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Abstract— One promising avenue towards increasing player
entertainment for individual game players is to tailor player
experience in real-time via automatic game content generation.
Modeling the relationship between game content and player
preferences or affective states is an important step towards
this type of game personalization. In this paper we analyse the
relationship between level design parameters of platform games
and player experience. We introduce a method to extract the
most useful information about game content from short game
sessions by investigating the size of game session that yields
the highest accuracy in predicting players’ preferences, and by
defining the smallest game session size for which the model
can still predict reported emotion with acceptable accuracy.
Neuroevolutionary preference learning is used to approximate
the function from game content to reported emotional pref-
erences. The experiments are based on a modified version
of the classic Super Mario Bros game. We investigate two
types of features extracted from game levels; statistical level
design parameters and extracted frequent sequences of level
elements. Results indicate that decreasing the size of the feature
window lowers prediction accuracy, and that the models built
on selected features derived from the whole set of extracted
features (combining the two types of features) outperforms
other models constructed on partial information about game
content.

I. INTRODUCTION

In order to maximize the entertainment value of a game,
we need accurate, reliable and computationally efficient
models of what makes a game, or some aspect of a game,
fun. (The same argument can be made for other affective
properties than fun, or for e.g. pedagogical or instructional
properties.) Many theories exist regarding why we play
games and what makes computer games fun [1], [2], [3].
However, these theories are mostly qualitative and tend to
apply to games in general rather than to specific aspects of
games. This means we still have to make several auxiliary
assumptions if we want to develop algorithms that design or
adapt games automatically.

Until recently, optimization of game aspects based on
empirically derived models has been focused on the impact of
non player character (NPC) behavior [4] and the adjustment
of NPC behavioral parameters for maximizing satisfaction
in games [5]. The focus of most research has been on
dynamic game balancing which aims to prevent players
feeling frustrated because the game is too hard or becoming
bored because the game is too easy.

A parallel research direction that has received increased
attention recently is the automatic generation of game con-
tent. Procedural Content Generation (PCG) has been used
to generate game content via algorithmic means with or
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without human designer interference. The classic example
of the early use of PCG is the early eighties’ game Rogue,
a dungeon-crawling game in which levels are randomly
generated every time a new game starts. However, only
recently have approaches from artificial and computational
intelligence begun to be explored in the context of creating
central game elements such as levels and maps. A recent
overview of some commonly used techniques can be found
in [6], [7]. PCG can be used offline to generate complex
content such as environments; making the game development
process more efficient, and online, allowing the generation
of endless variations of the game, making the game infinitely
replayable and opening the possibility of generating player-
adapted content [8]. The literature on personalized and
player-adaptive PCG is so far scarce, as it is a new research
direction [7]. A few attempts can be found on incorporating
players’ emotions into the game in a closed-loop manner
where player’s emotion is actively manipulated to ensure
engagement [9]. Existing work [10], [11] demonstrates the
power of using affective player models to generate in-game
situations of high interest and satisfaction for the players.
The reader may refer to [7] for a taxonomy and survey on
experience-driven PCG (EDPCQG).

A closely related, and partly overlapping, research direc-
tion has emerged recently focusing on adapting game content
using computational models of player emotion built from the
interaction between the player and the game [8], [12]. The
very first step towards designing a player experience-centered
adaptive game is to detect the player’s emotional state and
model its relation to game content.

We consider analysing the relationship between the
player’s emotional state and game content to be of utmost
importance for making automatic content generation tech-
niques more usable and for building better approaches for
game adaptation. The focus and main contribution of this
paper is the analysis of the interplay between game content
and players reported preferences in platform games.

The approach proposed extends and draws upon earlier
work on modeling player experience in Super Mario Bros [8],
[13]. We extend this work through (1) expanding the space
of level design parameters by investigating six controllable
features of level design; (2) designing the experiment with a
smaller game window size and collecting players’ preference
data for more variants of the game; (3) constructing the
computational model of player experience based on a new,
significantly larger data set of 600 human players, using the
same methodology for modeling player experience as in [8],
[13] but focusing on modeling the unknown function between
players’ preferences of experience and game content; (4) in-
vestigating sequence representations for level design features
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Fig. 1.

Snapshot from Super Mario Bros game.

and (5) investigating the impact of the size of game session
on the accuracy of predicting players’ emotional state.

It should be noted that in this paper we are not concerned
with the impact of playing style (as measured by player
metrics) on entertainment value. Rather, we are investigating
novel methods of finding out as much as possible about
player preferences from the game content only, fully aware
that this will lead to lower accuracy than would have been
possible if player metrics were included as model inputs. In
a future study, based on the same study dataset and building
on the methodological findings reported in this paper, we
will include this information.

The ultimate aim of the project which this study is part
of, is to tailor player experience in real-time via automatic
game content generation based on computational models of
in-game player experience.

II. TESTBED PLATFORM GAME

The testbed platform game used for our study is a modified
version of Markus Persson’s Infinite Mario Bros which is a
public domain clone of Nintendo’s classic platform game
Super Mario Bros. The gameplay in Super Mario Bros
consists of moving the player-controlled character, Mario,
through two-dimensional levels. Mario can walk and run,
duck, jump, and shoot fireballs. The main goal of each level
is to get to the end of the level. Auxiliary goals include
collecting as many coins as possible, and clearing the level
as fast as possible. For more details about the game and our
modifications the reader may refer to [14].

III. DATA COLLECTION

Before any modeling can take place, we need to collect
data from players which will be used to train the model. For
this purpose data from hundreds of players has been collected
over the Internet. The following sections describe the types
of data that has been used for the work done in this paper.

1) Controllable features of the game: These are used to
generate the levels. These were varied to make sure
several variants of the game are played and compared.

2) The player’s reported experience of playing the game:
The player experience is measured through a 4-
alternative forced choice questionnaire presented to the
player after playing a pair of games with different
controllable features, asking the player to report the
preferred game for three affective states; engagement,
challenge and frustration.

Below we give a detailed description of the features
collected.

A. Controllable Features

The level generator of the game has been modified to
create levels according to the following six controllable
features:

o The number of gaps in the level, G.

o The average width of gaps, G.,.

o The number of enemies, F. This parameter controls
the number of goompas and turtles scattered around the
level, changing the level difficulty.

o Enemies placement. The way enemies is placed around
the level determined by three probabilities which sum
to one.

— Around horizontal boxes, P,: Enemies are placed
on or under a set of horizontal blocks (a number
of blocks placed horizontally without connection to
the ground).

— Around gaps, P,: Enemies are placed within a close
distance to the edge of a gap.

— Random placement, P,: Enemies are placed on a
flat space on the ground.

Fig. 2 illustrates positioned enemies by giving different
values for P, P, and P,.. Fig. 2.(a) shows enemies
placed by setting P, to 80%. Fig. 2.(b) illustrates the
result of setting P, to 80%, and Fig. 2.(c) is the result
of P, = 80%.

o The number of powerups, R. Mario can collect powerup
elements hidden in boxes to upgrade his state from little
to big or from big to fire.

o The number of boxes, B. We define one variable to
specify the number of the two different types of boxes
that exist in Super Mario. We call these two types blocks
and rocks. Blocks contain hidden elements such as coins
or powerups. Rocks may hide a coin, a powerup or they
can be empty. Mario can smash rocks only when he is
in big mode.

The selection of these particular controllable features was
done after consulting game design experts, and with the
intent to cover the features that have the most impact on
the investigated affective states. Please note that the two first
features appeared in our previous studies [13], [8].

Two states (low and high) are set for each of the control-
lable parameters above except for enemies placement which
has been assigned three different states allowing more control
over the difficulty and diversity of the generated levels.

The total number of pairwise combinations of these states
is 96. This number can be reduced to 40 by analysing the
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Fig. 2. Enemies placement using different probabilities: high probability
is given to placement around horizontal boxes, P} (a), around gaps, P, (b),
and to random placement, P (c).

dependencies between these features and eliminating the
combinations that contain independent variables.

Other features of the levels have been given fixed values
such that the number of cannon and flower tubes = 1, the
type of background = over ground, the number of coins = 7,
the number of coins hidden in boxes = half the total number
of boxes and the number of stairs around the gaps = half the
number of gaps.

B. Reported Player Experience

We designed a game survey study to collect subjective
affective reports expressed as pairwise preferences of sub-
jects playing different variants (levels) of the test-bed game
by following the experimental protocol proposed in [10].
According to the protocol, each subject plays a predefined set
of two games. The games played differ in the levels of one
or more of the six controllable features presented previously.
After completing a session of two games, players are asked to
report their emotional preferences for three emotional states;
engagement, challenge and frustration, using a 4-alternative
forced choice (4-AFC) protocol [14]. Note that the affective
modeling procedure followed in this paper focuses only on
reported engagement.

IV. EXPERIMENTAL PROTOCOL

Data from Super Mario Bros players is collected over the
Internet. A Java applet has been created and placed on a
web page!, which has been advertised over social networks,
mailing lists and blogs. The applet is connected to an online
SQL database that is used to collect data about game content,
player’s behaviour and reported experience.

The database initially contains all possible pairs marked
as “unplayed”. Whenever a game session starts, the software
connects to the database and asks for an unplayed pair to
load. Once two levels’ are chosen from the database, they
are loaded and the player is ready to play. When a session of
two games is completed, the players are asked to report their
preferences. The gameplay statistics and preferences are then
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stored to the database and the pair is marked as “played”.
The list of played pairs is reset if there are no more pairs
available in the database to play (all pairs were marked as
“played”),

The game sessions presented to players have been con-
structed using a level width of 100 Super Mario Bros units
(blocks), about one-third of the size usually employed when
generating levels for Super Mario Bros game in our previous
experiments [13], [8]. The selection of this length was due
to a compromise between a window size that is big enough
to allow sufficient interaction between the player and the
game to trigger the examined affective states and a window
which is small enough to set an acceptable frequency of an
adaptation mechanism applied in real-time aiming at closing
the affective loop of the game [15].

As mentioned earlier, the combinations of the different
states of the controllable features result in 40 different levels,
The minimum number of experiment participants required
so that each possible configuration is played at least once
is determined by C4° = 780, this being the number of all
combinations of 2 out of 40 levels. The analysis presented
in this paper is based on the 600 game pairs that have been
collected so far. The collected data has been preprocessed
to remove the pairs with unclear preferences (those pairs
where both games are equally preferred or not preferred for
engagement) yielding 485 pairs with clear preferences for
reported engagement.

The process of collecting data is still in progress, and once
a substantial enough number of players has participated in
the experiments we plan to go through the analysis of the
effect of game content and playing characteristics on reported
preferences based on the whole dataset.

V. LEVEL SEGMENTATION

The purpose of segmenting the level is to identify the
size of the level segment that generates the best prediction
accuracy of engagement and to determine the smallest pos-
sible segment for which the model can still predict reported
engagement with acceptable accuracy. That segment size can
then potentially be used to set the frequency of a real-time
adaptation mechanism for the purpose of maximising the
engagement value of the game (as in [5], [8]).

We start the process by calculating the models’ perfor-
mance over the entire game session. The level is then divided
into two equal segments and the values for all controllable
features for these two segments are recalculated. We then re-
train the models presenting the two segments’ controllable
features as inputs (2 * 6 features). Each level is then
further divided into three equal segments and the models
are evaluated on individual segment and on combination
of segments assuming that the expressed whole-game en-
gagement preferences remain constant across those segments.
No performance improvement has been obtained by further
division of the level, and the focus of the remaining of this
paper is on levels divided for up to three segments.

For the remaining of this paper we will use the term
window to refer to the whole game session (a level with



a width of 100), and the term segment to refer to parts of a
window.

VI. CONTENT-DRIVEN PREFERENCE LEARNING

Based on the data collected in the process described
above, we try to approximate the function from the control-
lable game level features (e.g. number of gaps) to reported
emotional preferences using neuroevolutionary preference
learning. We proceed in a bottom-up fashion, starting with a
simple nonlinear models, then trying more complex models.

Learning is achieved through preference learning using
artificial evolution of neural networks (neuroevolution) [16].
In one of the authors’ previous work on preference learning
algorithms, neuro-evolution has been found to be more
effective than a number of other approaches including large
margin classifiers and bayesian learning [10]. Multilayer
perceptrons (MLPs) are utilized for learning the relation
between the controllable features (ANN inputs) and the value
of the engagement preference (ANN output) of a game. Since
there are no prescribed target outputs a genetic algorithm
(GA) was used to train the MLP using a fitness function
that measures the difference between the players’ reported
emotional preferences and the relative magnitude of the
corresponding model (ANN) output. More details of the
method used can be found in [10].

Relying upon earlier successful parameter tuning exper-
iments [10], [12], a population of 1000 individuals was
used, and evolution run for 100 generations. A probabilistic
rank-based selection scheme was used, with higher ranked
individuals having higher probability of being chosen as
parents. Finally, reproduction was performed by uniform
crossover, followed by Gaussian mutation of 5% probability.

A. Optimizing Neural Networks Topologies

The experiment designed to optimize the topology of MLP
affective models is as follows. We trained MLPs containing
a maximum of two hidden layers. We start with a simple
MLP topology of one hidden layer of two neurons, we then
increase the number of neurons up to eight by adding two
neurons at each step. Further, we investigate MLPs with two
hidden layers, with up to ten and eight neurons in the first
and second layer, respectively; again, the number of hidden
neurons starts at two and increases by adding two neurons at
each step; this sums to 25 different MLPs topologies which
are tested for each input vector.

B. Neural Networks Input Representation

The ANN networks have been trained to predict players’
preferences from game content. In the following sections we
describe the two types of ANN input vectors that have been
used to represent the content of the levels.

1) Controllable Features Statistics: For each segment the
statistical values for the controllable features presented in
section III-A have been calculated. All feature values are
uniformly normalized to the range [0,1] using the standard
max-min normalization.
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Fig. 3. Snapshot from a level and the corresponding platform structure
sequence representation.

&

&
-'l 00000

1002322200

Fig. 4. Snapshot from a level and the corresponding enemies and
decorations sequence representation.

All normalized values are included into the input of multi-
layer perceptron models of emotional preferences and MLPs’
topologies are optimized for maximum prediction accuracy.
The performance of MLPs is measured through the average
classification accuracy of the model in three independent runs
using 3-fold cross validation.

2) Sequences as Features: A modified version of the
SPADE algorithm [17] has been implemented to extract
frequent subsequences of different game content from all
levels.

The content of the levels has been converted into numbers
representing different types of game content. Three different
representations of game content have been investigated.

o Platform structure, S: A sequence of integer numbers
that represents the height of the ground along the level.
Fig. 3 presents part of a level and the corresponding
platform structure sequence representation.

o Enemies placement, F,: A bit-string sequence that
represents the initial placement of enemies along the
level has been generated for each level. A boolean
variable is used to represent the existence (1) or non-
existence (2) of enemies.

o Enemies and items placement, D: The term items refers
to the coins and the different types of boxes scattered
around the level. The existence and non-existence states
for enemies and items have been combined together
resulting in four different possible values 0, 1, 2 and
3 corresponding, respectively, to non-existence of ei-
ther enemies or items, the existence of an enemy, the
existence of an item, and existence of an enemy and an
item. Fig. 4 illustrates an example level segment where
the above-mentioned four states are presented.

Different subsequence lengths and minimum support

thresholds (i.e. the minimum number of times the subse-
quence must occur in the data to be counted as frequent)
values have been explored. All subsequences used in the
experiments of this paper are of length 3 and have been
extracted using a minimum support threshold of 20, meaning



TABLE 1
THE NUMBER OF FREQUENT SUBSEQUENCES OF LENGTH THREE
EXTRACTED FROM THE LEVELS USING A MINIMUM SUPPORT OF 20

Sequence | # frequent subsequences
S 35
Ep 7
D 12

TABLE I
A SUBSET OF THE FREQUENT SUBSEQUENCES OF LENGTH THREE OF D
AND THE CORRESPONDING OCCURRENCES OF EACH OF THEM IN ONE
EXAMPLE LEVEL

#of occurrence
80,0,1,2,2,2,3,0,0

Frequent subsequences
000,020,022,100,200,220,222,232,322

that each subsequence should occur at least in half of the
levels to be considered frequent. Table I presents the number
of frequent subsequences of length 3 that have been found
in the 40 levels for the three types of sequences.

The number of occurrences of each of the subsequences
of level 3 is calculated for each level. These values are then
presented as inputs to the ANNSs after uniformly normalizing
them to the range [0,1]. Table II presents a subset of the
frequent subsequences of length three and the number of
occurrences of each of them for one example level.

VII. EXPERIMENTS

The rest of this paper describes a number of experiments
that have been carried out to: 1) identify the features that
convey the most useful information about game content;
2) investigate the size of a game session that yields the
best performance in predicting players’ reported preferences
and 3) define the smallest game session size for which the
model can still predict reported engagement with acceptable
accuracy. As the data used to construct the model is based
on pairwise preference, the baseline (majority vote) predictor
accuracy is in all cases 50%.

For each experiment, different MLP topologies have been
investigated as discussed in section VI-A. The analysis pre-
sented in the following sections is based on the best networks
(in terms of performance, size and standard deviation over
five runs). The statistical analysis presented is based on 20
runs for each of the best network chosen. Significant effect
is determined by p < 0.05.

A. MLPs Performance on Full Information about Game
Content

Statistical features from the whole game session have
been extracted and included as inputs to MLP models. The
models have been evaluated on features from the windows
and features from segments to which the windows have
been divided. Fig. 5 illustrates the performance of the ANN
models with respect to the number of the segments used.
Since we are dividing the window for up to three segments,
the number of inputs for the MLPs is 6, 6 x 2 = 12

TABLE III
THE TOPOLOGY AND PERFORMANCE OF THE BEST MLP MODELS
EVALUATED ON FULL AND PARTIAL INFORMATION ABOUT GAME
CONTENT. THE MLP PERFORMANCE PRESENTED IS THE AVERAGE
PERFORMANCE OVER 20 RUNS.

Training and evaluation data MLP topology | MLP performance
Full window 6-2-2-1 63.16%
Two segments 12-2-1 61.43%
Three segments 18-4-4-1 59.97%
1st segment out of 2 6-2-2-1 59.07%
2nd segment out of 2 6-10-2-1 59.13%
Ist segment out of 3 6-2-8-1 60.04%
2nd segment out of 3 6-4-6-1 58.45%
3rd segment out of 3 6-10-6-1 57.41%
1st and 2nd segments out of 3 12-8-1 60.49%
1st and 3rd segments out of 3 12-10-6-1 60.80%
2nd and 3rd segments out of 3 12-10-8-1 58.90%
or 6 x 3 = 18 when evaluated on 1, 2 and 3 segments,

respectively.

The best networks found vary in size and topology. Results
presented in Table III show that the performance is degraded
by segmenting the data. The accuracy for the MLP evaluated
on the whole game window is 63.1%. When two segments
are used for evaluating, the performance decreases to 61.4%.
Further dividing the windows into three segments resulted in
a further decrease in the MLP performance to 59.8%.

To check weather partitioning the level causes a significant
decrease in networks performance, we check for a statisti-
cally significant effect (p < 0.05) between the performance
of the networks. Results show that evaluating the networks
on full information about the level calculated from different
number of segments to which the level has been divided
yields significant decrease in the models’ accuracies in pre-
dicting players’ reported engagement. These results suggest
that information is lost due to partitioning the window, and
this loss causes a decrease in the performance.

B. MLPs Performance on Partial Information about Game
Content

To define the smallest game session size for which the
model can still predict reported emotion with acceptable
accuracy, we evaluate MLPs on features extracted from
different segments’ size. We start by dividing the windows
into two segments and train the MLP models on each
segment at a time (6 features as inputs). Comparing the
results obtained with the result of the model evaluated on
both segments (6 * 2 = 12 features as inputs) we found that
using features extracted from both segments for evaluating
yields better prediction accuracy than when evaluating on
features extracted from one segment at a time. Table III
presents the topologies and the prediction accuracies for
models evaluated on different number of segments. The
statistical analysis shows that this performance decrease is
significant.

To further investigate the effect of the size and choice
of the segment that gives the most useful information, we
partition the windows into three segments and evaluate the
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Fig. 5. The performance and topologies of MLP models evaluated on full and partial information of game content using statistics from the game window
and from two and three segments to which the window has been divided. The performance presented is the average over five runs

networks using one segment out of three at a time. The
models’ topologies and accuracies are presented in Table III.
As can be seen from the results, the MLP model evaluated on
features from the whole session (the three segments together)
and the model evaluated on features from the first segment
only have a slightly better performance than the one obtained
when evaluating on the second segment which is, in turn,
slightly better than the performance of the model evaluated
on the third segment only.

The statistical analysis shows no significant decrease in
the performance between the model evaluated on features
extracted from the 3 segments together and the performance
of the model evaluated on features from the first segment.
However, a significant degradation in the performance was
obtained between the model evaluated on full data from the
level and the two models evaluated on features from the
second or third segments. This suggests that the informa-
tion contained in the first segment helps more in building
better predictors of players’ reported preferences than the
information contained in the second and third segment.

To further investigate this results, we evaluate MLP models
on all possible combinations of these three segments. The
results, depicted in Table III show that the models evaluated
on features extracted from the first and second segments and
from the first and third segments performs better than the
model evaluated on the second and third segments.

By statistically analysing these results we found a signif-
icant decrease in the models’ performance when evaluating
on the first and third segments and when evaluating on the
second and third segment, while no significant effect was
found when evaluating on the first and second segments. This
indicates that the information contained in the third segment
is less useful to predict players’ reported preferences that
the information contained in the first and second segments.
For further analysis, we investigate for significant effect

between the model evaluated on the whole level and the
model evaluated on the first and second segments out of
the three segments together, the result shows a significant
performance decrease between these two models.

In general, the statistical analysis of the models’ evaluated
on full or partial information from a different number of
segments suggest that partitioning the level causes a signifi-
cant decrease in the accuracy of predicting player’s reported
engagement. This suggests that there might be information
loss because of decomposing the data and that this loss
causes a performance decrease.

C. Sequences as Input Features for MLPs

We investigate another form of content representation
which we use as input to the MLP models. Sequences
capturing different information about content have been
extracted following the method described in section VI-B.2.
MLP models of different number of inputs and different
topologies (see section VI-A) have been evaluated on the
three different types of sequences. Since the number of
frequent subsequences varies between S, E, and D as can
be seen from Table I, and since we are evaluating the MLP
models on the number of occurrences of each of these
frequent subsequences in each level; the number of inputs
to the MLP models varies between 35, 7 and 12 for S, £,
and D, respectively. The performance and topologies of the
best-performing ANNs are presented in Table IV.

The results shown in Table IV indicate that the model
evaluated on frequent subsequences of information about
enemies and items, D, outperform the other models evaluated
on platform structure, S, and on enemies placement alone,
E,.

By statistically analysing the results, we obtained a signif-
icant performance decrease between the model evaluated on
D and the models evaluated on S and E,,.



TABLE IV
THE BEST-PERFORMING MLP MODELS EVALUATED ON OCCURRENCES
OF FREQUENT SUBSEQUENCES OF LENGTH THREE EXTRACTED FROM
THE 40 LEVELS

Training and evaluating data | MLP topology | MLP performance
Platform structure 12-10-6-1 62.00%
Enemies placement 7-8-4-1 54.03%

Enemies and items placement 35-8-8-1 59.54%

It’s worth noting that the results obtained from the network
evaluated on D have a slightly lower performance than the
best ones obtained using statistical features for training and
evaluating the networks.

The result suggests that better model could be built by
combining statistical and sequential forms of content repre-
sentation.

D. Statistics and Sequences as Input Features for MLPs

In order to build a better model of players’ preferences
and squeeze the most useful information about game content
we combine the best two models obtained from evaluating
on statistics and frequent subsequences of game content.

More specifically, we construct new models based on
controllable features statistics extracted from the whole game
session, and occurrences of frequent subsequences of D.
We proceed in constructing the topologies of the MLP
models following the methodology presented in section VI-
A, but since our input feature space is rather big, Sequential
Forward Selection (SFS) is utilized to find the features subset
that yields the best performance and save computational
effort.

1) Feature Selection, Sequential Forward Selection: SFS
is a bottom-up search procedure where one feature is added
at a time to the current feature set. The feature to be added
is selected from the subset of the remaining features such
that the new feature set generates the maximum value of the
performance function over all candidate features for addition.

The set of 18 features (6 controllable features and 12
frequent subsequences of D) is used as input to SFS to
extract the minimal features subset that yields the best
performance. The performance of each model is measured
through the average classification accuracy of a Single Layer
Perceptron (SLP) in three independent runs using 3-fold
cross validation.

Using SLPs with the subset of selected features as inputs,
The model was able to predict players’ reported preferences
of engagement with 63.2% accuracy.

The selected feature subset consists of seven features
(+/- in parenthesis signifies positive or negative correlation):
number of poweups (+), enemies placement (+) and the
number of the occurrences of the following subsequences;
000 (-), 022 (+), 200 (+), 222 (-) and the subsequence 322
(+).

The analysis of the correlations between the selected
features and players’ preferences of engagement draws a

picture of most players enjoying game that includes many
items like free coins, coin blocks, powerups and enemies,
but the fact that a positive correlations were found between
players’ preferences and the two sequences 022 and 200
while players’ preferences were negatively correlated with
the sequence 222, indicates that players prefer these objects
to be distributed rather than allocated close to each other.

2) Selected Features as Inputs to MLPs: Different MLPs
topologies have been investigated using the subset of selected
features as input. The topology of the best model found
consists of two hidden layers with 6 and 8 in first and
second hidden layer, respectively. The model is able to
predict players’ reported emotional preferences with 65.72%
accuracy. The statistical analysis shows that this performance
is significantly higher than all other models mentioned previ-
ously along with the model evaluated on all features without
using the feature selection mechanism.

Fig. 6 presents the best-performing ANN using SFS com-
pared to the best-performing models obtained from statistical
features from different number of segments and the best
models evaluated on occurrences of frequent subsequences.

VIII. DISCUSSION

Using a combination of two types of features of game
content, we are able to predict players’ reported engagement
preferences with acceptable accuracy. (We remind the reader
that the baseline accuracy is 50%)

The results show that the ANN engagement preference
models built on data derived from the game as a whole
gives the best performance over all other models that have
been constructed. Thus, the results suggest that the minimum
acceptable size of the segment for which the model is able
to predict player’s reported preferences of engagement with
acceptable accuracy is the one that has been chosen in the
first place when designing the experiment.

The results indicate that the models performance in gen-
eral decreases when segmenting the data. A performance
decrease was observed when segmenting the window into
two and three segments. This suggests that segmenting the
data causes information loss and that the loss is minimized
when evaluating the models on data from the full window.
Another possible explanation for performance degradation
when partitioning the windows is that the input feature space
expands by segmenting the data (6 input features for the full
window, 12 input features for two partitions and 18 input
features for three partitions) resulting in a harder problem to
learn (the curse of dimensionality).

Note, again, that the generated models are the composite
of subjective preferences of several subjects. The models are
thus average models, not perfectly adapted for any individual
playing the game.

IX. CONCLUSION AND FUTURE WORK

The work reported in this paper presents data-driven com-
putational models that predict players’ reported engagement
based on level design features. We investigate several types of
features and different window lengths in order to investigate
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Fig. 6.
subsequences and a subset of features extracted by SFS.

how to most effectively construct the best player preference
predictors from short levels or sections of levels. The best
predictors we found were based on selected features based
on both directly controllable design parameters and frequent
subsequences of level elements.

While we were able to construct predictors with acceptable
accuracy, there are several ways to further increase those
models’ performance. The most obvious improvement is to
include players’ gameplay characteristics as features when
constructing the models (as we have done in our previous
work [13] on a smaller dataset with fewer features). The good
results obtained by sequence-based features in the current
study suggest that features based on frequent sequences of
player actions could be effective. Higher accuracy on such
predictors will bring us close to our ultimate goal, to be able
to modify the levels in real-time adapting the content based
on the performance of specific players.
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