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Crowd-Sourcing the Aesthetics of Platform Games
Noor Shaker, Georgios N. Yannakakis, Member, IEEE, Julian Togelius, Member, IEEE

Abstract—What are the aesthetics of platform games and
what makes a platform level engaging, challenging and/or frus-
trating? We attempt to answer such questions through mining a
large-set of crowd-sourced gameplay data of a clone of the classic
platform game Super Mario Bros. The data consists of 40 short
game levels that differ along six key level design parameters.
Collectively, these levels are played 1560 times over the Internet
and the perceived experience is annotated by experiment
participants via self-reported ranking (pairwise preferences).
Given the wealth of this crowd-sourced data, as all details
about players’ in-game behaviour are logged, the problem
becomes one of extracting meaningful numerical features at the
appropriate level of abstraction for the construction of generic
computational models of player experience and, thereby, game
aesthetics. We explore dissimilar types of features, including
direct measurements of event and item frequencies, and features
constructed through frequent sequence mining and go through
an in-depth analysis of the interrelationship between level
content, player’s behavioural patterns and reported experience.
Furthermore, the fusion of the extracted features allows us to
predict reported player experience with a high accuracy even
from short game segments. In addition to advancing our insight
on the factors that contribute to platform game aesthetics, the
results are useful for the personalisation of game experience via
automatic game adaptation.

I. INTRODUCTION

An algorithm that could automatically judge how engaging
or interesting a particular piece of game content is — that
is, a computational model of the aesthetics of game content
— would be useful for several reasons. One strong reason is
that such a method would help us to automatically or semi-
automatically generate good content, another is that analysis
of the algorithm could help us understand what players like
in games, and ultimately contribute to understanding the
cognitive and affective procedures behind human entertain-
ment and motivation in general. As players tend to vary
significantly in their preferences it would further be useful to
have an algorithm that, given information about a particular
player, could predict the appeal of the game content for that
player. Finally, having an algorithm that could observe a
human playing a game and accurately judge what the human
is experiencing as he/she is playing the game would also be
useful, as this could allow us to adapt the game to the player,
and also help us understand how human affect is expressed
in behaviour.

A number of researchers have attacked this problem from
a top-down perspective, that is, by creating theories of
the aesthetics of game content and game play based on
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introspection or qualitative research methods. For example,
Malone [1] has proposed that computer games are “fun”
when they have the right amount of challenge and evoke
curiosity and fantasy, and Koster [2] has proposed that fun
in games is connected to the player learning to play the
game. Magerko et al. [3] research within learning games
proposed an adaptation framework based on a predefined set
of learning style.

Such theories are in general too high-level and vague about
key concepts to be implemented in algorithms, though some
attempts have been made to create computational models
based on them [4], [5].

Other authors have tried to identify more specific and
concrete elements of game design and game content that
contribute to player experience, so called “patterns in game
design”; Björk and Holopainen [6] are in an ambitious on-
going effort cataloguing hundreds of such patterns, whereas
other authors discuss patterns in content design for individual
genres, such as first-person shooters. For example, Hullett
and Whitehead [7] analyse some key patterns in first-person
shooter games, such as sniper positions and open arenas and
discuss how they contribute to player entertainment. In [8],
[9] presented a system that visualizes players’ behaviours to
allow analysts to easily identify patterns and design issues.
Jennings-Teats et al. [10] showed how player experience can
be altered by presenting sequences of level segments raked
by their difficulty and presented to the player according to
her behaviour.

Of particular interest for our current concern is the work
of Smith et al. [11], who have analysed platform game
levels and proposed a hierarchical ontology for such levels
where cells contain rhythm groups which in turn consist of
components such as platforms, collectibles and switches. The
authors further hypothesise about how certain design choices
might affect player experience, such as short and uneven
rhythm groups making the level more challenging and longer
rhythmic sections demanding sustained concentration. These
principles were eventually incorporated into the Tanagra level
generator, which can create levels with rhythmic structure
but does not include methods for judging the aesthetics of
completed levels [12].

If we find accurate such theories, we can then create
theory-driven models of game aesthetics. However, even if
the theories are correct and sufficiently extensive to allow
prediction of player experience in a wide range of situations,
they would also need to be quantitative in order to be
incorporated within an algorithm, something most current
theoretical efforts to understand game aesthetics are not.
They would also need to be grounded in measurable quan-
tities. For example, theories based on design patterns would
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need to be accompanied by algorithmic ways of detecting
and locating such patterns.

The alternative, complimentary approach is to create data-
driven (bottom-up) models of game aesthetics based on
collecting data about games, game content and player’s
behaviour, and correlating this data with data annotated
with player experience tags. This approach, which builds
on machine learning and/or other statistical methods, can
be seen as crowd-sourcing aesthetics modelling. A few
researchers have attempted to create such experience models
via the affective annotation of data streams such as sounds
and videos [13], but the application of crowd-sourcing based
approaches for player testing and game aesthetics has not
yet been investigated. The approach is also closely linked to
massive-scale game data mining [14], [15]; however, direct
annotations of player experience are not generally available
in those studies. For an overview of research on building
aesthetic game models from data, as well as a multi-faced
framework that interconnects player experience modelling
and game adaptation the reader is refer to the experience-
driven procedural content generation framework [16].

In this work we are taking a slightly narrower view of
aesthetics. We judge the aesthetics of the level design from
the players’ point of view based on the content generated
and the gameplay experience it provides. The content can be
generated automatically by an algorithm or it can handcrafted
by a designer, or indeed be created in a mixed-initiative
(co-creation) fashion. We are trying to devise a data-driven
approach that can automatically extract game design patterns
from existing games. These patterns can be used by an
algorithm for adapting the game, or they can be generalized
and used by game designers when constructing a new game.
The focus of the proposed work is not on adding to what we
know about what makes a level frustration or challenging but
rather to construct a quantitative measure of game aesthetics.

A. Relation to our own previous work

We have in the past published several papers about the
computational aesthetics of the platform game used in this
paper, Infinite Mario Bros. Our first papers [17], [18] reported
on the construction of models that predict six different
aspects of player experience based on 36 features extracted
from gameplay and 4 controllable features, which could be
used to generate levels. We used forced choice questionnaires
to collect player experience data, and neuroevolutionary
preference learning combined with feature selection to induce
the models, just as we do in this paper. Data was collected
from 480 game sessions, played by at most 240 different
players. Models were found that predicted certain aspects of
player experience with between 73% and 91% accuracy.

A follow-up paper [19] used the same dataset as the
previous papers, but focused on generating levels based on
the models we had learnt. The levels where generated by
systematically varying the four controllable features between
high and low states until the parameter set was found which
yielded the highest or lowest predicted value on one of the six

player experience dimensions. That parameter configuration
was then used to generate personalised levels for the player
that either maximise predicted challenge, frustration or fun.
The generated levels were in turn tested using both human
players and algorithmic agents playing the game verifying
that the adaptation mechanism worked by tracking predicted
player preference over several levels.

While these experiments were successful, it became ap-
parent that the dataset had some limitations. The number
of controllable features (and the number of configurations
of these features that were tested) was too small to permit
meaningful exploration of the search space and possibilities
of finding interestingly new design parameter configurations.
Also, one of the controllable features (direction switching)
and three of the player experience dimensions (predictability,
anxiety and boredom) turned out to be relatively uninterest-
ing to explore in the context of the current game. The levels
used in the first data set took about a minute to play each,
which we judged was overly long given that we wanted our
model to apply to the aesthetics of the moment, in order to
enable online adaptation. Finally, and most importantly, we
wanted to record more detailed information about both levels
and gameplay in order to see if we could find a way to predict
player experience even better — to squeeze more information
out of the data, as it was. We therefore embarked on collect-
ing a new dataset, with more levels (40) and more players
(1560 games were played). In a recent paper [20] we reported
on preliminary explorations of this dataset. There, we tried
to predict player experience of reported engagement based
only on level features (disregarding all gameplay traces), and
introduced the use of frequent subsequence counts (as found
by sequence mining algorithms) as features extracted from
levels. We also explored predicting features from only parts
of levels, in order to find the minimum level segment length
which would allow us to perform meaningful adaptation.
It was found that both restricting level segment lengths
and disregarding player metrics significantly decreased the
predictive power of derived models.

In this paper, we explore the same dataset as the one used
in [20] to a much greater depth. We investigate a number
of ways of extracting sequence data from levels and play
traces that go beyond what we used in all previous modelling
attempts, and we explore the predictive power of new direct
(non-sequential) measures of both levels and player metrics,
both on their own and in combination with sequence data.
The goal is to create models that predict player experience as
well as possible from observing a game level and how well
a player plays it. We believe the methods we develop along
the way to be potentially useful for other games which have
a linear structure.

II. TESTBED PLATFORM GAME

The testbed platform game used for our study is a modified
version of Markus Persson’s Infinite Mario Bros (IMB) which
is a public domain clone of Nintendo’s classic platform
game Super Mario Bros (SMB). IMB features the same art
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Fig. 1. Snapshot from Infinite Mario Bros, showing Mario standing on
horizontally placed blocks surrounded by different types of enemies.

assets and general game mechanics as SMB but differ in
level construction; while human-authored levels have been
constructed for the original Super Mario Bros., Infinite Mario
Bros features infinite number of procedurally generated
levels. The gameplay in Infinite Mario Bros consists of
moving the player-controlled character, Mario, through two-
dimensional levels. Mario can walk and run, duck, jump, and
shoot fireballs. The main goal of each level is to get to the
end of the level. Auxiliary goals include collecting as many
coins as possible, and clearing the level as fast as possible.
For more details about the game the reader may refer to [17].

The game itself is very well known, and the benchmark
software has been used relatively extensively as a testbed
for research and as a testing environment for various AI
techniques [21], [22], [23], [19], [24], [25]. The game is
also being used as a benchmark for the Mario AI Champi-
onship1 [26].

Infinite Mario Bros has been chosen because of the popu-
larity of Super Mario Bros, the high similarity between the
two, the availability of an open source clone of the game
which makes development and data collection easier and
because of the 2D design and game mechanics it provides
which are similar to other games from the same genre. The
game has been used for this study not primarily in order
to find new design insights, but rather to validate that the
methodology could be used to find new design insights if
used on a less-known game genre.

While implementing most features of Super Mario Bros,
the standout feature of Infinite Mario Bros is the automatic
generation of levels. Every time a new game is started,
levels are randomly generated by traversing a fixed width
and adding features according to certain heuristics as spec-
ified by placement parameters. In our modified version, we
concentrated on a a number of selected parameters that affect
gameplay experience.

1http://www.marioai.org/

III. DATA COLLECTION

Data from gameplay and questionnaires have been col-
lected from hundreds of players over the Internet via a
crowd-sourcing experiment. Complete games were logged,
including the levels the players played and what actions the
players took at which time, enabling complete replays. The
following three types of data was extracted from raw logs
and replays: content, gameplay and annotated (self-reported)
player experience.

A. Content Data

Two types of content features have been extracted: direct
and sequential. The direct content features are also named
Controllable as they are used to generate the levels and
are varied to make sure several variants of the game are
played and compared. The level generator of the game has
been modified to create levels according to the following six
controllable features:
• The number of gaps in the level, G; gaps are the holes

in the game in which Mario may falls and die.
• The average width of gaps, Ḡw.
• The number of enemies, E. This parameter controls

the number of Goombas (mushroom-like enemies) and
Koopas (turtle-like enemies) scattered around the level,
affecting the level difficulty.

• Enemies placement, Ep. The way enemies is placed
around the level determined by three probabilities which
sum to one.

– Around horizontal boxes, Px: Enemies are placed
on or under a set of horizontal blocks (a number
of blocks placed horizontally without connection to
the ground).

– Around gaps, Pg: Enemies are placed within a close
distance to the edge of a gap.

– Random placement, Pr: Enemies are placed on a
flat space on the ground.

Fig. 2 illustrates positioned enemies by giving different
values for Pb, Pg and Pr. Fig. 2.(a) of the figure
shows enemies placed by setting Pb to 80%. Fig. 2.(b)
illustrates the result of setting Pg to 80%, and Fig. 2.(c)
is the result of Pr = 80%.

• The number of powerups, Nw. Mario can collect
powerup elements hidden in boxes to upgrade his state
from little to big or from big to fire.

• The number of boxes, B. We define one variable to
specify the number of the two different types of boxes
that exist in Infinite Mario. These two types of boxes
are here referred to as blocks and rocks. Blocks (which
look like squares with question marks) contain hidden
elements such as coins or powerups. Rocks (which look
like squares of bricks) may hide a coin, a powerup or
simply be empty. Mario can smash rocks only when he
is in big mode.

The generation of levels with specified values for all
parameters is guaranteed by the generator; while generating
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Fig. 2. Enemies placement using different probabilities: high probability
is given to placement around horizontal boxes, Pb (a), around gaps, Pg (b),
and to random placement, Pr (c).

the levels, and whenever an item is to be added, these
parameters are checked and the item is placed accordingly.

Game designers, who are familiar with 2D platform games,
and in particular Super Mario Bros, have been consulted
when selecting the controllable features. The features have
been chosen based on their impact on the investigated affec-
tive states and their generality to other 2D platform games.
Note that consulting game designers doesn’t conflict with the
bottom-up approach followed which derives models of player
experience based on data collected from players while the
designers’ knowledge is incorporated only when designing
the experiment.
The first two features appeared in our previous studies [27],
[19], whereas the four new features are explored for the first
time here.

Two states (low and high) are set for each of the con-
trollable parameters above except for enemies placement
which has been assigned three different states allowing more
control over the difficulty and diversity of the generated
levels. The total number of pairwise combinations of these
states is 96. This number can be reduced to 40 by analysing
the dependencies between these features and eliminating
the combinations that contain independent variables. All
levels have been checked before starting the data collection
in a way that assures their compatibilities with the intent
parameters assigned. An example level generated by one
possible combination of the controllable features is presented
in Fig. 3.

In addition to the direct (controllable) features, sequential
content features are also extracted. The topology of the levels
is converted into sequences of numbers representing different
types of game items and sequence mining techniques are
applied to extract useful patterns from the resulted sequences
(see Section V-B).

B. Gameplay Data

While playing the game, different player actions and
interactions with game items and their corresponding time-
stamps have been recorded. These events are categorised

in different groups according to the type of the event and
the type of interaction with the game objects. The events
recorded are the following: level completion event; Mario
death event and cause of death; interaction events with games
items such as free coins, empty rock, coin block/rock and
power-up rock/block; Mario enemy kill event associated with
the type of actions performed to kill the enemy and the type
of enemy; changing Mario mode (small, big or fire) event;
changing Mario state (moving right, left, jump, run, duck)
event; and the full trajectory of Mario as a combination of
events.

Both direct and sequential gameplay features have been
extracted based on the above-mentioned events. The detailed
list of features is presented in Section V.

C. Reported Player Experience Data

We rely on self-reporting annotations based on previous
research in which very accurate player experience models
of self-report affective states have been constructed [28],
[27]. However, a number of limitations are embedded in
the players self-reporting experience modeling including
noise due to learning and self-deception, disruption to game
play experience and sensitivity to memory limitations. In
order to minimize these effects we rely on annotated player
experience data collected via a 4-alternative forced choice
questionnaire presented after small game sessions. The ques-
tionnaire asks the player to report the preferred game for
three user states: engagement, challenge and frustration. The
selection of these states is based on earlier game survey
studies [27] and our intention to capture both affective and
cognitive/behavioural components of gameplay experience
[16].

The questionnaire protocol gives the players the following
alternatives:
• game A [B] was/felt more E than game B [A] (cf. 2-

alternative forced choice);
• both games were/felt equally E or
• neither of the two games was/felt E.

where E is the affective state under investigation.

IV. EXPERIMENTAL PROTOCOL

The game survey study has been designed to collect
subjective affective reports expressed as pairwise preferences
of subjects playing the different variants (levels) of the test-
bed game by following the experimental protocol proposed
in [29].

According to the protocol, each subject plays a predefined
set of two games. The games played differ in the levels of one
or more of the six controllable features presented previously.

The game sessions presented to players have been con-
structed using a level width of 100 Infinite Mario Bros
units (blocks), about one-third of the size usually employed
when generating levels for Infinite Mario Bros game in our
previous experiments [27], [19]. The selection of this length
was due to a compromise between a window size that is
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Fig. 3. An example level generated and used to collect the data.

big enough to allow sufficient interaction between the player
and the game to trigger the examined affective states and a
window which is small enough to set an acceptable frequency
of an adaptation mechanism applied in real-time aiming at
closing the affective loop of the game [30]. A previous
study [20] has been conducted to test whether a smaller level
width than the chosen one can be used to construct mod-
els for predicting players’ engagement from game content
with higher accuracy than the models constructed based on
information from levels with the chosen width. The study
concluded that the models perform best when trained on
features extracted from levels with the selected width rather
than from levels with half or one-third of the width.

A total number of 780 players participated in this crowd-
sourcing experiment. Participants’ age covers a range be-
tween 16 and 64 years (31.5% females) while their location
includes Denmark (46.11%), Greece (8.9%), Ireland (1.48%),
USA (3.34%), Holland (0.74%), Finland (1.36%), France
(0.37%), Syria (0.25%), Sweden (0.37%), Korea (0.12%),
Spain (0.25%) or unknown (36.71%).

V. FEATURE EXTRACTION

In the following sections we describe the types of fea-
tures that we have extracted from the recorded content and
gameplay data via direct and sequential feature extraction.

Most of the direct features presented appear in our previ-
ous studies [17], [19]. These features are used in this word
due to their relevance for modelling player experience. In
this work we also investigate sequential patterns extracted
from gameplay data.

A. Direct Gameplay Features

Several features have been directly extracted from the
data recorded during gameplay (see Section III). The choice
of these features is made in order to be able to represent
the difference between a large variety of Infinite Mario
Bros playing styles. In addition to the six controllable game
features that are used to generate Infinite Mario Bros levels,
the features presented in Table I are extracted from the
gameplay data collected and are classified in five categories:
time, interaction with items, interaction with enemies, death
and miscellaneous.

B. Sequential Features

We investigate another form of indirectly representing the
gameplay interaction by means of sequences which allows

including features that are based on ordering in space or time.
Gameplay features presented in the previous section provide
a quantitative measure about different types of game content
and playing style. Alternatively, analysing sequences of game
content and players’ behaviour yields patterns that might be
directly linked to player experience. For example, we would
like to extract features that encapsulate whether a player
performed a particular action before or after encountering
a specific in-game situation.

Modelling players’ experience based on features extracted
from sequential information provides a promising alternative
for models constructed based on direct feature extraction, and
by fusing these two types of representations, we anticipate
to construct more accurate models of player experience than
those constructed on one of these form of data representation
at a time.

In the following sections, we describe different criteria of
constructing sequences from game content, gameplay, and
the interaction between the two. We present two sequence
mining approaches and further discuss different setups that
can be used for mining the extracted sequences.

Table II presents the different possible approaches that
can be followed to generate different types of sequences.
The columns represent the different order and frequency
at which information is logged. The rows represent what
type of data is logged each time an event occurs. We will
be distinguishing the following orders/frequencies, while
acknowledging that even more fine-grained distinctions are
possible:
• tsmall: time step. Information is logged at a constant

rate (e.g. once per second), regardless of what the player
does. This yields a sequence with a length proportional
to the time taken by the player to play the level.

• Block: Information is logged once per block in the level,
independent of the time taken by the player to traverse
the level. This yields a sequence with a length equal to
the level.

• Gameplay event: Information is logged each time the
player changes the command issued (pressing/releasing
a button or changing direction) or something else
happens (e.g. Mario changes the mode or stomps an
enemy).

The information logged each time anything is logged can be
either game content (C), player (gameplay) behaviour (A) or
both game content and player’s behaviour (M ).

We will focus the discussion for the rest of the paper
on the five sequence types marked with an X in Table II.
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TABLE I
FEATURES EXTRACTED FROM DATA RECORDED DURING GAMEPLAY

Category Feature Description
Time tcomp Completion time

tplay Playing duration of last life over total time spent on the level
tduck Time spent ducking (%)
tjump Time spent jumping (%)
tleft Time spent moving left (%)
tright Time spent moving right (%)
trun Time spent running (%)
tsmall Time spent in Small Mario mode (%)
tbig Time spent in Big Mario mode (%)

Interaction ncoin Free coins collected (over all coins existent in the level)
with items ncoinBlock Coin blocks pressed or coin rocks destroyed (over all blocks and rocks existent)

npowerups Powerups pressed (over all powerups existent)
nblocks Sum of all blocks and rocks pressed or destroyed (over all blocks and rocks existent)

Interaction kcannon Times the player kills a cannonball or a flower (over all cannon and flower enemies existent)
with enemies kgoomba Times the player kills a goomba or a koopa (over all goombas and koopas existent)

kstomp Opponents died from stomping (%)
kunleash Opponents died from unleashing a koopa shell (%)

Death dtotal Total number of deaths
dcause Cause of the last death

Miscellaneous nmode Number of times the player shifted the mode (Small, Big, Fire)
njump Number of times the jump button was pressed

nmiscJump Difference between the total number of gaps and the total number of jumps
nduck Number of times the duck button was pressed
nstate Number of times the player changed the state between:

standing still, run, jump, moving left, and moving right

TABLE II
THE DIFFERENT TYPES OF SEQUENCES THAT CAN BE GENERATED.
COLUMNS PRESENT THE TYPE OF EVENT TO BE RECORDED, WHILE
ROWS PRESENT WHEN TO RECORD THE EVENT. THE COMBINATIONS
MARKED WITH AN X ARE THE ONES INVESTIGATED IN THIS PAPER

ts Block Gameplay Event
Ah (Player Behaviour) X X
C (Content) X X
M (both) X

Although we only investigate a few sequence types of all
those available, our sample provides a variety of options that
cover different aspects of playing experience.

Once we know what to sample and when, the question
remains how to turn this information into sequences using a
low-cardinal alphabet. Below, we discuss how to do this for
levels and for gameplay traces.

1) Sequential Content Features: Sequences capturing dif-
ferent information about level geometry have been extracted
by converting the content of the levels into numbers rep-
resenting different types of game items. Three different
representations of game content have been investigated. The
full list of events considered as well as their graphical
representation is presented in Table III.
• Platform structure, P : A sequence is generated by

comparing the height of each block across the level
with the height of the previous block and recording the
following values: 0 if no difference found ( ); 1 if
there is an increase in the platform height ( ); 2 if
there is a decrease in the platform height ( ); and,
3 and 4 to mark the beginning ( ) and the ending
( ) of a gap, respectively. Fig. 4.(a) presents part of a
level and the corresponding platform structure sequence

representation.
• Enemy and item placement, I: The term items refers

to the coins and the different types of boxes scattered
around the level. The existence and non-existence states
for enemies and items have been combined together
resulting in four different possible values: 0, 1, 2 and
3 corresponding, respectively, to non-existence of either
enemies or items, the existence of an enemy ( ), the
existence of an item ( ), and the existence of an
enemy and an item ( ). Fig. 4.(b) illustrates an example
level segment where the above-mentioned four states are
presented.

• Content corresponding to gameplay events, Cg: We
explored another method in which game content at the
specific player position is recorded whenever the player
performs an action or interacts with game items. In
this case, different content events are used: increase in
platform height, ; decrease in platform height, ;
existence of an enemy, ; existence of a coin, block
or rock, ; existence of a coin, block or rock with an
enemy, ; and the beginning, , and the end , of a
gap.

2) Sequential Gameplay Features: Sequences represent-
ing different players’ behaviour have been generated by
recording key pressed/released events (action event) or inter-
action with items events. The action event might represent
a simple action performed such as pressing an arrow key to
move left or right; or more complex player’s behaviours that
can be achieved by pressing a combination of keys at the
same time (e.g. jumping over a big gap requires the player
to press the run and jump keys together for a number of time
steps). The following list describes the different events that
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TABLE III
THE DIFFERENT TYPES OF EVENTS CONSIDERED WHEN GENERATING THE SEQUENCES AND THEIR GRAPHICAL REPRESENTATION.

Category Graphical Representation Description

Platform Flat platform
Structure , Increase/decrease in the platform height

, The beginning/ending of a gap
Enemies The existence of an enemy

and Items The existence of coin, block, or brick block

The existence of enemy with a rewarding item
Gameplay �,�,L Moving right, left or duck

⇑ Jumping
⇑�,⇑� Jumping right or left
R�,R� Running right or left

R�⇑,R�⇑ Running while jumping right or left
S Not pressing any key
Es Stomping on an enemy
U Unleashing a koopa shell
O Changing Mario Mode

W ,L Winning or losing the game

(a) (b)

Fig. 4. Snapshot from a level and the corresponding platform structure
sequence representation, P (a), and enemies and items sequence represen-
tation, I (b).

have been considered (Table III).

• Pressing an arrow key to move right, left, or duck (�,
�, L).

• Pressing the jump key, ⇑.
• Pressing the jump key in combination with right or left

key (⇑�, ⇑�).
• Pressing the run key in combination with right or left

key (R�, R�).
• Pressing the run and jump keys in combination with

right or left key (R�⇑, R�⇑).
• Not pressing any key, S.
• Winning the game, W .
• Losing the game, L.
• Killing an enemy by stomping, Es.
• Unleashing a koopa shell, U .
• Changing Mario mode, O.

Fig. 5 presents the graphical interpretation for most of the
actions that can be performed.

In this paper, we will consider two time window t values
for generating sequences: 0.5 sec (A0.5) and 0.25 sec (A0.25)
meaning that an event will be registered every half or
quarter of a second, respectively. We also consider sequences
generated whenever the player switch the action, A. (Note
that Infinite Mario is a fast-paced game in which the player

(a) Standing still (S) (b) Moving right (�) (c) Moving left (�)

(d) Ducking (L) (e) Jumping (⇑) (f) Jumping right (⇑�)

(g) Running right (R�)

Fig. 5. A graphical representation of the different actions that can be
performed by the player.

could in theory perform an action every 1/24 sec).
The purpose of recording these events is that players’

behaviour and playing style can be analysed by looking at
events generated by each player and how frequent each of
these event occurs. Generating a sequence combining these
events in a timely manner provides a more in-depth insight
about more complex behaviour patterns that might have an
impact on players’ experience.

The resulted sequences of players’ behaviour have a wide
variety both in terms of length and structure, which reflects
the diversity of players’ playing style and complicate any
sequence mining algorithm that can be applied to extract
useful information. This diversity is reflected on the nor-
malised compression distance (NCD) measure [31] that has
been applied to test for structural similarity between the
sequences. The results of applying this function on each pair
of the actions sequences showed a high dissimilarity between
the sequences (NCD>0.6 in 71.32% of the cases).

3) Fused Sequential Features of both Game Content and
Gameplay Data: Game content and players’ behaviour
events have been fused together to generate bimodal se-
quences (M ). Events from the two modalities have been ex-
tracted with their corresponding time stamp and then logged
in temporal order. The generated event contains information
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about the game content at the specific position in the game
where the gameplay event occurred (which is one of the
events mentioned in Section V-B1 or none if no content event
from the list happens to occur at this specific position) along
with the type of the gameplay event.

VI. SEQUENCE MINING

Sequence mining techniques have been applied to ex-
tract useful information from the different types of the
sequences generated. Two algorithms for frequent itemset
mining have been implemented to find frequent sequence
patterns within the dataset of sequences: SPADE and GSP.
The SPADE [32] algorithm has been used to mine single-
dimensional sequences that represent game content indepen-
dently of player’s behaviour, namely, platform structure (P )
and enemies and items placement (I). This algorithm has
been used in our previous work [20] for mining content
sequences, and is used in the same way in this paper. Mining
sequences across multiple time series of data — content
corresponding to gameplay events (Cg), player’s behaviour
(A) and multimodal sequences (M ) — can be achieved via
the Generalised Sequential Pattern (GSP) algorithm [33];
Martinez and Yannakakis [34] have used GPS to obtain
frequent subsequences across multiple modalities of player
input (physiology and game-based context).

In the following sections we provide a short list of frequent
subsequence mining definitions and give a brief description
of the two algorithms and the way they have been used in
this paper.

A. Definitions
A data-sequence is a sample of a sequential dataset where

each sequence consists of a number of events, each one
associated with a time stamp. The events are ordered by
increasing time.

A sequence pattern li is a non-empty set of simultaneous
events denoted by < e0e1e2...en > where ei is an event.
A data-sequence supports a sequence pattern if and only if
it contains all the events present in the pattern in the same
order but not necessarily consecutive.

A minimum support minsup is the minimum number of
times a pattern li has to occur in the data-sequences to be
considered frequent. If the number of occurrences of li in
the data-sequences exceeds the minsup, we call li a frequent
pattern and in this case, the fraction of data-sequences that
support li is refereed to as support count, supcount.

B. SPADE
A modified version of the SPADE algorithm [32] has been

implemented to extract frequent subsequences of different
game events. Game content for the 40 levels has been con-
verted into numbers representing different types of content
events as described in Section V-B1. Different subsequence
lengths and minimum support thresholds values have been
explored. A minimum support threshold of 20 has been used,
meaning that each subsequence should occur at least in half
of the levels to be considered frequent.

C. GSP

The GSP algorithm [33] solves the sequence mining
problem based on an apriori algorithm with a number of
generalisations. Using GSP, we can discover patterns with a
predefined minimum support, define time constraints within
which adjacent events can be considered elements of the
same pattern, and specify a time window for events from
different modalities to be considered as synchronous events.

GSP generalises the basic definition of frequent sequential
pattern by introducing two relaxation schemes:
• Sliding window: This generalisation allows the items

of a pattern to be contained in the union of the items
belonging to different time-series. According to this
relaxation, a sequence s =< sisj > — where si and sj
can be contained in different time-series — is allowed
to be counted as a support for a subsequence c as long
as the time difference between si and sj is less than the
user specified window-size, maxwin.

• Time constraints: This relaxation specifies the time gap
between consecutive events from one or two different
time-series. Given a user-defined gap, maxgap, a data-
sequence supports the a pattern of two consecutive
events < sisi+1 > if and only if si and si+1 occur
in the sequence of the specified order and with a time
difference lower than the specified maxgap.

The GSP algorithm is used for mining sequences that rely
on players’ behaviour (Cg , At, A) since it allows more gen-
eralised frequent patterns to be found by exploring different
maxgap, and it is also used of mining multimodal sequences
(M ) as, by using maxwin, we can discover simultaneous
events from two different modalities.

Different minsup values have also been explored to obtain
a reasonable trade off between considering patterns that are
generalised over all players and more specific patterns. For
the experiments presented in this paper, we use a minsup

of 500 which forces a sequence pattern to occur in at least
31.8% of the samples to be considered frequent.

The maxwin defines the threshold under which events
from two different modalities can be considered as simul-
taneous events. In this paper, we use maxwin = 1 second.
The value for this parameter has been chosen as a trade
off between a small window size that does not consider
simultaneous events, and a window size that process clearly
asynchronous events from two modalities as events happen-
ing in a very small interval. For the rest of this paper we
will use parentheses to group simultaneous events.

The maxgap parameter is used to set up the time gap
between two events to be considered as belonging to the same
pattern. This parameter has a great impact to the number of
frequent patterns that can be extracted. By assigning a large
value to this parameter, we allow more generalised patterns to
be taken into account and as a consequence, a large number
of sequences will be counted as supcount. Another drawback
for using large maxgap values is that it allows considering
less informative patterns. Correctly tuning this parameter has
a large impact on the informativeness of the resulted patterns,
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TABLE IV
NUMBER OF FREQUENT SEQUENTIAL PATTERNS FOUND FOR DIFFERENT
SEQUENCE LENGTH VALUES ACROSS DIFFERENT TYPES OF SEQUENCES
(minsup IS 500 AND maxgap IS 1 SEC). THE COLUMNS STAND FOR:
CONTENT CORRESPONDING TO GAMEPLAY EVENTS (Cg ), GAMEPLAY
BEHAVIOUR (A), GAMEPLAY BEHAVIOUR REGISTERED EVERY 0.5 SEC

(A0.5) AND EVERY 0.25 SEC (A0.25) AND MULTIMODAL SEQUENCES OF
GAME CONTENT AND PLAYER’S BEHAVIOUR (M ).

Length Cg A A0.5 A0.25 M

1 7 8 2 8 18
2 27 64 2 57 205
3 25 310 0 69 939
4 23 939 0 741 1982
5 29 2065 0 1810 2957
6 0 2636 0 2547 2806
7 0 1403 0 1400 1402
8 0 115 0 112 112

specially when mining multimodal sequences. For instance,
if we use maxgap = 3sec, the pattern (⇑, ,�) can be
supported by any sequence in which the player jumps, moves
right and encounters an enemy within a 3 seconds interval
(note that within this interval, the player might encounter
more than one enemy or a gap between the jumping and
moving right events which makes this pattern somehow
misleading). The experiments conducted for tuning the value
of this parameter showed that a maxgap of 1 sec provides a
good trade off between the number of patterns extracted and
their expressiveness value.

D. Length of Sequences

Table IV presents the different types of sequences and
the number of frequent subsequence found for a number
of different sequence generation methods. As can be seen
from the table, the number of extracted subsequences is quite
large for sequences containing information about players’
behaviour (A), and the search space for automatic feature
selection increases substantially when fusing content and
gameplay events for generating sequences (M ); more than
2000 subsequences of length six have been extracted from
the players’ behaviour and multimodal sequences.

In order to lower the feature space dimensionality and
the computational cost of searching for relevant features we
chose to use only frequent sequences of length three.

VII. PREFERENCE LEARNING FOR MODELLING PLAYING
EXPERIENCE

In order to construct models that approximate the function
between gameplay features, controllable features and re-
ported affective preferences, we use neuroevolutionary pref-
erence learning. In other words, we use artificial evolution
for shaping artificial neural networks (ANNs) whose output
matches the reported (pairwise) preferences of the players.

We proceed in a three-phase procedure in order to find
networks that predict preferences with high accuracy.

1) Feature selection: In the first step, we use single-layer
perceptrons (SLPs) to approximate the preferences of
the players; Sequential Forward Selection (SFS) [35],

[36] is applied to generate the input vector for the
SLPs by finding the subset of features that yields the
highest performance. The quality of a feature subset is
determined by 3-fold cross-validation on unseen data.

2) Feature space expansion: The subset of features derived
from SFS using SLP is then used as the input of small
multi-layer perceptron (MLP) models (containing one
layer of two hidden neurons) and SFS is used again
to extract additional features from the set of remaining
features allowing features with more complicated non-
linear relationships to be selected.

3) Setting ANN topology: Once all features that con-
tribute to accurate simple MLP models are found we
optimise the topology of models using neuroevolution-
ary preference learning. We start with a simple MLP
topology of one hidden layer of two neurons, we then
increase the number of neurons up to ten by adding
two neurons at each step. Further, we investigate MLPs
with two hidden layers, with up to ten neurons in the
first and second layer. Again, the number of hidden
neurons starts at two and increases by adding two
neurons at each step; this sums to 30 different MLPs
topologies which are tested for each input vector.

The performance of each MLP is obtained through the
average classification accuracy in three independent runs
using 3-fold cross validation. Parameter tuning tests have
been conducted to set up the parameters’ values for neu-
roevolutionary user preference learning that yield the highest
accuracy and minimise computational effort. A population
of 100 individuals is used, and evolution runs for 20 gener-
ations. A probabilistic rank-based selection scheme is used,
with higher ranked individuals having higher probability of
being chosen as parents. Finally, reproduction was performed
via uniform crossover, followed by Gaussian mutation of 1%
probability.

VIII. ANALYSIS

This section provides a thorough analysis conducted for
testing simple and more complex relationships between the
features extracted and the three reported states of player
experience. We further investigate the generality of the
proposed approach by comparing the models constructed on
the presented dataset and the ones constructed in our previous
work in terms of the models’ performance and the features
selected.

A. Linear Relationships

We performed an analysis for exploring statistically signif-
icant correlations (p-value< 5%) between player’s expressed
preferences and extracted features. Correlation coefficients
are obtained by following the method proposed in [17]. Ac-
cording to this method, correlation coefficients are calculated
through c(z) =

∑Ns

i=0{zi/Ns} where Ns is the total number
of game pairs where players expressed a clear preference
(gameA > gameB or gameB > gameA) for one of the
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two games and zi = 1, if the player preferred the game with
the larger value of the examined feature and zi = −1, if the
player preferred the other game in the game pair i. The top
five significantly correlated features for each emotional state
are presented in Table V.

Nineteen direct features are significantly correlated with
engagement with some of them also strongly correlated with
frustration and challenge while 21 features are significantly
correlated with frustration, and 17 features with challenge.
The features that are strongly correlated with engagement
and not with challenge are mostly related to the interaction
between the player and blocks (mainly powerups); These
features point to the task of searching for powerups, in
which the player has to destroy blocks looking for powerups
which as a result changes Mario’s mode, as being particularly
engaging.

The avatar death feature (signifying that Mario loses a life)
is the most significantly correlated with both frustration and
challenge indicating a strong relationship between death and
these two player experience states.

Regarding changes in platform height patterns, P , only the
features presented in Table V for engagement and frustration
are significantly correlated with engagement and frustration
while 15 features are strongly correlated with challenge.
Seven and 15 out of the features that correlated best with
frustration and challenge, respectively, relate to the presence
of a gap while engagement is significantly correlated with
only four features that indicate a gap. It is interesting to
note that despite the small patterns’ length (three) almost all
features presented for the three emotional states require two
or three gameplay actions to be performed.

Ten out of the 12 features from I (item and enemy place-
ment) are significantly correlated with engagement while
only three and two features correlate significantly with
frustration and challenge, respectively. A first observation
is that it is obviously much easier to predict engagement
from I than to predict challenge and frustration due to many
more features significantly correlated to engagement, and the
correlations are stronger. Most features that correlate with
engagement point to the placement of items and enemies.
This is not the same for frustration which demonstrates less
significant effects and the majority of those that do focus
on the existence of an enemy; features that correlate with
challenge highlight the importance of the relative placement
of items and enemies in the challenged perceived.

Large subsets of features of players’ actions (A) are signif-
icantly correlated with engagement, frustration and challenge
(99, 72 and 74, respectively). All features that are highly
correlated to frustration are also correlated to challenge.
It is worth mentioning that the features that correlate the
most with engagement are also significantly correlated with
frustration and challenge but at different significance levels.
It appears that the number of jumps the player performs
plays an important role in predicting engagement as it
appears in all top-5 action patterns combined in most of the
cases with moving right and pressing the speed button. This

can also explain the significance correlation found between
engagement and sequences of I that contains items which
mostly require jumping to be collected and enemies which
require a jump to be killed or overcome.

While jumping and moving right are the most important
actions for predicting engagement, standing still, S (suppos-
edly thinking about how to overcome the next obstacle) is
the most frequent action in the subset of features correlated
with frustration and challenge

Nine features out of the 25 features of Cg are significantly
correlated with engagement, while only three features are
strongly correlated with challenge and frustration. It’s worth
noticing that all the features that correlate with challenge
contain the same items and differ only in the placement of
parentheses (the same applies for frustration). This indicates
that the existence or non-existence of a sequence of certain
content items is more important for the experienced frustra-
tion and challenge than its relative placement.

The three correlated Cg features with frustration linked to
the existence of gaps and the placement of parentheses within
each pattern reflect the width of a gap (a gap beginning and
ending within the same item indicates a small gap width
since the parentheses enclose events happening within a very
short time). The fact that the significant patterns contain ( )
in combination with a gap points out to stairs surrounding
the gap or changes in platform height within a very close
distance to the gap which add to the difficulty of jump-
ing and as a result, on the reported frustration. Somewhat
surprisingly, patterns including the presence of gaps are not
correlated with challenge. This suggests a possible nonlinear
relationship.

Large subsets of multimodal features are strongly corre-
lated with engagement, frustration and challenge (232, 95
and 119, respectively). While most features correlated with
frustration are also strongly correlated with challenge, the
most significantly correlated features with engagement, are
not strongly correlated with either frustration or challenge.
Patterns correlated with engagement draw a picture of most
players enjoying running in a non-flat platform that requires
jumping. From the patterns correlated with frustration, it
seems that frustrated players spend more time standing still,
less time running through the level (this can also be seen in
A and A0.25 patterns where the standing still and moving
right — without the speed button pressed — are the most
dominant actions).

The correlations calculated and analysed above provide
basic analysis with linear relationships between the extracted
features and reported emotions. However, these relationships
are most likely more complex than those that can be captured
by linear models. The aim of the following section is to
analyse the nonlinear relationships found using the players’
experience models.

B. Nonlinear Relationships

In this section, we base our analysis on which features
were selected by the SFS algorithm for constructing neural
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TABLE V
TOP FIVE STATISTICALLY SIGNIFICANT CORRELATION COEFFICIENTS BETWEEN REPORTED ENGAGEMENT, FRUSTRATION AND CHALLENGE AND
EXTRACTED FEATURES. THE SIGN BEFORE THE FEATURES INDICATES POSITIVE (+) OR NEGATIVE (−) CORRELATION. FOR EXAMPLE, THE TIME

REQUIRED TO COMPLETE THE LEVEL WAS FOUND TO BE POSITIVELY CORRELATED WITH ENGAGEMENT, WHILE A SEGMENT OF CONTENT WITH TWO
ADJACENT DECREASES IN THE PLATFORM HEIGHT WAS FOUND TO BE NEGATIVELY CORRELATED WITH ENGAGEMENT AS CAN BE SEEN FROM THE

FIRST ROW.

Direct Sequential
P I A A0.25sec Cg M

Engagement
+tcomp − − +(S)(�)(⇑) −(�)(�)(S) +( , , ) +( )(�)(⇑�)
+tplay − + −(R�⇑)(�)(�) −(�)(⇑�)(S) +( , )( ) +( )(�)( )

+npowerups − +000 −(⇑)(S)(S) −(�,⇑�)(⇑�) +( , )( ) +( )(⇑�,⇑)
+nstate − + −(R�)(�)(R�) −(�,⇑�)(S) +( , , ) +( ,⇑�)( )
+Nw − + −(�)(⇑)(�) +(�,⇑�, S) +( , )( ) +( ,⇑�)( )

Frustration
+dcause − + +(S)(�)(⇑) +(�,�)(S) −( , )( ) +( )(�)(S)
−ncoin + + −(R�⇑)(�)(�) −(�)(⇑)(S) −( , , ) +(�)(�)( )
+dtotal + + −(⇑)(S)(S) −(�, S)(⇑�) −( )( , ) +( )( )(�)
−njump + + −(R�)(�)(R�) +(�)(�)(S) +(S)( )(S)
−tplay + −(�)(⇑)(�) +(�)(⇑�)(S) +( )(�)( )

Challenge
+dtotal − + −(S)(�)(⇑) −(�)(�)(⇑�) +( , , ) −(S)(�)( )
+dcause + + −(R�⇑)(�)(�) +(S)(⇑, S) +( )( , ) −( ,�, R�)
−kcannon − −(⇑)(S)(S) −(S, S)(S) +( , )( ) −(�)( )(S)
−tright + −(R�)(�)(R�) −(�)(�,�) −(�)( )(�)
−nstate + −(�)(⇑)(�) −(�,⇑�)(⇑�) −(�)( )( )

network-based player experience models. As these models
take nonlinear relations into account, the features selected
for these models might reveal more complicated and in
a sense deeper relationships, but the analysis is also less
straightforward.

All direct features and the number of occurrences of all
sequential features extracted are uniformly normalised to
[0,1] using standard max-min normalisation. After normali-
sation, these values are used as inputs for feature selection
and ANN model optimisation. Table VI presents the features
selected for reported engagement, frustration and challenge,
respectively.

Note that to design Infinite Mario level generation mech-
anisms that are driven by the player experience models we
construct here, all remaining controllable features that are not
selected in the feature selection process are forced into the
input of the MLPs. The MLP performance and topologies of
the best MLPs (for both direct and various types of sequential
features) are presented in Table VII.

1) Engagement: Using MLPs with the selected direct
features and the remaining controllable features, we were
able to predict engagement, frustration and challenge with
relatively high accuracy (see Table VII). Out of the three
emotional states, engagement appears to be the hardest to
predict both in terms of network topology and model’s
performance.

Using different patterns of content and/or gameplay to con-
struct player experience models resulted in models that vary
in topology and performance. The best-performing model for
predicting engagement has been constructed using selected
patterns of players’ gameplay taken every 0.25 seconds and

achieved a performance that is significantly better than all
other models (83.8%) followed by the model constructed
on patterns extracted from items and enemies placement,
I (71.02%) with no significant difference from the model
constructed on direct features. It is interesting to note that this
model outperforms other models after including the direct
controllable features in the inputs. Without including the
controllable features, the model constructed on direct features
outperforms the ones constructed on sequential features with
no significant difference from the model constructed on
patterns extracted from players’ gameplay, A.

The subset of direct features for predicting engagement
(see Table VI) consists of the total time spent playing the
game, the time spent doing different activities (running,
jumping, in big mode and in little mode), the number of
coins collected, the number of blocks destroyed (which in
part relates to the number of collected coins since player
smashes blocks to collect hidden coins and it also relates
to the time spent in big/small mode), the number of times
the jump button is pressed (which relates to the time spent
jumping), the cause of death, and the controllable feature that
defines the number of goombas and koopas scattered around
the level.

Two of the directed features selected appear to be dom-
inant in the selected sequential features of players’ actions,
A0.25, more specially, running right and jumping. The two
selected patterns (�,⇑�, S) and (�)(⇑, S) point out to the
existence of a content event that causes jumping and standing
still behaviours. This can be better explained by looking at
the selected content patterns that relates to gameplay events,
Cg . By investigating the subset of selected features from
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TABLE VI
THE FEATURES SELECTED FROM THE SET OF DIRECT AND SEQUENTIAL FEATURES FOR PREDICTING ENGAGEMENT, FRUSTRATION AND CHALLENGE

USING SEQUENTIAL FEATURE SELECTION WITH SLP AND SIMPLE MLP MODELS

Direct Sequential
P I A A0.25sec Cg M

Engagement
SFSslp tcomp 000 (�)(�)(�) (�)(�)(�) ( )( , ) (�)( )( )

ncoin (R�)(R�⇑)(R�) (�,⇑�, S) ( , , ) (R�)(R�⇑)( )
dcause (⇑�)(⇑)(S) (R�, R�, R�⇑) ( , , ) (S)(�)( )
tsmall (R�⇑, ⇑�)(S) (�)(⇑, S) ( , , ) ( , , ⇑�)
E (�)(⇑�)(S) (S)(�)(S) (R�)( )(R�)

tjump (R�)(S)(S) (�, R�, R�⇑) ( )(�)(⇑�)
ncoinBlock (⇑)(⇑)(�) (�)(S)(⇑) ( )(R�)(R�⇑)

(R�)(R�, R�⇑) ( , �)(R�)
SFSmlp tbig (�,⇑)(�) ( , , )

trun
njump

Frustration
SFSslp tright 000 (S)(�)(S) (�)(�)(�) ( )( , ) (�)( )( )

dtotal (R�⇑)(R�⇑)(R�) (R�, R�⇑)(R�) ( , , ) ( )(�)(S)
dcause (⇑�)(S)(�) (S)(�, S) ( , )( ) (�)(S)( )
kgoomba (⇑�)(�)(�) (S)(�)(�) ( , )( ) ( , R�)(�)
tplay (�)(⇑�)(�) ( , , ) ( )(R�)(R�⇑)
Ḡw (�)(S)(�) ( , )( ) ( )(�)(�)

( )( , ) (R�, R�⇑)( )
SFSmlp G (�,⇑)(�) (⇑, S)(�)

njump (�)(S)(S)

Challenge
SFSslp tplay 000 (�)(�)(S) (�,�)(�) ( )( , ) (�)( )( )

njump (�)(R�)(R�) (�, R�)(R�) ( , )( ) ( , ,⇑�)
dtotal (⇑)(�)(S) (R�)(R�⇑)(R�) ( , )( ) ( )(⇑�)(S)
ncoin (⇑)(⇑�)(S) (S)(�)(⇑�) ( , , ) (S)(�)( )
tright (�)(S)(S) ( )( , ) ( , )(R�)
Ḡw ( , , ) ( ,�, )
Ep

SFSmlp tleft (�)(�)(S) ( , )( )
kstomp

TABLE VII
BEST MLP TOPOLOGIES AND CORRESPONDING PERFORMANCE ON DIRECT AND SEQUENTIAL FEATURES. THE PERFORMANCE OF MLP MODELS

BUILT ON THE SUBSET OF SELECTED FEATURES, MLPs IS COMPARED AGAINST THE MODELS BUILT ON SELECTED AND FORCED CONTROLLABLE
FEATURES, MLPc . THE TOPOLOGIES ARE PRESENTED IN THE FORM: NUMBER OF INPUTS-NUMBER OF NEURONS IN THE FIRST HIDDEN

LAYER-NUMBER OF NEURONS IN THE SECOND HIDDEN LAYER.

Direct Sequential
P I A A0.25sec Cg M

Engagement
MLPtopology 15-6-8 14-8-4 13-2-6 14-2-2 14-10-0 11-2-2 14-2-2

MLPs 73.50% 68.84% 72.19% 73.19% 66.85% 67.16% 63.81%
MLPc 69.80% 65.80% 71.02% 68.00% 83.80% 68.00% 66.49%

Frustration
MLPtopology 12-6-0 12-8-2 10-10-10 13-2-0 12-2-0 13-6-0 14-4-0

MLPs 83.00% 77.21% 66.66% 68.92% 68.45% 66.29% 72.88%
MLPc 80.70% 71.93% 69.30% 72.50% 71.37% 68.36% 72.32%

Challenge
MLPtopology 13-2-2 10-4-0 10-2-8 10-8-6 12-4-4 13-8-6 12-6-2

MLPs 79.10% 73.04% 69.22% 63.84% 62.83% 66.50% 68.88%
MLPc 77.50% 69.60% 69.05% 70.62% 67.62% 71.29% 71.45%

these two types together, simple jumping actions, ⇑, can
be explained by changes in platform height and placement
of items; moving right followed by jumping and standing
still patterns ((�,⇑, S) and (�)(⇑�, S)) mostly relates to

the behaviour of overcoming enemies ( , , ); the more
complex navigation patterns that has been selected, such
as (R�, R�, R�⇑) that defines the behaviour of pressing a

combination of buttons at the same time within a very small
window time, suggest the existence of a gap that requires
speeding up followed by jumping while the moving right
and the speed button are still pressed (( , , )). Note
that the two patterns ((�,⇑, S) and (�)(⇑�, S)) can also be
the result of overcoming a gap, which in that case reflect
a beginner player playing style. On the contrary the pattern
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(R�, R�, R�⇑) captures a more advanced playing behaviour.
Since the methodology proposed constructs average models
in the sense that the models are trained on a composite
of subjective preferences of several subjects, patterns that
capture the playing style of beginner and expert players can
be selected and presented as inputs to the models.

2) Frustration: The best models for predicting frustration
have been constructed using the subset of direct features
and the remaining controllable features and they significantly
outperform all other models. The models trained on patterns
of players’ actions achieve the highest performance among
other sequential-based models (no significant difference how-
ever). Using the subset of selected features without enforcing
the controllable features, the best performance obtained from
the models constructed on frequent patterns of changing plat-
form height; again, the model’s performance is significantly
lower than the performance of the models constructed on
direct features.

From the features selected for predicting frustration (see
Table VI), it appears that for a game to be frustrating, it
should contain at least a certain number of gaps with certain
width (both positively correlated). The number of kills of
goombas and koopas points out to the importance of the
number of enemies presented in the game. The selection of
the features that relate to avatar death (the number of deaths,
the cause of death and the time spent playing in last life)
also reveals the importance of gaps and enemies since these
two elements constitute major causes of death.

Selected sequential features highlight specific patterns that
have an impact on reported frustration. As selected direct
features already demonstrated, the existence of enemies and
gaps seem to be important for predicting frustration since
most of the sequential patterns of P , I and Cg contain these
events. The placement of stairs around gaps or the changes
in platform height within a close distance to a gap appear
to have an influence on how frustrating the game perceived
even with moderate to small width gaps (e.g. the pattern
( , , )). Another element that factors in the perceived
frustration is the placement of several game content events
within a small time window as can be seen from the example
patterns: and ( , )( ). It can be observed
from the most frequent patterns of players’ actions and the
correlation between them and reported frustration that the
frustrated player rabidly switches between simple actions
of moving right (without speeding up), standing still and
performing simple jumps.

3) Challenge: Challenge can be best predicted using a
subset of direct features with significantly better performance
than all other models constructed on sequential features. The
models constructed on direct features also outperform the
other models when excluding the controllable features. The
best performing model from sequential features is based on
multimodal patterns with a very close performance to the
models constructed on patterns from players’ actions, A, and
the models constructed on patterns of game content, Cg .

The direct features selected for predicting challenge (see

Table VI) reveal the importance of gaps and enemies since
five of them relate to gaps width, placement and killing of
enemies and avatar death (all positively correlated). An inter-
esting and somehow expected feature is enemy placement,
which is negatively correlated with challenge and adds to
the difficulty of the game, in particular, when enemies are
placed around gaps making it more challenging to jump over
and also when placed around blocks making item collection
more difficult.

Selected direct features can be better explained when
analysing the selected sequential patterns. The presence of
the standing still item in the same pattern with moving right
and/or jumping suggests an existence of a challenging situ-
ation in which the player has to pause and spend sometime
thinking before taking a simple action (e.g. patterns like
(⇑)(�)(S) or (�)(S)( )). While challenge is positively
correlated with the pattern ( )( , ), a negative correla-
tion has been observed between challenge and the pattern
( , , ). This can be explained by the complex situation
that arises in the first case and makes jumping over a gap
more challenging since the player does not have enough
space to speedup before jumping; instead she has to move
carefully towards the edge and press a set of combined keys
in order to reach the other edge.

One should expect that the models constructed on multi-
modal data of content and gameplay (M ) should achieve the
best performance. Surprisingly, the performances obtained
from these models are as high or slightly lower than the
performance of the best sequential models constructed. A
possible explanation is that frequent patterns of length three
are rather small to capture patterns across different data
streams and longer pattern lengths should be considered.
(We would likely need more data in order to effectively
use longer subsequences for analysis). Another critique is
the wide diversity of players’ actions when encountering the
same in game situation which enlarges the size of the feature
space and complicates the mining of the resulted sequences.

C. Comparison with Player Experience Models in the Liter-
ature

Since player experience models based on direct features
using the same methodology but with smaller dataset and
longer game sessions has been constructed in our previous
work [17], [19], it is worth comparing the models’ accuracies
and selected features for the three emotional states and
investigate how well the methodology proposed scales for
a much larger dataset and smaller game sessions. Note that
in our previous work, the three emotional states investigated
were fun, frustration and challenge. Even though not entirely
accurate we assume that players’ reported fun is consistent to
the level of reported engagement for comparison purposes.

Table VIII presents the features selected, model topologies
and prediction performance for the models presented in [19].
For engagement, three out of the four features selected in
the previous models have also been selected in the current
model along with seven other features. Despite the expansion
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TABLE VIII
THE SUBSET OF DIRECT FEATURES USED FOR PREDICTING PLAYERS’

REPORTED EXPERIENCE AND THE CORRESPONDING MODELS’
TOPOLOGIES AND PERFORMANCE AS PRESENTED IN [19]

Fun Frustration Challenge

tcomp tcomp ncoin

tbig F tcomp

trun npowerups nf

kunleash nmode F

tplay df

Ḡw Ḡw

njump

MLPtop 7-10 10-4-2 9-3
MLPperf 69.66% 89.33% 74.66%

in the dataset size and the use of smaller time sessions, the
methodology proposed for constructing players’ experience
models of engagement appears to be consistent since the
two models are able to predict engagement with a relatively
similar accuracy.

Three out of seven features selected for the frustration
model in [19] are common for predicting frustration in
this paper. Comparing the models performance indicates
that frustration can be predicted with higher accuracy from
the smaller dataset and longer session time. This can be
in part explained by the difficulty in expressing a clear
emotional preference of frustration on different short game
variants since data collection resulted in 169 pairs of unclear
preferences compared to 103 and 71 for engagement and
challenge, respectively.

Only two features generalise for the two datasets for
challenge, namely, the number of collected coins, ncoin and
the average gaps width, Ḡw. Some of the other features are
somehow related, more specially, the time spent during last
life, tplay correlate with the time needed to complete the
level, tcomp and the number of death, dtotal is a generali-
sation of the number of times the player killed because of
a cannon bullet, df . Overall, despite the huge increase in
the dataset size, challenge is predicted with larger subset of
features and higher accuracy from shorter game sessions.

To check for the efficiency of the feature selection ap-
proach, the impact of the selected subset of features on the
prediction accuracy, the influence of the size of the game
session and the generality of the proposed methodology,
we evaluated the previous models on the dataset used to
construct the current models and vice versa. The obtained
accuracies for the three player experience states are pre-
sented in Table IX. As can be seen from the table, the
best performance is obtained when the old model evaluates
challenge on the new dataset (67.25%) despite that these
two models share only two features. Unsurprisingly, that
cross-validation performance on challenge is lower than the
two corresponding models constructed and evaluated on the
same dataset. While reported frustration models are the most
accurate for the two datasets — and although four features

TABLE IX
THE PERFORMANCE OF THE MODELS OF [19] ON THE NEW DATASET
(Pold/new ) COMPARED TO THE PERFORMANCE OF THE NEW MODELS

ON THE DATASET OF [19] (Pnew/old)

Engagement (Fun) Frustration Challenge

Pold/new 58.98% 40.68% 67.25%
Pnew/old 57.33% 58.18% 45.36%

are found in common between these two models — none
of them managed to generalise well when evaluated on
the unseen dataset. The two models for predicting reported
engagement achieved similar results when evaluated on the
unseen dataset. In summary, it appears that longer game
sessions are more relevant for predicting frustration while
challenge can be predicted better from short game sessions.

IX. DISCUSSION

The computational aesthetics approach presented in this
paper is based on several short Infinite Mario Bros game
levels played over the Internet in a crowdsourcing user survey
that yielded a large dataset of 780 pairs of played and anno-
tated (self-reported) games. Direct and sequential features
describing game content and players’ in-game behaviour
have been extracted and were used for the analysis of the
relationship between the content of the game, the players’
playing style and the reported experience of three different
states of player experience. Data mining techniques have
been implemented to extract useful patterns from sequential
features and sequential forward feature selection has been
employed to extract a subset of features that have predictive
capabilities with respect to reported player experience. Based
on the selected feature subsets, highly accurate models of
player experience have been constructed and used for an
in-depth analysis of the factors that contribute to player
experience, and thereby aesthetics, in platform games.

The thorough analysis followed shows some generic as-
pects of level design aesthetics that relate to the three
reported emotional states: engagement, frustration and chal-
lenge. Overall, an engaging Infinite Mario level is the one
that provides enough space for running, changes in platform
height, items to be collected as well as it contains challenging
elements presented in the placement of enemies around
collectable items, the existence of gaps and the placement
of not easily collectable items. It also appears that the level
of challenge should match the player’s level of expertise for
the game to be engaging for a particular player.

The number of gaps and their average width play major
roles in perceived frustration. The more gaps and the wider
they are, the more frustrating the game is specially when
the gaps are combined with changes in platform height. The
number of enemies has less direct influence on frustration.
It is interesting to note that frustration can be predicted up
to a good degree just by the changes in platform height;
this can be the result of more player concentration required
when height changes rapidly leading to frequent changes of
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performed actions. It appears that, in general, the placement
of a sequence of items after each other within a small
distance leads to a more frustrating game as it most likely
increases the level of player confusion, cognitive load and
level complexity.

Challenge appears to be affected more by the charac-
teristics of particular features rather than the frequency
of their appearance in the level: the width of gaps, the
placement of stairs around them, the placement of enemies,
the frequent changes in platform height, and the placement
of items within a small distance to each other contribute to
a more challenging game as they imply a higher probably
of game failure [37]. It would be interesting to validate
the methodology proposed and its findings with designers’
knowledge of what makes a level engaging, frustrating or
challenging, and check to which extent these findings add to
what we know about game design.

We venture that, as Super Mario Bros more or less defines
the platform game genre, and as a clone of this game is used
as a testbed game for this study, the results obtained can
be applied, by extension, to Super Mario Bros in particular,
and to the majority of platform games, to some extend. The
generality of the selected patterns allow the use of them
to design and analyse other levels with different graphical
representation. The use of the selected patterns as the main
building blocks for designing levels provide a promising
alternative to other rhythm based approaches [12], [23]
specially when the purpose is to alter a particular affective
state of the player. Extending this study, and validating the
methodology and the findings in other games from the same
genre or from other genres constitute a future direction. The
methodology proposed could potentially be used to find new
design insights if used on a less-known game genre.

The approach presented provides the underlying basis
for game adaptation techniques that could be employed to
automatically generate game content that optimises particular
aspects of player experience [16]. To this end, the use of
the extracted patterns of players’ actions and game content
as controllable features — instead of item frequencies —
constitutes a promising future direction. This also implies the
use of more powerful search algorithm to find the optimal
set of controllable features that will be used to generate the
new personalised level.

The proposed approach and the analysis presented could
also be used as an assistant tool in a mixed-initiative level
design process [12]. A level can be crafted by a human
designer and models constructed from game content and
reported player experience could be used to encourage the
designer to include or modify features or patterns based on
the experience the designer wishes to provide.

Although a thorough analysis has been conducted, the
conclusions drawn are rather general leaving plenty of rooms
for further investigations.

For the experiments presented in this paper we used only
sequences of length three that are rather small to draw general
conclusions. Frequent sequences of longer length have been

investigated; although these sequences are more expressive, a
performance drop has been observed using these sequences.
Longer sequences tend to capture more specific patterns
across multiple modalities of player input in which we expect
larger data variation due to variant playing styles. A solution
might be to cluster the resulting sequences and construct
models for each cluster, or consider sequences of different
length as inputs to ANN models. A step towards clustering
players’ behaviour based on sequence patterns of actions
has already been taken and preliminary results indicate the
promise of the approach. One could also investigate the
use of other sequence mining techniques such as Hidden
Markov Model to classify the resulted sequences and to
extract sequential pattern.

The performance increase obtained, in some cases, when
combining the controllable features with the selected se-
quential features suggest that models of higher performance
could be constructed by presenting the direct features and the
sequential features as inputs to SFS. It is also worth inves-
tigating whether including features from different sequences
type and different pattern length would have a positive impact
on model’s accuracy. Doing so, however, would expand the
feature space and more efficient feature selection methods
will most likely be required.

X. CONCLUSION

This paper presents an computational, data-driven, ap-
proach for a thorough analysis of aesthetics in games via
the investigation of the relationship between game content,
players’ playing style and reported player experience (en-
gagement, frustration and challenge) in the Infinite Mario
Bros game. The approach is based on large sets of crowd-
sourced gameplay data and annotated data of player experi-
ence via self-reported (pairwise) ranks. Direct and sequen-
tial features of content and gameplay were explored and
sequence mining techniques were implemented to extract
useful game environment and player’s behavioural patterns.
The features have been analysed in terms of their linear and
nonlinear relationship to each reported state of player experi-
ence and revealed a wealth of interconnections among them.
Furthermore, neuroevolutionary preference learning was used
to construct player experience models of high accuracies
based on dissimilar types of extracted features. Using the
proposed approach we are able to draw general conclusions
about the interaction between the player and the game and
mine patterns of level content — that yield sequences of
players’ actions — and their corresponding effect on player
experience and game aesthetics. The methodology proposed
and the findings can be potentially applied to other less well-
known games from the same genre or to other game genres.
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