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Abstract—This paper presents the online application Brain-
Crafter, in which users can manually build artificial neural
networks (ANNs) to control a robot in a maze environment. Users
can either start to construct networks from scratch or elaborate
on networks created by other users. In particular, BrainCrafter
was designed to study how good we as humans are at building
ANNs for control problems and if collaborating with other users
can facilitate this process. The results in this paper show that
(1) some users were in fact able to successfully construct ANNs
that solve the navigation tasks, (2) collaboration between users
presented difficulties and (3) the human-developed ANNs that
managed to solve the task had certain regularities, suggesting that
humans can use some of their intuition and spatial understanding
in the design of ANNs. Most importantly, the initial results in this
paper can serve as a starting point for investigating how to best
combine human and machine design capabilities to create more
complex artificial brains.

I. INTRODUCTION

The idea behind evolutionary robotics is simple: you let
a robot learn how to behave by itself through an advanced
form of trial and error. You just have to define what the robot
should do, not how, and encode this into a fitness function
that rewards good behavior and punishes bad. Neuroevolution
— the creation of artificial neural networks (ANNSs) through
evolutionary algorithms — will take care of the rest.

At least in theory. While neuroevolution has shown promis-
ing results for solving a variety of difficult control tasks
[1]-[6], these are typically tasks that require exquisite fine-
tuning but not a large and varied behavior repertoire to solve.
Neuroevolution is rarely used to learn complex behaviors or to
solve complex tasks. And the neural networks that are evolved
are nowhere near as complex as those of a human or even a fly
or snail. It could legitimately be argued that neuroevolution,
and by extension evolutionary robotics, has so far failed to
“scale up”.

The malady behind the lack of scaling up has been di-
agnosed in various ways and various remedies have been
proposed. One suggestion is that the root of the problem is the
abundance of deceptive fitness landscapes, where the fitness
gradient does not lead to a global optimum from most places.
In problems with such fitness landscapes, algorithms tend to
get stuck in local optima [7]. Novelty search [8] was designed
specifically as a remedy to this problem. Novelty search avoids
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the fitness function altogether, instead introducing a novelty
metric that only encourages the search for novel behaviors.

Another diagnosis is that the types of fitness functions
we can encode do often not allow for sufficiently complex
behaviors or networks to emerge. This limitation could be
mitigated by including human input in the construction of
the neural network. In many cases a human can see a novel
and potentially useful evolved behavior before this behavior
leads to improved fitness [9]; conversely, a human might be
able to see what is wrong with a particular evolved solution,
and suggest some way in which the behavior pattern could be
improved. Human input could take at least two different forms:
the human guiding evolution through evaluating candidate
behaviors, i.e. acting like a fitness function, and the human
explicitly designing the network or part of it. Using humans
as the fitness function is called interactive evolutionary compu-
tation (IEC). IEC has been studied for more than a decade and
used for a number of different domains [10]. IEC can also be
combined with novelty search into something called novelty-
assisted interactive evolutionary computation (NA-IEC) and
has proven even more useful [9].

Another approach to combining human input and com-
putational evolution is mixed-initiative co-creation [11]. In
this paradigm, humans and computers can both take initiative,
and change the artifact that is being created. Several mixed-
initiative applications to design computer game levels have
been developed, showing the power of combining human and
machine creativity [12]-[16]. In addition to being a creative
partner in its own right, the computer can act as intermediary
and facilitator for human-to-human collaboration. Such col-
laboration, particularly in the form of “crowdsourcing”, has
shown remarkable results in applications such as Foldit [17],
[18] where players were able to solve an important problem
relating to an HIV enzyme within three weeks [19].

So far, these approaches have not been applied to cre-
ating neural networks, despite the apparent limits of purely
evolutionary approaches. Recently, however, Risi et al. [20]
suggested how mixed-initiative and crowdsourcing techniques
could be combined in an effort to produce ANNs with a high
degree of complexity. This would involve humans collaborat-
ing with each other and evolution to create neural networks.
However, ANNs are often regarded as “black boxes” [21],
[22], not accessible to human understanding; trained or evolved
networks are frequently opaque and incomprehensible to even
the inventors of the algorithms that created them. This issue
raises the question if it is possible for humans to manually
design them. A step in this direction is to investigate how
humans construct ANNs and also, if and how collaborations



between the human creators could be utilized in this domain.

Several attempts have been made to create specialized
languages to allow humans to simply create and edit robot be-
havior; some of these are “graphical” programming languages
that let users program behavior through connecting blocks of
functionality. A popular example is the language that is use for
programming the Lego Mindstorms robotic toy. Such languages
typically operate at a higher level of abstraction than a neural
network, on the presumption that a higher level of abstraction
is easier to work with for human thinking. However, neural
networks are by far the most common choice for controller
representation in evolutionary robotics [1], [4]. This has several
reasons, most importantly a desire to allow the evolutionary
process maximum freedom and minimal bias in creating a
controller (historically, the similarity to models of biological
brains has also been a reason for this choice). This makes it
important to investigate how well humans can interact with this
particular controller representation, as opposed to languages
designed for humans.

This paper presents some first steps towards understand-
ing if humans can solve this challenging design prob-
lem collaboratively through intuition and spatial reason-
ing. To achieve this objective the online application Brain-
Crafter (http://braincrafter.dk) was created. In BrainCrafter
users can build their own neural networks to control a robot
in a maze navigation task. The program allows users to build
ANNs from scratch or on top of existing networks made by
other users. The effects of ANN modifications on the behavior
of the robot can be observed in real-time, allowing the user
to gain some understanding of the relationship between neural
structure and resulting behavior.

As the results in this paper show, some users were in
fact able to successfully construct ANNs that solve the nav-
igation tasks. Additionally, it was found that collaborations
between users were challenging, likely due to the difficulties
of communicating intentions behind the design of an ANN
between them. Interestingly, the user-created ANNs shared
certain regularities in their connectivity patterns. For example,
connections of the rangefinders on opposite sides (left and
right) often had inverted connection weights to the left/right
output. While these preliminary result suggest that humans can
use some of their intuition and spatial understanding in the
design of ANNs, to what extend this ability generalizes to
more complex tasks is an important open question.

In the future, the initial results in this paper should lay
the foundation for a mixed-initiative network engineering
approach that can benefit from the different skill sets of a
human and a computational creator. For example, while this
paper showed that humans can use some of their spatial under-
standing in the design of network topologies, a computational
method is likely more effective at fine-tuning specific synaptic
weights. This combined approach could allow us to solve
challenging problems in neuroevolution that are too difficult
to be solved by humans or machines on their own.

II. BACKGROUND

This section briefly reviews neural networks, which are
constructed by human users in the experiments reported in
this paper. Additionally, it gives background information on

the popular neuroevolution method NEAT, novelty search and
presents previous work on human-in-the-loop approaches.

Artificial neural networks (ANNs) are computational mod-
els inspired by biological neural networks, and widely used as
function approximators in various areas of machine learning
and control. They are organized as networks of “neurons”
or units that receive inputs, and propagate the sum of their
inputs to other neurons. While ANNs used for supervised
learning are often trained by the backpropagation algorithm
[23], it is also possible to train them using evolution; this
is particularly effective when training ANNs for control. A
network is typically made up of an input layer, output layer,
and hidden layers. The input layer receives signals from the
sensors, which are then propagated through the hidden layers
to the output layer. For each neuron j in the input, hidden, and
output layer its activation is calculated by:
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Here w;; is the weight between neuron j and neuron i, O;
is the output from neuron ¢, and 6; is the bias. The weighted
input from each incoming connection is summed and the bias
is added. An activation function (typically a sigmoid function)
is then applied to calculate the final output value of the neuron:
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A. Neuroevolution of Augmenting Topologies (NEAT)

The process of manually designing ANNs in this pa-
per is compared to previously published results on applying
neuroevolution to control a robot in a maze navigation task
[9]. Woolley and Stanley use a method called neuroevolution
of augmenting topologies (NEAT; [24]), which starts with a
population of simple neural networks and then adds complexity
over generations by adding new nodes and connections through
mutations. By evolving networks in this way, the topology
of the network does not need to be known a priori; NEAT
searches through increasingly complex networks to find a
suitable level of complexity. Because it starts simply and
gradually adds complexity, it often tends to find a solution
network close to the minimal necessary size [24].

B. Novelty Search

A method that recently has shown promise in avoiding
deception in a variety of different domains (including the maze
domain in this paper) is novelty search, which is based on the
radical idea of ignoring the objective [7]. The idea is to identify
novelty as a proxy for stepping stones. That is, instead of
searching for a final objective, the learning method is rewarded
for finding any behavior whose functionality is significantly
different from what has been discovered before. Thus, instead
of an objective function, search employs a novelty metric. That
way, no attempt is made to measure overall progress. In effect,
such a process gradually accumulates novel behaviors.

C. Human-in-the-Loop Approaches

Collaborative games like Foldit demonstrate some of the
power of crowdsourcing the human brain’s natural abilities for



certain tasks that involve e.g. pattern matching or spatial rea-
soning; these type of tasks are hard to solve with computational
approaches. Foldit is a collaborative online game in which the
goal of the user is to fold proteins into their most compact
three-dimensional structure [25]. Predicting the correct protein
structure is computationally very expensive because of the high
degrees of freedom. However, using their pattern matching
abilities together with the ability to collaborate, allowed Foldit
users to configure the structure of a particular enzyme, which
was an unsolved goal for the last 15 years.

An evolutionary human-in-the-loop approach is inferactive
evolutionary computation (IEC) [10]. The main idea behind
IEC is that the user is performing the selection, replacing the
traditionally employed fitness functions. IEC methods can also
allow users to create content collaboratively. One example of
such a system is Picbreeder [26], in which users can elaborate
on two-dimensional pictures evolved by other users through
a web-based system. However, in traditional IEC applications
the role of the user is often reduced to solely judging the
created artifacts and only “nudging” evolution by deciding
between a discrete choice of candidates. In other words, only
the computer creates content (e.g. images, ANNS, etc.) and the
role of the human is to guide evolution to content they prefer.

The core idea of mixing human knowledge with com-
putational procedures has been taken in several directions.
Human-based genetic algorithms [27] expands on interactive
evolutionary computation by allowing the human to take part
in all parts of the algorithm, not only evaluating candidate
solutions but also selection and recombination. Similarly, in
hyperinteractive evolutionary computation [28] human users
choose when and where to apply computational operators.

Woolley and Stanley [9] combined IEC with novelty search
[7], demonstrating that the approaches complement each other
and together address some of the challenges that each method
struggles with by itself (e.g. novelty search can get lost in
large search spaces, interactive evolution is limited by user
fatigue). Novelty-assisted interactive evolutionary computation
(NA-IEC) combines human intuition with novelty search to
help discover agent behaviors for a deceptive maze navigation
task and was able to find solutions in fewer steps and faster
than novelty search alone.

More recently, Bongard and colleagues showed how the
model of a human user can be complementary to the tradi-
tionally employed fitness-based search [29] and how utilizing
the preferences of multiple users can accelerate this process
[30]. In a later study Wagy and Bongard also demonstrated
how a group of human users can successfully leverage design
intuition from each other in the interactive creation of robot
morphologies [31].

III. THE BRAINCRAFTER APPROACH

This paper describes first steps towards an ultimately
mixed-initiative approach, in which humans should be able
to construct ANNs that solve difficult control tasks in col-
laboration with each other and with evolutionary algorithms.
As a part of developing such an approach it is useful to first
determine how good humans are at building such ANNs for
robot control problems without the help of artificial evolution,
which is the focus of this paper. Additionally, an important

question in this context is if collaborating with other users can
prove useful in the construction of ANNs. Insights from this
experiment should also provide useful clues about the strengths
of human ANN design and most importantly, non-intuitive
aspects of the design process we tend to struggle with (i.e.
aspects which would benefit most from the assistance of a
computational creator).

The BrainCrafter system presented in this paper is an
online application that allows users to build ANNs for a
maze-traversing robot by adding neurons and connections in
a drag and drop like fashion. While building ANNs the user
can observe the resulting simulated robot behaviors in real-
time, proving insights into the effects of different network
modifications. BrainCrafter also allows users to collaborate by
building on high-scoring solutions created by other people.

A. Development

BrainCrafter’s graphical ANN editing and simulation en-
vironment is based on the Unity game engine. The game
is integrated to a web site created with Laraval, a PHP
based model-view-controller framework, through the Unity
Web Player plugin. JSON encodes the neural networks in
Unity, which are transmitted to the web site layer and saved
in a database. The ANN family trees are visualized with the
javascript library D3.js.

B. Application and User Interface

The main interface (Figure la) lets the user connect and
add neurons in a drag&drop like fashion. The user can also
browse the networks created by others and elaborate on them
(Figure 1b). A number of visual features were implemented
with the aim to give the user a rudimentary understanding of
how the neural network functions. When the input neurons
receive input from the sensors and the activation is propagated
through the network, the neurons will increase in size relative
to the strength of the incoming activation. While constructing
the network the user can observe the behavior of the simulated
robot in real-time, adjust the speed of the simulation, pause it
or reset the position of the robot.

An essential functionality in BrainCrafter is the possibility
for users to publish the networks they have created, making
them available for other users to elaborate on. The purpose
of the publishing mechanism is two-fold. First, it makes
the network visible to other users thereby allowing them to
collaborate. Second, publishing involves benchmarking the
network (i.e. how fast can it solve the given task), thereby
gamifying the experience and encouraging competition among
the users.

IV. NAVIGATION TASK EXPERIMENT

In this paper, human neural network engineering abilities
are tested in a deceptive maze navigation domain. One such
deceptive maze, aptly called the hard maze (Figure 2a), was
introduced by Lehman and Stanley to demonstrate the power
of novelty search [8]. That way, human ANN engineering
abilities can be compared to prior results on novelty search
and fitness-based search in the same domain. The goal of
the robot is to navigate from the start to the end location
in the maze in the given amount of time. The hard maze is
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Figure 1. BrainCrafter User Interface. (a) BrainCrafter
(http://braincrafter.dk) is designed to allow users to easily construct
ANNSs, while observing the behavior of the simulated robot. The different
sensor inputs that the user can connect to are shown at the bottom while
the two network outputs are shown at the top. (b) Users can publish their
networks, compete for high-scoring solutions and elaborate on the networks
of others.

intentionally designed with cul-de-sacs that create local optima
in the fitness landscape. These local optima make the deceptive
maze a challenging problem for evolutionary algorithms with
traditional objective-based performance metrics. The question
in this paper is then whether the task is similarly deceptive
for a human trying to construct a maze-navigation solution
without help from computational approaches.

The robot has two sensor types, rangefinder and pie-slice
sensors (Figure 2b). An additional bias input provides a con-
stant activation of 1.0. The pie-slice sensors act as a compass
and are activated when a line from the robot to the goal falls
within a pie-slice. To give the user visual feedback during the
ANN construction, the pie-slice sensors and rangefinders will
light up when the user selects the corresponding input neurons.

(a) Maze

N/

(b) Sensors

Figure 2. Maze Map and Sensor Setup. (b) The goal of the agent is to is
to reach the goal point in the top/left corner. (b) The agent is equipped with
six rangefinder sensors that indicate the distance to walls and four pie-slice
sensors that act as a compass towards the goal.

Following Lehman and Stanley [8], the robot’s two ef-
fectors (left/right and forward/backward) result in forces that
respectively turn and propel the robot. The forward/backward
output moves the robot forward if the activation value is higher
than 0.5, and backwards otherwise. The left/right output that
rotates the robot around its own axis works accordingly.

V. RESULTS

Data was collected over a period of approximately one
month. During that period 48 users signed up and of those,
eight users created one or more brains. The total number
of brains published was 25. Most users already had some
background knowledge about neural networks, while 12.5%
had no prior ANN knowledge. Because of Unity’s non-
deterministic collision detection, each ANN was tested five
times to determine its general goal seeking abilities. Four of
the 25 networks solved the hard maze in all five trials, while
eight of them solved the hard maze in at least one out of the
five trails.

Five out of 25 ANNSs are collaboratively built, which means
they are branched from other users’ controllers. Four out of
eight active users published a solution that solves the hard
maze (Figure 3). Three out of eight active users collaborated on
top of existing ANNSs. From these three collaborative solutions,
one was branched from an existing solution and one from a
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Figure 3. Human-based Network Engineering Results. From eight users,
four published a brain that solved the hard maze. From these four, two solved it
without collaborating with other users, one user solved it by branching from
a non-solution network, and one user branched from a network that could
already solve the task. The main result is that — while it is not easy — it is
indeed possible for a human to construct an ANN solution to the hard maze.
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non-solution network. Two of the users created a solution to
the hard maze without branching from other users networks
(i.e. they discovered solutions independently).

To determine if it is likely that users solved the task by
pure chance, 200 randomly generated ANNs were also tested
on the maze navigation task. Boundaries for the number of
hidden nodes and connections were set following Lehman
and Stanley [8] and Woolley and Stanley [9]. The maximum
number of randomly added hidden nodes was six and the
maximum number of connections was 42. From the 200
randomly generated networks, only one was able to solve the
hard maze, suggesting that the users are not just randomly
adding neurons and connections but instead follow a more
principled approach in the design of these networks. While
the fact that a randomly-generated network can solve the
hard maze might suggest that the task is not very difficult,
prior research shows that it is a rather challenging domain
for traditional fitness-based approaches. In fact, Lehman and
Stanley [8] reported that a fitness-based approach is only able
to solve the hard maze in four out of 30 evolutionary runs.

Figure 4 shows an example of a user successfully elab-
orating on the ANN built by another user. In the first step
the user adjusted the weights from the rangefinder inputs to
the left/right output to both have a value of 1.0. This small
adjustment changes the balance between turning left/right and
going forward, which in effect enabled the robot to break
through the small gap in the bottom middle of the maze. While
this modification improved the behavior of the robot it still got
stuck when facing a wall directly with no walls on either side.
Thus the user added two new connections from the forward/left
and forward/right rangefinder inputs to the left/right output,
each with a weight of 0.5. The resulting ANN was then able
to control the robot to reach the goal. This results suggest that,
even though not many users choose to build on the design of
others, collaboration is possible in principle and can lead to
solutions to the maze navigation task.

Procedure Successfulness Evals. / Resets Hidden nodes

Fitness-based 4 out of 30 runs - -

NEAT

Waypoint directed 30 out of 30 runs 26,954 (sd=18,464) 3.5 (sd=2.0)

(non-deceptive)

Novelty search 30 out of 30 runs 33,320 (sd=20,949) 3.3 (sd=1.8)

NA-IEC 30 out of 30 runs 7,481 (sd=6,610) 0.5 (sd=1.01)

BrainCrafter 3 out of 8 users 50 (sd=17.52) 3 (sd=3)
Table T. COMPUTATIONAL APPROACHES AND HUMAN

ENGINEERING. THIS TABLE SHOWS PREVIOUS RESULTS OF DIFFERENT
APPROACHES ON THE HARD MAZE DOMAIN [9]. THE IEC POPULATION
SIZE WAS 12, WHILE THE NOVELTY SEARCH AND FITNESS-BASED SEARCH
POPULATION SIZES WERE 250, WITH EACH RUN LIMITED TO 250,000
TOTAL EVALUATIONS. FOR COMPARISON, THE NUMBER OF RESETS OF
BRAINCRAFTER AND THE NUMBER OF USERS THAT DISCOVERED
NON-TRIVIAL SOLUTIONS TO THE TASK ARE ALSO SHOWN.

A. Human-based Network Engineering vs. Evolutionary Ap-
proaches

How does human-based network engineering fair when
compared to computational approaches? While it is difficult to
compare the BrainCrafter approach directly with evolutionary
search methods (and not the main point of the paper), it still
allows us to gain an idea of the complexity of the investigated
domain. Additionally, how different approaches compare can
lead to insights into the difficulties of other deceptive domains
and the potential in leveraging human intuition in general.

Prior results in the hard maze domain by Woolley and
Stanley [9], extending work by Lehman and Stanley [8], are
shown in Table I. The main result of their work is that fitness-
based approaches are deceived by cul-de-sacs in the hard maze,
while novelty search is successful in avoiding the deception
in this domain and leveraging human intuition through an
interactive evolutionary approach can complement a novelty-
based approach.

In BrainCrafter the number of resets (i.e. restarting the
simulation with the robot back at the starting position) serves
as an indication of the number of times the network has
been evaluated by the user. The number of resets for the
non-trivial solutions (i.e. networks either branched from non-
solutions or build without collaboration) by the three users
in BrainCrafter are substantially lower than the number of
evolutionary evaluations. However, it is important to note that
this paper does not suggest that human ANN engineering
alone is a viable alternative when compared to computational
approaches. Instead, the results suggest that users can at least
use some of their insights and ability to discover promising
stepping stones in this maze navigation domain even at the
low-neuron-level. Thus now it is possible to compare how
users would fair at a higher level of abstraction, which is an
important future research direction.

An interesting question is if the solutions created by human
users are comparable to the ANNs created through artificial
evolution in terms of network complexity. As shown in Table I,
the number of hidden nodes for pure novelty search are 3.3
(sd = 1.8) and for the novelty-assisted search 0.5 (sd = 1.01).
In BrainCrafter, a user found a solution network with zero
hidden nodes, while the other two solutions have three and six
hidden nodes. However, due to the lack of human-engineered
solutions, no general statistical claims about the differences in
network complexities can be made at this point.



Figure 4. Collaboration Example. This figure shows how a user successfully elaborated on the non-solution design of another user. The path of the robot is
shown at the top, while the corresponding networks are shown at the bottom. Excitatory connections are blue while inhibitory connections are shown in red.

Figure 5.

B. Constructed Solution Examples

Figure 5 depicts two example network solutions that show
a varying degree of complexity. The network with the most
complex topology has 31 connections and 6 hidden nodes.
In contrast to this, the smallest found solution has only five
connections and zero hidden nodes. In general, while it is
challenging to draw any definite conclusions from the limited
amount of constructed solutions, some networks had indeed
common regularities that indicate that human users can at
least use some of their intuition in the design process. For
example, a common theme is the connection of the rangefind-
ers on opposite sides (left and right) with inverted connection
weights to the left/right output (e.g. positive connection from
the right rangefinder and negative connections from the left-
most rangefinder; Figure 5a). Another recurring theme was
that a group of forward sensors fed positively into the for-
ward/backward output and a group of backward sensors fed
negatively into the same output (e.g. Figure 5b).

C. Typical Behaviors

Figure 6 depicts the end points of individuals from ran-
domly generated ANNs, ANNSs created by human users, nov-
elty search and fitness-based search. While the limited amount
of data points for BrainCrafter makes a comparison difficult,

Example Solution Networks. The discovered solution ANNs shown varying degrees of complexity, from a network with five connections and zero
hidden nodes (a) to a network with 31 connections and six hidden nodes (c).

some general tendencies can still be observed. The user-guided
search in BrainCrafter has some similarities to novelty search,
avoiding the deceptive cul-de-sac areas. Additionally, both
novelty search and BrainCrafter networks show more evenly
distributed endpoints compared to a fitness-based approach.
Also interestingly, the endpoints of the user constructed ANNs
are very different from those of randomly created brains, which
tend to get stuck in the starting area.

VI. DISCUSSION AND FUTURE WORK

A total of three non-trivial solutions to the hard maze were
found in the one month testing period. Some of the solutions
suggest that human insights on how to solve a maze can help
in constructing these networks. For example, a well-known
strategy to solve mazes is to just employ wall following until
the maze exit is reached; knowing this strategy seems to help
players in designing their networks. Additionally, a common
connection theme was to connect rangefinders on opposite
sides (left and right) with inverted weights to the outputs.
This simple connection scheme results in a robot controller
that turns away when it is too close to a wall on either side.
Furthermore, while the fact that the resets in BrainCrafter are
substantially lower than the evaluations in evolutionary setups
does not indicate that users are better at constructing these
network, it does however suggest that humans are able to use
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Figure 6. Robot End Locations. This figure shows the final positions of
the robot after the end of the evaluation. The density of points shows how the
different approaches behave in the deceptive maze domain. The endpoints of
200 randomly generated ANNs are shown in (a). (b) shows the endpoints of
the 25 human engineered network. (c) shows typical runs with novelty-based
NEAT, and typical run with fitness-based NEAT are shown in (d). The last
two images are taken from [8].

some of their insights and intuition in these kind of domains.
Interestingly, humans also seem to solve the task in a way
more similar to novelty search instead of an objective-based
performance measure (Figure 6).

Only a few of the already existing solutions were improved
upon by other users. This may be due to a general lack of user
activity, but perhaps also because people may find it difficult to
elaborate on other users’” ANNs. The inner workings of ANNs
are in general difficult to understand and considered as a kind
of “black box” [21], [22]. Thus, without any mechanism to
convey the idea how a user-constructed ANN in BrainCrafter
works, the thoughts that went into its design process (which
might be necessary to elaborate on it), can get lost between
users. Finding a way to efficiently communicate user intentions
in the construction of these networks will be an important
future research direction.

While a few users were able to build solution networks to
the maze navigation task, a purely human-based construction
approach will likely fail for more complex problems. Also not
surprisingly, many users reported that it was rather challenging
to construct ANNs from scratch, even with prior experience
in neural networks. In future revisions of BrainCrafter we
will investigate ways of letting users edit the networks at
a somewhat higher level of abstraction. This might be in
the form of manipulating and inserting complete modules,
or specifying certain network constraints (e.g. symmetry). It
might also take the form of the user specifying objectives
for very short evolutionary runs, so as to further evolve the
network in a particular direction; the effects of these might be

limited to small circumscribed part of the network. Ultimately
we aim to combine human design ingenuity with computa-
tional approaches in the most effective and complementary
way possible [20]. The insights from the initial experiments
reported in this paper should provide a useful starting point
for such an endeavor.

It should be noted that most study participants had some
knowledge of ANNs, and generally good knowledge of com-
puters including programming experience. It would be interest-
ing to know how (and how well) people without knowledge of
neural networks and with lesser computing experience would
solve the task. It is probable, but not certain, that they would
solve it even less easily and in a different manner.

One might question the fairness of comparing the per-
formance of algorithms based on the number of times the
complete task was attempted. When it comes to human users,
they might be visualizing some of the effects of the changes
they are effecting by doing a “partial simulation” in their heads,
and therefore only test solutions they are rather certain of
or where their uncertainty about what the network will do
is particularly high. However, this sort of difference between
an evolutionary algorithm and a human is exactly what we
want to capture and characterize in the future. Further, we
cannot think of a more fair evaluation metric than the number
of fitness evaluations performed; this is the standard metric
used in evolutionary computation research.

The initial experiments reported in this paper purposefully
let the user edit ANNs at the low-neuron-level instead of a
potentially easier higher-level description. The reasons for this
are three-fold. While editing ANNs at a higher-level is likely
easier for the user, wrong assumptions in how users use their
intuition in creating ANNs could lead to sub-optimal high-
level editing tools. Additionally, while it does not initially seem
reasonable to use human resources at such a low level, humans
have shown remarkable abilities in complicated design task,
when allowed to effectively collaborate. Therefore their ability
at the low-level should be tested before moving to higher level
tools. Third, working at the low-level could be used as an
educational tool, allowing students to get familiar with some
basic notions of the network operators.

VII. CONCLUSION

This paper presented BrainCrafter, an online tool that
allows users to build ANNs for a maze navigation task in a
collaborative fashion. The framework enables users to create
networks in a drag and drop manner, while observing the
resulting robot behavior in real time. The main result is that
it is indeed possible to construct an ANN to solve a maze
navigation task without the help of computational approaches.
Interestingly, the solutions hint at our human ability to incor-
porate some intuition in the neural network construction. The
initial exploration in this paper is a step towards determining
the best way to combine human and machine design capacities
when it comes to designing artificial brains.
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