Automatic Generation and Analysis of Physics-Based Puzzle Games

Mohammad Shaker, Mhd Hasan Sarhan, Ola Al Naameh, Noor Shaker and Julian Togelius, Member, IEEE

Abstract—In this paper we present a method for the auto-
matic generation of content for the physics-based puzzle game
Cut The Rope. An evolutionary game generator is implemented
which evolves the design of levels based on a context-free gram-
mar. We present various measures for analyzing the expressivity
of the generator and visualizing the space of content covered.
We further perform an experiment on evolving playable content
of the game and present and analyze the results obtained.

I. INTRODUCTION

The automatic generation of game content is receiving
increasing attention due to the advantages it provides in
terms of speeding up the content generation process, enabling
on-line generation, reducing the development budget and
enabling the creation of infinite content variations. Further-
more, techniques that explore a wide space of content might
possibly be able to create more novel content than humans.
Different techniques have been explored to automatically
generate different aspects of content and some of them
achieved remarkable results in commercial games [1], [2],
[3]. The automatic generation of various aspects of game
content has been explored relatively extensively recently with
many studies reported in the literature on evolving tracks for
car racing games [4], the distributed evolution of weapons
in a space shooter game [5] and multiobjective evolution
of maps for strategy games [6]. The generation of complete
playable games has also received some attention [7], [8], [9].

However, to the best of the authors’ knowledge, generating
content for physics-based puzzle games is an area that has not
been explored yet. This genre of games has recently become
very popular, especially on mobile devices — good examples
are Angry Birds, Bad Piggies, Tower of Goo and Crayon
Physics. Physics-based puzzle games provide an interesting
testbed both for content generation and for investigating the
applicability of various Al methods. The physics constraints
applied and generated by the different components of the
game necessitate considering factors when evaluating the
content generated other than the ones usually considered for
other game genres — it is far from obvious what makes a good
level for such a game. Testing for playability is another issue
that differentiates this type of games since this needs to be
done based on a physics simulator.

In this paper we present an approach for automatic gen-
eration of content for a clone of Cut the Rope, a popular
commercial physics-based puzzle game. We analyze the
game and present the evolutionary approach followed to

MS, MHS and OAN are with the Faculty of Information
Technology Engineering at the University of Damascus, Syria
(mohammadshakergtr, mhdhasansarhan,ola.un9l@gmail.com).
JT and NS are with the Center for Computer Games and Interaction Design
at the IT University of Copenhagen (nosh, juto@itu.dk) .

generate game content. The design of the levels is specified in
a context-free grammar employed by Grammatical Evolution
(GE). We investigate two fitness functions: in the first one we
focus on the physics aspect of the components and their prop-
erties while in the second a playability test is incorporated
to guide the evolution process towards evolving playable
content. The content space explored according to each fitness
function is analyzed through a number of dissimilar expres-
sive measures defined that allow thorough investigation of the
generator’s capabilities and permit illustrative visualization
of the content space explored.

II. GRAMMATICAL EVOLUTION

One of the techniques used to automatically generate con-
tent is evolutionary computation (EC). Evolutionary design
is one of the areas where EC has demonstrated promising
results that are competitive to those created by human
experts [10], [11].

Grammatical Evolution (GE) is the result of combining
an evolutionary algorithm with a grammatical represen-
tation [12]. GE has been used extensively for automatic
design [13], [14], [15], a domain where it has been shown to
have a number of strengths over more traditional optimization
methods; it maintains a simple way of describing the struc-
ture of the levels and it enables the design of aesthetically
pleasing levels by exploring a wide space of possibilities.
The use of GE for the automatic generation of game content
was first explored by Shaker et. al. [16], [17] for creating
content for Super Mario Bros. A closely related method is
recently used for generating playable card games [18].

In this paper we use a similar approach to the one proposed
in [16]. A design grammar is defined to describe the possible
structures of levels. The grammar is then employed by GE
to evolve content according to a predefined fitness function.

III. CRUST 2D PHYSICS ENGINE 2.0

The physics engine used for the design and generation of
our game is the CRUST 2D Physics Engine 2.0 implemented
in C# with XNA for managing runtime environment. The
engine is our heavily modified version of Millington’s engine
[19]. Our modifications include adapting the engine to work
with 2D environment and implementing the spring constraint.
In its current state, the engine is able to provide efficient
handling for physics simulations. The engine implements
impulse force collision modeling to deal with rigid objects.
Other physics-based motions such as springs, ropes, and hard
constraints can also be simulated in the current version. The
engine is also facilitated with a friendly user interface that
allows editing objects and their physical properties at run
time.

(b) A screenshot from our clone of the game

Fig. 1. Two snapshots from the original Cut The Rope game (a) and our
clone version of it (b) showing Om Nom waiting for the candy which is
attached to ropes.

IV. THE GAME

The game which we generate content for is a clone
Cut The Rope (CTR), a popular commercial physics-based
puzzle video game released in 2010 by ZeptoLab for iOS
and Android devices. The game was a huge success when
released and it has been downloaded more than 100 million
times. There is no open source code available for the game
so we had to implement our own clone using the CRUST
engine and the original game art assets. Our clone of the
game is called Cut The Rope: Play Forever. The clone does
not implement all features of the original game, but focuses
on those that are more fundamental and relevant for content
generation. Fig. 1.(a) shows one of the level in the original
game while Fig. 1.(b) presents a level from our clone.

The gameplay in CTR revolves around feeding a candy
to a little green frog-like monster named Om Nom. The
candy is usually attached to one or more ropes which have
to be cut with a swipe of the finger to set it free. Auxiliary
objectives include collecting as many of the stars present
in the level as possible. All game objects obey Newtonian
physics adjusted to digital world and are affected by grav-
ity [19]. The player loses the game by letting the candy
escape (e.g. fall) outside the level boundaries. The game
features a puzzle component by the presence of obstacles
and other physics-based components that help redirecting the
candy. The set of components included in the original game
includes air-cushions, constrained pins, bubbles, shooting-
buttons, rockets, spikes, spiders, suction cups among others
(see Figure 2). The player interacts with the game by cutting
a rope, tapping an air-cushion, a bubble or a button triggering
a sequence of physics-based consequences. Solving the level
puzzle depends to a great extent on timing. Specific actions
should be taken at certain game states; otherwise the player

8@

(a) Om (b) (c) (d) Air- (e) (f) Bumper
Nom Candy Rocket cushion Constrained-
pin

Fig. 2. The various components presented in the original Cut the Rope
game.

loses the game.

V. GAME DESIGN

There exist many different components in the original
game. In this paper, we focus on seven of them that ap-
pear in most of the levels of the game; the description of
each component also includes what parameters specify that
component in our simulation.

o Ropes: ropes are an essential part of the game. They
hold the candy and they can be cut to set the candy free.
A rope is defined by its starting location in the 2D level
map and it’s length. When there is more than one rope
in the level, all generated ropes should be connected to
the candy when the game starts.

o Air-cushion: while attached to a rope or in a bubble,
the trajectory of the candy can be changed by blowing
air in its direction with an air-cushion. Air-cushions are
defined by their position and orientation (east, west).

o Bubbles: The candy normally falls down due to gravity.
If trapped in a bubble, the candy instead floats upwards.
A bubble can be popped to free the candy inside. A
bubble has an initial static placement in the level and it
starts floating only when carrying the candy.

o Bumpers: when the candy collides with a bumper it
bounces in a direction depending on the orientation of
the bumper and the direction of the collision. A bumper
can be placed at any position in the level and it can
have one of 8 orientations (uniformly spread around the
circle).

o Rockets: rockets are placed in static positions and
launch (carrying the candy along) when the candy
comes within a very short distance. Rockets are defined
by their initial position and orientation (one of 8).

o Constrained pins: a constrained pin is a pin placed in
the center of a dotted circles. An automatic rope appears
when the candy gets inside the circle and the candy
becomes attached to the rope. The constrained pins are
defined by their location and the radius of the circle.

o Water: when presented in a level, water covers the full
width horizontally and can be of a predefined depth.
Water affects the objects in the game making them float.
Its depth can either be static or decreasing, adding a time
constraint to solve the level.

A. Design Patterns

In order to follow a similar design methodology to the
original levels and generate interesting levels we analyzed a

number of the original levels and clustered them according
to the combination of components presented. The analysis
showed a number of distinct patterns of level design which
can be represented in design grammars, all of which have
ropes with different types of other components. In what
follows, we focused on one of these patterns while acknowl-
edging that similar analysis can be performed on the others.

The pattern we consider is a design of levels consisting
of ropes, air-cushions, bumpers and rockets. We chose this
pattern because it consists of most of the basic components
that could be presented in a level and therefore it allows
generating interesting combinations and exploration of the
content space.

VI. LEVEL GENERATION

In our implementation, a level (phenotype) is a one-
dimensional list of objects. Each object can be one of the
component considered. The objects can be placed at any
position in the map and some of them have a set of properties
such as the length of a rope or the direction of air-cushions.

Evolving the design of the levels is done using grammat-
ical evolution. The structure of the levels is represented in a
design grammar used by GE to evolve the levels. GE employs
a genotype-to-phenotype mapping process: the population of
the evolutionary algorithm consists of variable-length integer
vectors. Each vector is used to choose production rules
from a design grammar which creates a phenotypic program,
syntactically correct for the problem domain. Finally, this
program is evaluated, and its fitness is returned to the
evolutionary algorithm.

A. Design Grammar

For evolving levels in our game, the design grammar is
used to represent the full structure of the level by specifying
the different components and their properties. Because of
the context-free nature of the grammar, the components are
placed on the canvas without any constraints. This means
that the resultant design will most likely contains conflicts
which need to be resolved. This matter is discussed in details
when presenting the fitness function in Section VI-B.

The grammar specified to represent the structure of the
levels is presented in Fig. 3. The level is designed by placing
the candy, Om Nom and one or more of the components
considered in the level canvas. Each component has its
position in the map as specified by the x and y parameters
and some component’s specific characteristics such as the
length of a rope or the initial direction of a rocket. The
x values are limited to the range [0, 260] which specifies
the horizontal dimension of the level map. The limit of the
y values is in the range [0, 420]. Both the x and y values
increase by a step of 20 which is equal to the size of the block
in the level. The length of a rope is limited to the range [0,
170] with a step size equal to 30, and the direction of the air-
cushion is specified by two values 0 and 1 which represent
a direction to the left or right, respectively. Eight values are
assigned to all possible directions of the bumpers and the

<level>::=<candy><Om_Nom><components>
<candy>: :=candy (<x>, <y>)
<Om_Nom>: :=0Om_Nom (<x>, <y>)
<components>::=<rope><air_cush><bumper>

<rocket><more_components>
<more_components>: :=<component>

| <component><more_components>

<component>::=<rope>|<air_cush>

| <rocket> | <bumper>
<rope>::= rope (<x>,<y>,<rope_length>)
<rocket>::=rocket (<x>, <y>, <rocket_dir>)
<air_cush>::= air_cush (<x>,<y>,<air_cush_dir>)

<bumper>: :=bumper (<x>, <y>, <bumper_dir>)

<x>::= [0, 260] <y>::=[0, 420]
<rope_length>::= [0, 170]
<air_cush_dir>::= 0 | 1
<bumper_dir>::= [0, 7]
<rocket_dir>::= [0, 7]

Fig. 3. The grammar employed to specify the design of the levels.

Fig. 4. Example level generated using grammatical evolution with the design
grammar specified in Fig. 3

rockets. The parameter ranges were decided experimentally
based on their tendency to generate interesting level designs.
An example phenotype that results from the grammar
in Fig. 3 can be candy(220, 60) Om_Nom(100, 340)
rope(60, 140, 150) air_cush(280, 420, 4) bumper(100, 360,
6) rocket(180, 400, 5) bumper(20, 360, 3). An example level
generated using this pattern is presented in Fig 4.

B. The Fitness Function

One way for evolving playable levels is to define a fitness
function that scores playability. The best way to guaran-
tee playability would be to use a simulation-based fitness
function that plays the level to show that it can be solved.
Initial efforts towards doing this are reported in section VIIIL.
However, for most of the experiments in this paper we
use a direct fitness function which is a linear combination
of several conditions. These conditions all contribute to
playability and aesthetics considerations, and a level that
satisfies all conditions (and thus has a high fitness) is very
likely to be playable. The components of the fitness function

are as follows:

e Candy placement, P.qyq4y: the candy should be placed
higher than Om Nom when the level contains no com-
ponent to elevate the candy, such as bubbles or water.

e Om Nom placement, Po,nom: Om Nom should be
placed under the closest rope when there is no water,
bubbles or rockets.

o Blower placement, Ppoyer: the blowers in the levels
should be placed close to the end of a rope. In our
implementation, a penalty is given when the blower is
placed outside a predefined circle surrounding the end
of a rope.

« Bubble placement, Pp,ppe: this condition gives a
penalty when the bubble is placed in a position where
it does not intersect with at least one of the ropes.

o Rocket orientation, O,.ocret: rockets should aim at Om
Nom.

o Components placement, Cp,.: a predefined distance
is preserved between the components. The minimum
distance difference considered is three level blocks. A
penalty is also given for each overlapping components.

Each of these conditions adds a penalty to the fitness
function decreasing the desirability of the solution (in our
case the solution is a potential design for the level). Different
weights are assigned to each condition according to their
importance. The conditions about positioning the candy
and preserving the distance between different components
are given the highest weight. This is followed by rocket
orientation since rockets have a great impact on changing
the position of the candy. A lower weight is given to the
placement of bubbles, blowers and Om Nom since blowers
and bubbles usually open more possibilities for solving the
levels rather than affecting their playability. The total fitness
is calculated according to the following equation:

fitness = 25 * Peanay + 10 * Pomnom + 10 * Nyjower *
Pblower =+ 20 * Nrocket * Orocket + 10 * Nbubble * Pbubble +
25 * Coverlap
where N, represents the number of objects of type = pre-
sented in the level and Cyyeriap is the number of components
that do not satisfy the component placement condition, Cpqc.
We have experimented with several manual setups for the
weights and the setting presented gave acceptable level
designs. More experiments, such as evolving these weights,
will be undertaken to systematically investigate this matter.

C. Implementation and Experimental Setup

The existing GEVA software [20] was used as a core
to implement the needed functionalities. The experimental
parameters used are the following: 500 runs were initialized
with the ramped half-and-half initialization method, each run
lasted for 1000 generations with a population size of 100
individuals. The maximum derivation tree depth was set at
100, tournament selection of size 2, int-flip mutation with
probability 0.1, one-point crossover with probability 0.7, and
3 maximum wraps were allowed.

0.6
0.5
0.4
03
0.2
0.1

0

Ropes Bumpers Air-cushions Rockets

Fig. 5. Average and standard deviation values of the four components
extracted from 500 generated levels.

VII. EXPRESSIVITY ANALYSIS

The expressive range of a generator is the space of all
levels it can generate. It can be measured by generating a
large number of levels and measuring meaningful aspects
of those levels [21], [16]. Measuring and visualizing the
expressive range of a generator is an important tool for
highlighting the limitations in the generators capabilities and
revealing its strengths and weaknesses. Such characterization
also enables an in-depth analysis of the design choices and
its impact on the generator’s expressivity. Below, we describe
several measures that we defined to better characterize the
generator output, partly modeled on the measures defined
in [21], [16]. All of the measures are applied to 500 levels
generated. All feature values are normalized to the range
[0,1] using min-max normalization.

A. Frequency Analysis

The simplest form of analysis that can be performed is the
feature frequency analysis. Several statistics were extracted
from the 500 levels generated. Fig. 5 presents a comparison
between the average and the standard deviation values of
the four components generated. As can be seen from the
figure, relatively low average values were generated for all
components. This is in part related to the design of the
grammar and the fitness function. According to the design
grammar, each level should contain at least one of all four
components. The restrictions in the fitness function concern
the properties of the generated components rather than their
quantity. According to the fitness function high weight is
given to the condition on rocket orientation and that might be
the reason for the low number of rockets generated compared
with the higher number of the other components.

B. Axiality

Axiality relates to the orientation of the items in a level.
A level with maximum axiality in an axis has all compo-
nents oriented in parallel to that direction. The component
distribution on both axes according to this measure gives
an idea of how easy the level is. For example, a level with
high axiality scores on both axes is usually harder to play
and requires more thinking since this configuration means
that to solve the level, the player should make use of the
different components and the candy should travel a long
distance before it reaches Om Nom. An example of such level

(a) Example level with low axiality (b) Example level with
value on the x-axis and high value high axiality value on both
on the y-axis, azxiality, = 0.1, axes, azialityy = 0.8,

axiality, = 0.9. axiality, = 0.7.

Fig. 6. Two example levels generated with different axiality scores.

is presented in Fig 6. (b) which can be solved by pressing
the air-cushion, pushing the candy in the direction of the
rocket, which in turn lunches delivering the candy to the
horizontal rocket that carries the candy to Om Nom. On the
other hand, a level with high axiality score on one of the
axis and a low score on the other points out to components
aligned horizontally or vertically and such levels are easier to
solve by performing fewer actions. Fig 6. (a) presents such
a level which can be easily solved by cutting the rope.

The axiality of a level is measured by projecting the
components on the x and y axes and measuring the distance
covered. The axiality is then represented as a point in a two-
dimensional space where the axes represent the distances.
Fig. 7 illustrates the distribution of all the levels generated
according to the axiality measure. The color of each square
indicates the number of levels generated with the correspond-
ing distance covered on both axes. A level with a low score
on one of the axis points out to a small range of coverage
on that axis.

The figure illustrates a clear bias in the axiality measure
towards generating levels of high axiality on both axes.
This indicates that in most of the 500 levels generated, the
components are placed within a large distance on both axes.
This is most likely a result of the design of fitness function
which is biased against levels that do not preserve the
minimum distance allowed between components producing
levels with components scattered around.

C. Density

A level has a high density if the components presented are
placed within a very close distance to each other or when the
components are gathered in high compactness groups. The
more the components and the closer they are to each other,
the higher the density of the level. To give an estimation of
the density of a level, we divided the level map into 3 x 3
areas (9 regions) and calculated the number of components
placed in each area. A component is considered to be located
in a region if its upper-left corner belongs to that region.
The density is calculated as the standard deviation of the

35

40 30
30

125
20

120

10+

Number of levels

10~

20

304

0.8

0.6 e .
0.4 : 0q 20
0.2 0.2

Distance on X

Distance on Y

Fig. 7. The distribution of all 500 levels generated according to the axiality
measure. The x and y axes represent the distance the components cover on
the corresponding axis in the level. The color in each square corresponds
to the number of levels generated that has the associated distance cover.

regions that contain at least one component according to the
equation:

where n is the number of non-empty regions, Z is the
average value of components placed in the n regions and x; is
the number of component in the region 7. The distribution of
levels according to the density measure is presented in Fig. 8.
Fig 9 presents two example levels with low and high density
values. According to Fig 8, a clear bias is observed towards
generating levels of relatively very low density scores. More
than 90% of the levels generated have a density value smaller
than 0.5 and more than 50% of these have a very small
density score (< 0.1). Such as in axiality, the results can
be explained by the design of the fitness function according
to which levels with low density are preferred. The strong
bias, however, points out to the large implication of what
we considered a minor design choice in the fitness function.
The minimum distance allowed between the components was
set to be greater than three level blocks. Smaller distance
could have been employed which might result in more levels
generated with higher density scores. It is not clear, however,
which of the distribution is preferred and it remains the
responsibility of the designer or the player to guide the
generation process.

D. Color Map

To facilitate a more in-depth insight on the differences
between the generated levels we converted all the 500 levels

‘Number of Levels

Density

‘! N AS

(a) Example level with low den- (b) Example level with high den-
sity value, density = 0.36. sity value, density = 1.

Fig. 9. Two example levels generated with very low (a) and very high (b)
density scores.

into one color map. The color map is an image containing
the information of all levels. This image is generated by
assigning a value for each pixel which is the average color
value of all pixels in the same position in the full set of
levels.

In order to apply this method, we assigned a unique rigid
color to each component and we convert each level generated
into its corresponding rigid map as can be seen in Fig 10.
The color maps are then generated by averaging the rigid
maps. This method can be applied taking into account all
components or one component at a time providing detailed
information about its distribution over all levels. Fig. 11
presents two example color maps illustrating the positioning
of Om Nom (11.(a)) and rockets (11.(b)) in the 500 levels.
The figure clearly demonstrates variations in the positioning
of the different components which is highly affected by the
design of the fitness function. While rockets are distributed
along the full level maps, Om Nom is mostly placed in the
lower portion of the levels due to its placement condition
specified in the fitness function.

E. Axiality vs Density

To investigate the expressive range of the generator along
more than one measure, we generated a graph that shows
the distribution of levels along the axiality and density
dimensions as can be seen in Fig. 12. The axiality score
in this experiment is calculated as the Euclidean distance

(b)

Fig. 10. An example level with its corresponding rigid color map.

(a) The colour map generated for (b) The colour map generated for
the positioning of Om Nom. the positioning of the rockets.

Fig. 11.
generated.

The color maps of different components across the 500 levels

between the x and y distances calculated in Section VII-B.

The figure shows that the high majority of levels have
low density and relatively high axiality score. It is worth
noticing that for very low density values, levels of average
to high axiality score can be generated. This is expected
since a level of low density indicates that the components
are scattered around the level and therefore they will most
likely cover a wide range on both axes resulting in a high
axiality score.

VIII. PLAYABILITY

The main focus of the methods presented in the previous
sections is on constructing a content generator and evaluating
the generator’s output. The fitness function presented in
section VI-B guides the search towards playable levels, but
a high fitness is only an indication that the level is highly
likely to be playable, not a guarantee.

In this section, we present an experiment conducted to
generate provably playable content using a simulation-based
fitness function. Here, the physics-based game engine pre-
sented in Section III is used as a base for automatic gameplay.
A set of actions according to the level design is generated
and in each fitness evaluation we start by a random action
selected from this set. The simulation then proceeds by
randomly selecting an action from the remaining subset
according to the new game state. This continues until either
the level is won (Om Nom gets the candy), the level is lost

100

50

Number of levels

-50

100k
! 0.8

0.6 04 Iy D
' 0 0

0.4

0.2

Density

Axiality

Fig. 12. The number of levels generated according to the axiality and
density measures.

(the candy leaves the playing area) or a predefined timer
expires. This is repeated until the level is found to be playable
in a maximum of 10 trails. A level is considered playable
if, after applying the actions, the candy becomes within a
predefined distance to Om Nom during at least one trial.

For each design evolved, the set of actions generated
includes the possible actions the player can perform on each
component presented in the level as well as a void action
to represent the states where no actions is taken by the
player. The void action is applied by 80% probability. A large
number indicating a playable design is then subtracted from
the fitness function calculated in Section VI-B. For example,
the list of possible actions generated for the level pre-
sented in Fig 13.(b) is: cut_rope(x), press_air — cushion,
void. The actual actions performed to play the level are:
cut_rope(1), void, void, void, cut_rope(2), void, void, void,
void, cut_rope(0), void, void, void, void, void, void, void.

We ran a preliminarily experiment to evolve 100 playable
levels using the proposed approach and the same GEVA
software. The process of checking for playability is time
consuming since it requires a full simulation of the level
(evaluating each level takes on average 82 seconds). There-
fore, evolution is run only for 20 generations using a popula-
tion of 100 individuals. Fig 13 presents two example levels
evolved requiring different set of actions and components
to be solved. Fig 13.(a) is playable by simply cutting the
rope while the other level (Fig 13.(b)) can be solved by first
cutting two of the ropes allowing the candy to move towards
the rocket according to force applied by the third rope, the
rocket is then lunched when the candy becomes close enough
delivering it to Om Nom.

An expressivity analysis, similar to the one conducted
on levels generated using only the basic fitness function, is

() (b)

Fig. 13. Two example levels evolved based on the playability constraint.
The level on the left (a) can be played simply by cutting the rope while
the level on the right (b) requires cutting two of the ropes which makes the
candy passes by the rocket that deliver it to Om Nom.

0.5
0.4
03 -
0.2
0.1
o |

Rockets

Ropes Bumpers Air-cushions

Fig. 14. Average and standard deviation values of the four components
extracted from the 100 playable levels generated.

performed on the playable levels generated. Fig 14 presents
the frequency analysis of the components generated. The
comparison between the frequencies obtained in this figure
and Fig 5 shows clear differences in the number of the
components generated. Higher number of ropes and lower
number of bumpers and air-cushions are generated in the
playable levels. Unsurprisingly, this points out to the im-
portance of ropes when generating solvable levels (as the
name of the game suggests, ropes are the basic elements in
gameplay).

The generator’s expressive range according to the axiality
and density measures is presented in Fig 15. As in the level
distribution observed previously, the majority of the levels
generated are of high axiality and low density score. The
distribution obtained for the playable levels, however, is less
biased with considerable number of levels having average
score on both dimensions.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

The paper presents a methodology for representing and
evolving content for a physics-based game. Grammatical
evolution is used for automatic content generation and the
evolved content is evaluated based on two experiments
unitizing two different fitness functions. The first fitness
defined focuses on the types of the components generated
and their properties while playable content is evolved using
the second one. The content generated is analyzed and the
generator’s capability is investigated using an expressivity

101 : S R

Number of levels

0.8 - '. 0.8
0.6 : 0.6
0.4 L - .
0.2 0.2 04

Density 00

Axiality

Fig. 15. The number of playable levels generated according to the axiality
and density measures.

analysis framework. A number of expressivity measures are
defined that allow exploring the generator’s output along
different dimensions. The method proposed shows promising
results in generating playable content for the game and in
efficiently exploring the content space given the constraints
imposed by the grammar and the fitness. The expressivity
analysis conducted highlights the strengths and limitations
in the generator’s capabilities and helps us better understand
its expressive power.

The experiments conducted and the analysis performed can
be easily scaled to the other patterns that can be defined
following the same framework presented in this paper. The
methodology proposed for representing game content and
analyzing the expressive range of the generator can be
applied to other games from the same or other genres.

We are currently running more experiments on generating
playable content by defining better fitness functions. The
fitness used in this paper to score the content according
to playability applies random actions on the final design
generated. Although this approach demonstrates promising
results in terms of generating playable content, a better
alternative would be the construction of an Al agent that can
efficiently play the game. Another interesting direction is to
enhance the puzzling aspect of the game. A possible way of
achieving this is to design a fitness function that takes into
account the number of actions required to solve the level and
the time required between each two consecutive actions.

Another ongoing direction is to provide the developed
system as an authoring tool for game designers. The designer
can interact with the system in several ways: modifying the
grammar, the evolution parameters or can give inputs directly
via a design interface that allows editing the components
properties and the design of a level. The system can then au-

tomatically explore the content space and generate playable
content based on the designer’s constraints. An Al agent that
plays-through the level can also be provided as part of the
system.

ACKNOWLEDGMENTS

We thank ZeptoLab for giving us permission to use the original
Cut The Rope graphical assets for research purposes.

REFERENCES

[1] Blizzard North, 1997, diablo, Blizzard Entertainment, Ubisoft and
Electronic Arts.

[2] Mojang, 2011, minecraft, Mojang and Microsoft Studios.

[3] Maxis, 2008, spore, Electronic Arts.

[4] J. Togelius, R. D. Nardi, and S. M. Lucas, “Making racing fun through
player modeling and track evolution,” in Proceedings of the SAB’06
Workshop on Adaptive Approaches for Optimizing Player Satisfaction
in Computer and Physical Games, 2006.

[5] E.J. Hastings, R. K. Guha, and K. O. Stanley, “Evolving content in the
galactic arms race video game,” in Proceedings of the 5th international
conference on Computational Intelligence and Games, ser. CIG’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 241-248.

[6] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbick, and
G. Yannakakis, “Multiobjective exploration of the starcraft map space,”
in Proceedings of the IEEE Conference on Computational Intelligence
and Games (CIG). Citeseer, 2010, pp. 265-272.

[7] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in IEEE Symposium On Computational Intelligence and
Games. CIG’08. 1EEE, 2008, pp. 111-118.

[8] C. Browne and F. Maire, “Evolutionary game design,” IEEE Transac-
tions on Computational Intelligence and Al in Games,, vol. 2, no. 1,
pp. 1-16, 2010.

[9] M. Cook and S. Colton, “Multi-faceted evolution of simple arcade
games,” in Computational Intelligence and Games (CIG), 2011 IEEE
Conference on. 1EEE, 2011, pp. 289-296.

[10] J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu, and G. Lanza,
Genetic programming IV. Kluwer Academic Publishers, 2003.

[11] P. Bentley, Evolutionary design by computers. Morgan Kaufmann,
1999, vol. 1.

[12] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Transactions
on Evolutionary Computation, vol. 5, no. 4, pp. 349-358, 2001.

[13] G. Hornby and J. Pollack, “The advantages of generative grammatical
encodings for physical design,” in Proceedings of the 2001 Congress
on Evolutionary Computation, vol. 1. 1EEE, 2001, pp. 600-607.

[14] J. Byrne, M. Fenton, E. Hemberg, J. McDermott, M. O’Neill, E. Shot-
ton, and C. Nally, “Combining structural analysis and multi-objective
criteria for evolutionary architectural design,” Applications of Evolu-
tionary Computation, pp. 204-213, 2011.

[15] M. O’Neill, J. Swafford, J. McDermott, J. Byrne, A. Brabazon,
E. Shotton, C. McNally, and M. Hemberg, “Shape grammars and
grammatical evolution for evolutionary design,” in Proceedings of the
11th Annual conference on Genetic and evolutionary computation.
ACM, 2009, pp. 1035-1042.

[16] N. Shaker, M. Nicolau, G. Yannakakis, J. Togelius, and M. ONeill,
“Evolving levels for super mario bros using grammatical evolution,”
IEEE Conference on Computational Intelligence and Games (CIG),
pp. 304-311, 2012.

[17] N. Shaker, G. Yannakakis, J. Togelius, M. Nicolau, and M. ONeill,
“Evolving personalized content for super mario bros using grammati-
cal evolution,” 2012.

[18] J. Font, T. Mahlmann, D. Manrique, and J. Togelius, “Towards the
automatic generation of card games through grammar-guided genetic
programming,” FDG ’10: Proceedings of the Fifth International Con-
ference on the Foundations of Digital Games, (to appear), 2013.

[19] I. Millington, Game physics engine development. Morgan Kaufmann
Pub, 2007.

[20] M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley, J. McDermott, and
A. Brabazon, “Geva: grammatical evolution in java,” ACM SIGEVO-
lution, vol. 3, no. 2, pp. 17-22, 2008.

[21] G. Smith and J. Whitehead, “Analyzing the expressive range of a
level generator,” in Proceedings of the 2010 Workshop on Procedural
Content Generation in Games. ACM, 2010, p. 4.

