms of generating novice level heuristics, the one
inducted by RIPPER is unwieldy. The conditions containing
canSplit and isSoft together with the number of statements
appears to be convoluted for a beginner. To address such, we
decided to remove isSoft from the possible clauses and run the
algorithm again, but we were still left with 8 rules and too
much complexity. So we ran the algorithm once more removing
both isSoft and canSplit from the possible clauses. Figure 4
shows the new heuristic, which is a lot closer to our goal,
having cleaner conditions and almost half the total statements.

As the algorithm goes, it looks to generate conditions to
classify members of each class, from the least prevalent to
the most. Since the statements that make up the heuristic
the algorithm generates start from least used moves, the later
statements have much more impact on improving the score
for the player. Since the heuristic generated by RIPPER has
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if Pyts <4 and Dp;; <7 then SPLIT

elseif 10 < P,;; <11 and D,;, < 10 then DOUBLEDOWN

else if 9 < P;; <10 and 4 < D,;; < 6 then
DOUBLEDOWN

else if 13 < P,;; and D, < 6 then STAND

else if 17 < P,;, then STAND

else if 10 < P, and 4 < D,;; < 6 then STAND

else HIT

Fig. 4. Using the RIPPER algorithm the heuristic generated from our database
without canSplit and isSplit. The set correctly classify 83% of the entries
in the database used. This heuristic has a fitness of -0.0234.

its coverage dependent on the order of the conditions found,
rearranging their positions would change the outcome. We
believe that having a heuristic in which the statements are
presented in descending order of their positive impact on the
gameplay would lead to a more flexible heuristic, i.e. if the
number of statements in the heuristic is too overwhelming
for a novice player, we could discard the bottom ones and
have a tighter set size with effective fitness value. We also
wanted to test the hypothesis of whether a heuristic generated
in such fashion could outperform the decision list generated
by RIPPER using a smaller number of statements, since we
know that playing the Basic Strategy was more profitable.

VI. EXHAUSTIVE-GREEDY SEARCH

To produce a heuristic with the most impactful statement
in each step we decided to use a exhaustive-greedy search
algorithm. After playing the game for each of the possible
statements, it picks the one that achieves the best average
score. The algorithm starts with just the default action and
with each new iteration the candidate statements are tested
at the bottom of the current set, before the default move.
Each selected statement is appended right before the default
action. We wanted to create a set of statements that could be
flexible, so that we can reduce the complexity by trimming the
statements on the heuristic while trying to have low impact on
its fitness. We then append the rules to enabling removing the
later statements without impacting the previous.

The algorithm tries different default actions when searching
for a heuristic. Having double down or split as default moves
did not generate statements with good fitness as they were a
much smaller part of the strategy when compared to the two
other moves. This lead to a lengthier set, as statements are
added to cover both hit and stand. The 1 statement heuristic
found proved hit to be a better default action for the algorithm
we were using. Figure 5 shows the same 1 statement heuristic
found with hit and stand as the default action.

if 16 < P,;s then STAND
else HIT

if Pp.s <15 then HIT
else STAND

Fig. 5. The first statement found using exhaustive-greedy search with hit and
stand as default moves. Fitness is -0.0546.

Since the exhaustive-greedy search algorithm added state-
ments to the end of the set, the first statement found had a

great impact. The 1 step heuristics found picked the same
moves in every setup, but the space left for the next ones to
be found is very different. The stand default move set could
only grow new statements for when the player had more than
15 points, which is a much more limited space than the one
where player has less than 16 points. And when looking at the
Basic Strategy we can see that the higher hand value strategies
are composed mostly of stand since the chances of busting are
very high. With such conditions, we decided to keep hit as the
default action and reduce the search space that the algorithm
had to explore. Since RIPPER also has the same default move,
it is also easier to compare the heuristics generated.

To run the algorithm we needed to generate all possible
statements to evaluate. When generating them, we can apply
domain knowledge to reduce the search space: canSplit
only needs to be called if the move being targeted is split
and we don’t need to constraint the player points by odd
numbers in that scenario. Generating all statements to cover
all possible combinations of conditions and moves, we have
9,405 statements for stand, 9,405 for double down and 3,025
for split, for a total of 21,835 different statements. Because the
search space is already this large, we decided not to generate
heuristics that use isSoft, as it would result in doubling the
number of possible statements, for what it seemed to be a
small gain in fitness. Figure 6 shows the heuristic found.

if 16 < P,;s then STAND

else if 9 < P,;, <11 and D,;, < 8 then DOUBLEDOWN
else if 13 < P, <15 and Dp;s < 6 then STAND

else HIT

Fig. 6. Greedy search selecting the highest average scoring statement. The
algorithm reached a local maximum on this 3 step heuristic. Fitness is -0.0302.

When comparing both, the RIPPER simpler set, shown
on Figure 4, outperforms the exhaustive-greedy search by
0.007 average fitness score. That result comes from increasing
complexity: the RIPPER heuristic has 3 more statements.

Greedy search for the best heuristic revealed an interesting
aspect of the game: if we had a single step to follow it would
be for the player to stand when having 16 points or more.
That contradicts a first impression from looking at the Basic
Strategy that the player should stand on 17 or more and on
16 if the dealer has 6 or less points, hit otherwise. Following
the nature of our decision structure, since we are only looking
at a l-statement heuristic, what the greedy selection shows is
that, if we look at only the player points, when having to make
a choice of which move to make at 16 points, in average, is
better to stand than to hit. This is specially interesting since
16 is considered the worst hand in Blackjack [34].

Another interesting result was how fast the local optimum
was reached. The contender for fourth statement had no impact
since its condition was already covered in the set. As a result
of such and the observation that a heuristic that would more
closely resemble the Basic Strategy could have a better average,
we believe that greedily searching for a heuristic is very prone
to getting stuck on local optimums. In order to get better results
from searching we decided to expand our greedy approach.
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VII. EXPANDING THE EXHAUSTIVE-GREEDY SEARCH

Keeping the exhaustive search approach, we try to generate

a new heuristic by making the greedy aspect more expansive.

For that, we decided to no longer pick only the best statement
in each step, but instead register the top 5 ranking statements
for each step. On every iteration of the algorithm works in the
same fashion as exhaustive-greedy search, but now the 5 top
results are store and iterated upon separately. After the last
iteration we take the set with the best average score in the last
step. Figure 7 shows the heuristic found.

if 17 < P,;s then STAND

else if 13 < P,;s and D,;; < 6 then STAND

else if 10 < P,;s <11 and 3 < D,;s <9 then DOUBLE
else HIT

Fig. 7. Using a greedy exhaustive search and considering the top 5 average

scoring statements. The top resulting heuristic the algorithm found is shown.

This set is a local maximum. This heuristic has a fitness of -0.0247.

Searching over the 5 best result shows that the heuristic
found by the greedy algorithm was a local optimum, despite
also being subject to such. The heuristic found outperforms
and is as simple as the one found by exhaustive-greedy, and
is also closer to the Basic Strategy. The first two statements
found are exactly on par with the Basic Strategy, but looking
at the bottom, we can see that, to match the Basic Strategy, it
needed to also include double down when the dealer is showing
a 2. That result comes from the fact that the case of the dealer
showing a 2 against a player’s hand of 10 or 11 is present in
only a very small number of games, if at all.

Another downside is that the new heuristic found was another
local optimum. Running another loop of the algorithm finds
no new statements, at the top 5, that cover a new scenario. We
can see from looking at the Basic Strategy layout that there
are other cases the set does not cover.

A better search algorithm would be needed to look for the
best n-statement heuristic algorithm. By limiting the size of
our search space by removing isSoft there is still a very
large search space. An exhaustive search of the full space
would guarantee the optimum heuristic, but would also be very
computationally expensive, even by pruning the statements
that do not further cover new elements. To look further for a
better strategy for generating simple heuristics we then turn to
algorithms that employ different search strategies.

VIII. AXIS-ALIGNED SEARCH

Another way to search the space of possible heuristics is to
use an axis-aligned search algorithm, modifying each parameter
in the conditions individually along each single dimension. For
example, for a 1-condition heuristic, we would individually
test all lower bounds Sjowerfor Py keeping all other values
fixed, then all upper bounds SBypper keeping all other values
fixed, etc. also exploring the lower and upper bounds for D,
and all actions for the condition and default action. Because
we do not have a large number of possible values for each
parameter (between 3 and 21 depending on the parameter), we
can search all values along each single dimension — on the

order of around 100 different heuristics to test for a 1-condition
Blackjack heuristic. However, we don’t need to evaluate all of
these heuristics because many of them are equivalent, so we first
pass through and remove any heuristics which are equivalent
to any others. This has the effect of only needing to search
approximately 75 statements per iteration for a 1-condition
heuristic, approximately 210 for a 3-condition heuristic, and
approximately 375 statements per iteration for a 5-condition
heuristic. This axis-aligned search has the benefit that it can
get out of local maximum as long as another maximum exists
anywhere on one of the dimensions holding all other dimensions
fixed. For games where parameters may be too many values to
search completely, one could use importance sampling or local
neighborhood search to find a smaller number of parameters
to choose along each dimension.

The algorithm proceeds as follows. We begin from a random
statement, and find its fitness. We then find all unique statements
along each individual dimension and find their fitnesses. We
take the one with the best fitness and repeat the algorithm from
there. When we find a statement that has the best fitness of any
of its candidates, we terminate and return the best candidate
found, which is a local best but not necessarily a global best.
Because this is not guaranteed to find the global best (as is
also the case for simulated annealing and other optimization
algorithms), we repeat the process several times and return the
best from all runs. We find that axis-aligned search performs
very well, finding some of the highest fitness heuristics for a
given complexity, but it has a high variance and often finds
badly performing ones. It is therefore essential to run several
times. It can also be used as a final touch-up process for other
algorithms to search for any final improvements.

For 1-condition heuristics, axis-aligned search would very
often find the optimal heuristics presented in Figure 5. The
best performing 3-condition heuristic is presented in Figure 8.
Split/Hit refers to the player using the split action when legal,
otherwise they would treat this as a hit. No other algorithm
found this highly performing heuristic, with a high fitness of
-0.0221 especially given its relatively low complexity.

if 17 < P,;; then STAND

else if 13 < P,,;; and D,;, < 6 then STAND

else if 10 < P,;s <11 and D,;, <9 then DOUBLEDOWN
else SPLIT/HIT

Fig. 8. Starting from random conditions, the best 3-condition heuristic observed
for multiple runs of the Axis-Aligned Search algorithm. The heuristic has a
fitness of -0.0221.

IX. GENETIC PROGRAMMING

Finally, we examined using genetic programming [35] to
find the best decision list strategies at a given complexity for
use by novice players. Our approach is similar to that used in
[25]. We used the DEAP [36] framework for genetic algorithms
(GA), which includes implementations for various types of
stochastic optimization. We experimented with a basic genetic
algorithm as well as (u+ ) — ES [37].

We test the population of potential strategies by simulating
13*#13*13*500 = 1,098,500 games for each individual. The
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genotype contains the default action and a list of conditions
bounds and actions. Each simple condition is made of four
possible clauses Tigwer < Pptss Ppts < Tuppers dtower < Dpis,
and Dys < Sypper as described in Section III. Because a clause
is meaningless if Typper < Miower OF Oupper < dlower, €ach
condition instead stores 4 positive integers Tiower; Tupper —
Tlower Olower s Qupper — Olower tO ensure that upper bounds are
never smaller than lower bounds. During mutation, we ensure
that the ranges are not violated by clamping to sensible values
that can only occur in Blackjack. We also include a boolean for
each clause, that allows the clause to be easily turned on and
off during mutation. For complex strategies that are allowed to
include canSplit and isSoft this adds 3 more variants where
each item can be =, #, or don’t care.

The hyperparameters used for controlling the genetic algo-
rithm needed to be tuned depending on the complexity of the
statements that were to be generated. For heuristics with 1
to 3 conditions, we found good results using 30% chance of
modifying each value in a genotype, 20% chance to flip on/off
a clause, 20% chance to shuffle the order of condition/actions,
40% chance to create an offspring with mutation, and 20%
chance to create an offspring with crossover, a population size
of 100, and 30-50 generations. For heuristics with 5 or more
conditions, we found better results by using a 10% chance
of modifying values, leaving all clauses on, and not shuffling
the clauses, and switching to a (u + ) — ES framework with
=20 and A = 200 for 100 generations.

Our GP did not find as highly optimized heuristics as the
axis-aligned method, but on most runs would find something
adequate. In general, GP seemed to have a smaller variance in
final fitness but did not have the overall best results for a given
complexity. However, we believe that with more generations,
larger populations, and more highly-tuned hyperparameters the
GA would be likely to perform better.

X. DISCUSSION

We used several methods to generate heuristics for Blackjack.
The results show expressions of different lengths, heuristic
complexity and fitness. The different methods also have
different run-time computational complexity. The RIPPER
algorithm is very fast since the database only had 550 entries,
but relies on an existing database of optimal moves. Generating
the database to cross check the Basic Strategy was costly, but
needed to be done only once. Doing exhaustive-greedy search
was costly due to the amount of possible statements, and our top
5 greedy variation was even worse, being exponentially more
expensive for generating more complex heuristics. Genetic
Programming running time is related to the size of the
population and number of generations needed to converge
to a good solution, and requires tuning of hyperparameters.
Meanwhile Axis-Aligned Search searches a much smaller
number of statements, compared to the exhaustive-greedy
searches, but often finds bad performing heuristics given a
bad random starting point. Axis-aligned search will likely pose
problems for games with significantly more parameter space
to search without some tuning.

The results show an interesting relationship between the
heuristics complexity and fitness. Figure 9 shows the com-
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Fig. 9. Comparison of heuristic complexity vs fitness for various heuristics.
The numbers in the graph refer to the corresponding Figure index for the
different heuristics shown throughout this paper. 3 is RIPPER (complex), 4 is
RIPPER (simple), 5 is 1-rule exhaustive-greedy, 6 is 3-rule exhaustive-greedy,
7 is top-5 greedy and 8 is Axis-Aligned.

parison of different runs of each of our algorithms, plotting
the complexity of the heuristic against its fitness. Simple
heuristics do not use the isSoft or canSplit clauses, and
complex heuristics use all possible clauses. This shows that
low-complexity rules can have a large improvement in fitness,
but then smaller gains in fitness require larger increases in
complexity. RIPPER expressions show up as outliers in terms
of complexity, having twice as many causes and actions as most
of the expressions found, but also have the heuristic with the
highest ranked fitness. The highest fitted Axis-Aligned complex
heuristics are half as complex as the top fitted RIPPER, but
have very close fitness. By analyzing the hull atop the fitted
results over the increasing complexity, we can see the trend in
fitness gain is much greater on the lower complexity results.

We can observe the impact of increasing the space of possible
clauses by introducing of canSplit and isSoft leads to a small
fitness gain, but a much higher increase in complexity. The
best heuristics generated with their addition range from 2 to
close to 5 times more complexity.

We believe that our framework can be extended to other
games for generating beginning heuristics, but certainly with
some significant challenges. One of the major challenges is
finding a primitive set of operations to include in the conditions
and actions. For blackjack, these primitives are relatively
obvious and easy to implement (perhaps because we have
the Basic Strategy to refer to) but in other games, even simple
ones like Tic-Tac-Toe, the conditions and actions can become
far more complicated to encode.

For games that have a distinction between tactics and strategy,
we predict that different trees, conditions, and actions would
be required to represent differences between short-term tactical
moves and long term high-level planning. Perhaps a player
would need to first use a FFT heuristic to figure out a high-level
goal to reach, and then another FFT to implement that goal.

Some games have an existing known good strategy, either
obtained through collective wisdom gathered after collectively
many hours, years, or centuries of study and play, or by game
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tree exploration using minimax or Monte Carlo Tree Search.
In this case, using a simplification algorithm such as RIPPER
can make sense. For others, when the game is newly designed
and doesn’t yet have known-good strategies [38] or the output
of a computational creativity game generation system [39],
strategies need to be developed from the ground up, as we do
with the axis-aligned search and genetic algorithm methods.
We plan in the future to confirm that our heuristics are indeed
easy to learn and execute by novice players, by comparing
accuracy and speed at which novices can perform the correct
Blackjack plays given a fixed set of cards. Such a study can
also give us a more accurate complexity measure for clauses.

XI. CONCLUSIONS AND FUTURE WORK

This paper poses the problem of algorithmically generating
compact heuristics that can be easily learned by novice human
players. As an example we used Blackjack, a simple game
for which the optimal strategy is already known but requires a
significant amount of time to learn. We explored four different
approaches to discovering simple fast and frugal heuristics for
novice-level Blackjack. It was found that inducing conditions
from a known strategy table with the RIPPER algorithm
resulted in heuristics that were too large and not much better
than much smaller heuristics. Exhaustive search for expressions
that were linked together with greedy search was found to
be comparatively slow and suffer from the tendency to find
globally suboptimal choices inherent in the greedy search.
Genetic programming and axis-aligned search were both able
to find the desired compact yet effective heuristics. While we
have shown that finding these heuristics is doable for Blackjack,
the challenge of scaling up to games with larger state and action
spaces where optimal play is not already known remains. We
hypothesize that solving this will involve automatic extraction
of relevant behavioral and positional primitives.
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