
1

Modeling Player Experience for Content Creation
Christopher Pedersen, Julian Togelius Member, IEEE, and Georgios N. Yannakakis, Member, IEEE

Abstract—In this paper, we use computational intelligence
techniques to built quantitative models of player experience for
a platform game. The models accurately predict certain key
affective states of the player based on both gameplay metrics that
relate to the actions performed by the player in the game, and
on parameters of the level that was played. For the experiments
presented here, a version of the classic Super Mario Bros game
is enhanced with parameterizable level generation and gameplay
metrics collection. Player pairwise preference data is collected
using forced choice questionnaires, and the models are trained
using this data and neuro-evolutionary preference learning of
multi-layer perceptrons. The derived models will be used to opti-
mize design parameters for particular types of player experience,
allowing the designer to automatically generate unique levels that
induce the desired experience for the player.

Keywords: Platform games, player satisfaction modeling,
content creation, fun, player experience, preference learning,
neuroevolution.

I. INTRODUCTION

NUMEROUS theories exist regarding what makes com-
puter games fun, as well as which aspects contribute to

other types of player experience such as challenge, frustration
and immersion [1], [2], [3], [4], [5]. These theories have
originated in different research fields and in many cases
independently of each other (however, there is substantial
agreement on several counts, e.g. regarding the importance
of challenge and learnability for making a game fun). While
useful high-level guidance for game design, none of these
theories is quantitative — derived models of player experience
are not mathematical expressions — and they tend to apply to
games in general rather than specific aspects of specific games.
This means that if we want to develop algorithms that design
or adapt games (or aspects of games) automatically, we have
to make several auxiliary assumptions in order to achieve the
necessary specificity and preciseness of our models.

It seems clear that we need empirical research on particular
games to acquire such models. Recently, research in player
satisfaction modeling has focused on empirically measuring
the effects on player experience of changing various aspects of
computer games, such as non-player character (NPC) playing
styles in the Pac-Man game [6]. Similarly, efficient quantitative
models of player satisfaction have been constructed using in-
game data, questionnaires and physiological measurements in
augmented-reality games [7].

At the same time, a parallel research direction aims to
find methods for automatically generating entertaining game
content. Automatic (or procedural) content generation is likely
to be of great importance to computer game development in

Authors are with the Center for Computer Games Research, IT University
of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark.
Emails: {gammabyte, juto, yannakakis}@itu.dk

the future; both offline, for making the game development
process more efficient (design of content such as environments
and animations now consume a major part of the development
budget for most commercial games) and online, for enabling
new types of games based on player-adapted content. These
efforts see some aspect of a game as variable, define a fitness
(“goodness”) function based on a theory of player satisfaction,
and use a learning or optimization algorithm to change the
variable aspect of the game so as to become more “fun”
according to some definition. The literature on this is so far
scarce, as it is a new research direction. The aspects of games
that have been considered for optimization include:

• Environments, such as tracks for racing games [8], [9]
and levels for platform games [10], [11].

• Narrative [12], [13].
• Rules for board games [14], [15] and Pac-Man-like

games [16].
• Camera control parameters, such as distance, height and

frame coherence [17], [18].
• Help functions [19] and various gameplay elements [20]

in intelligent tutoring games.

What most of the above studies have in common is that
the fitness or cost functions used for optimization have been
somewhat arbitrary, in that they have been based on intuition in
combination with some qualitative theory of player experience.
Optimization of game aspects based on empirically derived
models have so far been limited to parameters for NPC
behavior [6] and high-level game parameters [21]. To the best
of our knowledge, game content such as rules or environments
has not been generated based on empirically derived models.

We consider modeling of player experience as a whole to
be of utmost importance for making automatic content gener-
ation techniques more sophisticated and usable. The work we
describe in this paper is novel in that computational models
of player experience are constructed which are derived from
gameplay interaction and can be used as fitness functions for
game content generation. For that purpose, we use a modified
version of a classic platform game for our experiments and
collect player data through the Internet.

In the following, we describe the game used for our ex-
periments; which player interaction data was collected and
how; the preference learning method we used to construct
player experience models; how feature selection was used
to reduce the number of features used in the model; results
of an initial statistical analysis; results of training nonlinear
perceptrons to approximate the functions mapping between
selected gameplay and controllable features, and aspects of
player experience; and the result of optimizing the architecture
of multi-layer perceptrons (MLPs) and furthermore the perfor-
mance of the derived MLP models. Finally, we discuss how

2

the induced models will be used for automatically generating
game content. This paper significantly extends [22] in which
the core ideas of the methodology proposed are outlined, and
[23] in which only three affective states are analyzed and only
using single-layer perceptrons (SLPs) and less sophisticated
feature selection.

The focus and main contribution of this paper is introducing
a refined method for player experience modeling, and exem-
plifying how it can be used for a well-known game. The
particular models we arrive at are only meant to be valid
for this game, and possibly closely related games, whereas
the method could be generalized to games in many different
genres as well as for modeling the experience of user-computer
interaction in general.

II. TESTBED PLATFORM GAME

The test-bed platform game used for our studies is a
modified version of Markus Persson’s Infinite Mario Bros (see
Fig. 1) which is a public domain clone of Nintendo’s classic
platform game Super Mario Bros. The original Infinite Mario
Bros is playable on the web, where Java source code is also
available1.

The gameplay in Super Mario Bros consists of moving the
player-controlled character, Mario, through two-dimensional
levels, which are viewed sideways. Mario can walk and run
to the right and left, duck, jump, and (depending on which
state he is in) shoot fireballs. Gravity acts on Mario, making
it necessary to jump over holes (or gaps) to get past them.
Mario can be in one of three states: Small (at the beginning
of a game), Big (can crush some objects by jumping into them
from below), and Fire (can shoot fireballs).

The main goal of each level is to get to the end of the level,
which means traversing it from left to right. Auxiliary goals
include collecting as many as possible of the coins that are
scattered around the level, clearing the level as fast as possible,
and collecting the highest score, which in part depends on the
number of collected coins and killed enemies.

The presence of gaps and moving enemies are the main
challenges of Mario. If Mario falls down a gap, he loses a
life. If he touches an enemy, he gets hurt; this means losing a
life if he is currently in the Small state, whereas if he is in the
Big and Fire state he shifts to Small and Big state respectively.
However, if he jumps so that he lands on the enemy from
above, the outcome is dependent on the enemy: Most enemies
(e.g. goombas, cannonballs) die from this treatment; others
(e.g. piranha plants) are not vulnerable to this and proceed to
hurt Mario; finally, turtles withdraw into their shells if jumped
on, and these shells can then be picked up by Mario and thrown
at other enemies to kill them.

Certain items are scattered around the levels, either out in
the open, or hidden inside blocks of brick and only appearing
when Mario jumps at these blocks from below so that he
smashes his head into them. Available items include coins
which can be collected for score and for extra lives (every
100 coins), mushrooms which make Mario grow Big if he is

1http://www.mojang.com/notch/mario/

Fig. 1. Test-bed game screenshot, showing Small Mario jumping over a
piece of flat terrain surrounded by two gaps.

currently Small, and flowers which make Mario turn into the
Fire state if he is already Big.

No textual description can fully convey the gameplay of a
particular game. Only some of the main rules and elements of
Super Mario Bros are explained above; the original game is
one of the world’s best selling games, and still very playable
more than two decades after its release in the mid-eighties.
Its game design has been enormously influential and inspired
countless other games, making it a good experiment platform
for player experience modeling.

While implementing most features of Super Mario Bros,
the standout feature of Infinite Mario Bros is the automatic
generation of levels. Every time a new game is started, levels
are randomly generated by traversing a fixed width and adding
features (such as blocks, gaps and opponents) according to
certain heuristics. In our modified version of Infinite Mario
Bros most of the randomized placement of level features
is fixed since we concentrate on a few selected game level
parameters that affect game experience.

III. DATA COLLECTION

Before any modeling could take place we needed to collect
data to train the model on. We collected three types of data
from hundreds of players over the Internet:

1) Controllable features of the game, i.e. the parameters
used for level generation, and affecting the type and
difficulty of the level. These were varied systematically
to make sure all variants of the game were compared.

2) Gameplay characteristics, i.e. how the user plays the
game. We measured statistical features such as how
often and when the player jumped, ran, died etc. These
features cannot be directly controlled by the game as
they depend solely on the player’s skill and playing style
in a particular game level.

3) The player’s experience of playing the game, mea-
sured through a 4-alternative forced choice questionnaire
administered after playing two pairs of games with
different controllable features and asking the players to
rank the games in order of emotional preference.

3

Below we describe in detail which features were collected
for each type of data.

A. Controllable features

We modified the existing level generator to create levels
according to four controllable parameters presented below.
Three of these parameters are dedicated to the number, width
and placement of gaps. The fourth parameter defines a new
function (i.e. game mechanic), the direction switch.
• The number of gaps in the level, G.
• The average width of gaps, E{Gw}.
• The spatial diversity of gaps which is measured by the

entropy of the number of gaps appearing in a number of
G (equally-spaced) segments of the level. The entropy of
gap-placements Hg in the G segments is calculated and
normalized into [0, 1] via (1):

Hg =

[
− 1

logG

G∑

i=1

gi

G
log

(gi

G

)]
(1)

where gi is the number of gap-placements into level
segment i. If the gaps are placed in all G level segments
uniformly then gi = 1 for all G parts and Hg will be 1;
if all gaps are placed in one level segment Hg is zero.
This controllable feature provides a notion of unpre-
dictability of gaps and, therefore, jumps in the level.
Unpredictability has been identified as an important factor
of playing experience [24].

• Direction switch S. This parameter defines the percentage
of the level played in the left direction. Zero direction
switch means that the player needs to move from left to
right in order to complete the level, as in the original
Super Mario Bros. If S > 0 the level direction will be
mirrored at certain switch points, forcing the player to
turn around and go the other way for S% of the level,
until reaching the end of the level or the next switch.

The selection of these particular controllable features was
done after consulting game design experts, and with the intent
to find features which where common to most, if not all,
platform games.

Two states (low and high) for each of the four controllable
parameters above are investigated. The combinations of these
states result in 24 = 16 different variants of the game which
are used in the user study designed. In the Super Mario Bros
game investigated here the number of coins, opponents, coin
blocks, powerup blocks and empty blocks are fixed to 15, 3,
4, 2, and 8 respectively.

B. Gameplay features

Several statistical features are extracted from playing data
which are logged during gameplay and include game comple-
tion time, time spent on various tasks (e.g. jumping, running),
information on collected items (e.g. type and amount), killed
enemies (e.g. type, amount, way of killing) and information
on how the player died. The choice of those specific statistical
features is made in order to cover a decent amount of Super
Mario Bros playing behavior dynamics. In addition to the four

controllable game features that are used to generate Super
Mario Bros levels presented earlier, the following statistical
features are extracted from the gameplay data collected and
are classified in five categories: jump, time, item, death, kill
and misc.

Jump: difference between the total number of jumps, J ,
minus the number of gaps, G; number of jumps
over gaps or without any purpose (e.g. to collect an
item, to kill an opponent), J ′; difference between J ′

and the number of gaps, G; and a jump difficulty
heuristic, Jd, which is proportional to the number of
Super Mario deaths due to gaps, number of gaps and
average gap width.

Time: completion time, tc; playing duration of last life over
total time spent on the level, tll; percentage of time
that the player: is standing still, ts, running, tr, is
on Big Mario mode, tl, is on fire Mario mode, tf , is
on powerup mode, tp, is moving left, tL, is moving
right, tR, and is jumping, tj .

Item: number of collected items (coins, destroyed blocks
and powerups) over total items existent in the level,
nI ; number of times the player kicked an opponent
shell, ns; number of coins collected over the total
number of coins existent in the level, nc; number
of empty blocks destroyed over the total number of
empty blocks existent in the level, neb; number of
coin blocks pressed over the total number of coin
blocks existent in the level, ncb; number of powerup
blocks pressed over the total number of powerup
blocks existent in the level, np; and the sum of all
blocks pressed or destroyed over the total number of
blocks existent in the level nb = neb + ncb + np.

Death: number of times the player was killed: by an oppo-
nent, do; by jumping into a gap, dg; by jumping into
a gap over the total number of deaths dj .

Kill: number of opponents died from stomping over the
total number of kills, ks; number of opponents died
from fire-shots over the total number of kills, kf ;
total number of kills over total number of opponents,
kT ; number of opponent kills minus number of
deaths caused by opponents, kP ; and number of
cannonballs killed, kc.

Misc: number of times the player shifted the mode (Small,
Big, Fire), nm; number of times the run button
was pressed, nr; number of ducks, nd; number of
cannonballs spawned, ncs; and whether the level was
completed or not C (boolean).

C. Reported player experience and experimental protocol

We designed a game survey study to solicit pairwise emo-
tional preferences (preferences of affective states) of subjects
playing different variants of the test-bed game by following
the experimental protocol proposed in [7]. Each subject plays
a predefined set of four games in pairs: a game pair of game
A and game B played in both orders. The games played differ
in the levels of one or more of the four controllable features
presented previously. For each completed pair of games A

4

and B, subjects report their emotional preference using a 4-
alternative forced choice (4-AFC) protocol:
• game A [B] was/felt more E than game B [A] game (cf.

2-alternative forced choice);
• both games were/felt equally E or
• neither of the two games was/felt E.
Where E is the affective state under investigation and

contains fun, challenging, boring, frustrating, predictable and
anxious. The selection of these six states is based on their
relevance to computer game playing and their popularity when
it comes to game-related user studies [25]. While in [23] we
focused on modeling only fun, challenge and frustration, in
this paper we model all six affective states. Note that the
affective modeling procedure followed in this paper focuses
on cognitive player responses which are labeled as discrete
affective states and thereby models constructed capture the
cognitive aspect of the player’s affective state [26]; the
physical component of affect is not investigated here. Also
note that we can, strictly speaking, only claim to model an
approximation of affect expressed via self-reports rather than
the actual affect.

Data is collected over the Internet. Users are recruited via
posts on blogs, mailing lists and Facebook and are directed to
a web page containing a Java applet implementing the game
and questionnaire2. As soon as the four games are played and
the questionnaire is completed, all the features (controllable,
gameplay and player experience) are saved in a database at
the server hosting the website and applet. Data collection is
still in progress and at the moment of writing, 181 subjects
have participated in the survey experiment. The minimum
number of experiment participants required is determined by
C16

2 = 120, this being the number of all combinations of 2
out of 16 game variants. The experimental protocol is designed
in such a way that at least 2 preference instances should be
obtained for each pair of the 16 game variants played in both
orders (1 preference instance per playing order). The analysis
presented in this paper is based on the 240 game pairs (480
game sessions) played by the first 120 subject participants.

IV. PREFERENCE LEARNING FOR MODELING PLAYER
EXPERIENCE

Based on the data collected in the process described
above, we try to approximate the function from gameplay
features (e.g. number of coins gathered) and controllable game
level features (e.g. number of gaps) to reported emotional
preferences using neuroevolutionary preference learning. We
proceed in a bottom-up fashion, starting with finding linear
correlations, then trying simple nonlinear models, and finally
more complex but also more powerful nonlinear models.

The data is assumed to be a very noisy representation of
the underlying function, given the high level of subjectivity
of human preferences and the expected variation in playing
styles. Together with the limited amount of training data, this
makes overfitting a potential hazard and mandates that we use
a robust function approximator. We believe that a nonlinear

2The game and questionnaire are available at www.bluenight.dk/mario.php

function such as an artificial neural network (ANN) is a good
choice for approximating the mapping between reported affect
and input data. Thus, both simple single-layer and multi-
layer perceptrons are utilized for learning the relation between
features (ANN inputs) — selected from feature selection
schemes presented in Section V — and the value of the
investigated emotional preference (ANN output) of a game.
The main motivation for using single-layer perceptrons (SLPs)
in addition to MLPs used in this study is that we want to be
able to analyze the trained function approximator and discuss
the underlying physical meaning of the nonlinear relationships
obtained; e.g. see discussion in Section VII-A. While an MLP
can potentially approximate the function investigated with a
higher accuracy, it is much easier for a human to understand
the obtained function when represented as a single-neuron
ANN.

The single neuron uses the sigmoid (logistic) activation
function; connection weights take values from -5 to 5 to match
the normalized input values that lie in the [0, 1] interval.
Since there are no prescribed target outputs for the learning
problem (i.e. no differentiable output error function), ANN
training algorithms such as back-propagation are inapplica-
ble. Learning is achieved through preference learning using
artificial evolution of neural networks (neuroevolution) [27].
In one of the authors’ recent empirical comparison [28] of
preference learning algorithms on a problem similar to the one
considered in this paper, neuro-evolution has been found to be
more effective than a number of other approaches, including
variants of large margin algorithms and bayesian learning.

A generational genetic algorithm (GA) was implemented,
using a fitness function that measures the difference between
the subject’s reported emotional preferences and the relative
magnitude of the corresponding model (ANN) output. More
specifically, the logistic (sigmoidal) function g(e, ε) = 1/(1+
e−εe(fk)) is used where e = e(A)− e(B) is the difference of
the ANN output values (investigated emotion/affective state)
between game A and game B; ε = 30 if A Â B and ε = 5 if
A ≺ B. Both the sigmoidal shape of the objective function and
its selected ε values are inspired by its successful application
as a fitness function in neuro-evolution preference learning
problems [28], [27].

A population of 1000 individuals was used, and evolution
run for 100 generations. A probabilistic rank-based selection
scheme was used, with higher ranked individuals having
higher probability of being chosen as parents. Reproduction
was performed by uniform crossover, followed by Gaussian
mutation with a 5% probability.

V. FEATURE SELECTION

We would like our model to be dependent on as few features
as possible, both to make it easier to analyze, and to make it
more useful for incorporation into future games for purposes
of e.g. content creation. Additionally, there is evidence that
cutting out unnecessary features improves learning quality
for evolutionary training of neural networks [29]. Therefore,
feature selection is utilized to find the feature subset that yields
that most accurate user model and save computational effort

5

of exhaustive search on all possible feature combinations. The
quality of the predictive model constructed by the preference
learning outlined above depends critically on the set of input
data features chosen. Using the extracted features described
earlier the n best individual feature selection (nBest), the
Sequential Forward Selection (SFS), the Sequential Floating
Forward Selection (SFFS) and the Perceptron Feature Selec-
tion (PFS) schemes are applied and compared.

Note that neither method presented is guaranteed to find
the optimal feature set since neither searches all possible
combinations (they are all variants of hill-climbing). To
evaluate the performance of each input feature subset, the
available data is randomly divided into thirds and training
and validation data sets consisting of 2/3 and 1/3 of the data
respectively are assembled. The performance of each user
model is measured through the average classification accuracy
of the model in three independent runs using the 3-fold cross-
validation technique on the three possible independent training
and validation data sets. Since we are interested in the minimal
feature subset that yields the highest performance we terminate
selection procedure when an added feature yields equal or
lower validation performance to the performance obtained
without it. On the same basis, we store all feature subsets
selected by PFS (as described below) and explore the highest
performing subset starting with the smallest feature subset
generated.

A. nBest

nBest feature selection ranks the features used individually
in order of model performance; the chosen feature set of size
n is then the first n features in this ranking. The nBest method
is used for comparative purposes, being the most popular
technique for feature selection.

B. SFS

SFS is a bottom-up search procedure where one feature is
added at a time to the current feature set. The feature to be
added is selected from the subset of the remaining features
such that the new feature set generates the maximum value
of the performance function over all candidate features for
addition. The SFS method has been successfully applied to
a wide variety of feature selection problems, yielding high
performance values with minimal feature subsets [7], [28]

C. SFFS

Several studies (e.g. [30] among others) have demonstrated
the benefits of sequential floating search over standard se-
quential search. Floating search algorithms can be classified
into forward and backward search. The sequential floating
forward search (SFFS) algorithm performs the sequential steps
of the SFS algorithm. However, each time an SFS step is
performed, SFFS checks whether the performance function
value can be increased if a feature is excluded from the current
feature subset (i.e. one step of sequential backward selection
is performed).

D. PFS

The fourth method we investigate is an aggressive-search
variant of neural pruning and sequential backward selection.
Rosenblatt’s perceptron is used as a methodology for selecting
appropriate feature subsets. Our algorithm which is similar to
[31] is adjusted to match preference learning problems. Thus,
the perceptron used employs the sigmoid activation function
in a single output neuron. The ANN’s initial input vector has
the size of the number of features examined. The perceptron
feature selection (PFS) procedure is as follows:

Step 1Use artificial evolution to train the perceptron on the
pairwise preferences (see Section IV). Performance
of the perceptron is evaluated through 3-fold cross-
validation. The initial input vector consists of all
features extracted F (40 in this paper).

Step 2Eliminate all features F ′ whose corresponding ab-
solute connection weight values are smaller than
E{|w|}−σ{|w|}, where w is the connection weight
vector.

Step 3If F ′ = ∅ continue to Step 4, otherwise use the
remaining features and go to Step 1.

Step 4Evaluate all feature subsets obtained using the neuro-
evolution preference learning approach presented in
Section IV.

VI. STATISTICAL ANALYSIS

This section describes testing for correlations between play-
ing order, controlled features and gameplay features and the
six reported affective states.

To check whether the order of playing Super Mario game
variants affects the user’s judgement of emotional preferences,
we follow the order testing procedure described in [6] which is
based on the number of times that the subject prefers the first
or the second game in both pairs. The statistical analysis shows
that order of play does not affect the emotional preferences
of fun and frustration; however a statistically significant effect
(significance equals 1% in this paper) is observed in challenge
(p-value = 0.006) and anxiety (p-value = 0.007) preferences.
The effect reveals a preference for the second game played
which implies the existence of random noise in challenge
and anxiety preference expression. On the other hand, the
insignificant order effects of fun, frustration, predictability and
boredom in part, demonstrate that effects such as a user’s
possible preference for the very first game played and the
interplay between reported affective states and familiarity with
the game are statistically insignificant.

More importantly, we performed an analysis for explor-
ing statistically significant correlations between subject’s ex-
pressed preferences and extracted features. Correlation coeffi-
cients are obtained through c(z) =

∑Ns

i=1{zi/Ns}, where Ns

is the total number of game pairs where subjects expressed
a clear preference for one of the two games (e.g. A Â B
or A ≺ B) and zi = 1, if the subject preferred the game
with the larger value of the examined feature and zi = −1, if
the subject chooses the other game in the game pair i. Note
that, Ns is 161, 189, 151, 158, 128 and 138 respectively, for

6

reported fun, challenge, frustration, predictability, anxiety and
boredom.

The variation of the Ns numbers above indicates, in part,
the difficulty in expressing a clear emotional preference on
different game variants. The percentage of A Â B and
A ≺ B selection occurrences over all 240 preference instances
for different affective states varies from 78.7% (challenge)
to 53.3% (anxiety). These percentages provide some first
evidence that the selected game level and rule parameters have
an dissimilar impact on the affective states investigated. For
instance, challenge and fun appear to be very much affected by
varying the selected parameters whereas anxiety and boredom,
on the contrary, do not appear as an affective state which is
directly affected by level feature and game rule variations in
the game.

A. Fun

Statistically significant correlations are observed between
reported fun and seven features: number of times the player
kicked a turtle shell, proportion of coin blocks that were
“pressed” (jumped at from below), proportion of opponents
that were killed, number of times the run button was pressed,
proportion of time spent moving left, number of enemies killed
minus times died, and proportion of time spent running. All
of these were positive correlations.

Such correlations draw a picture of most players enjoying
a fast paced game that includes near-constant progress, plenty
of running, many enemies killed and many coins collected
from bouncing off the coin blocks. One might argue that
this picture fits with the concept of Flow, in that the player
makes unhindered progress [3]. However, the Flow concept
also includes a certain level of challenge, and no features that
signify challenge are associated with fun in this case. It might
be that players enjoy when the game is easy — at least when
they only play a single level of the game.

The feature that correlates the most with fun preferences is
kicking turtle shells. Kicking a turtle shell is a simple action
which often results in the unfolding of a relatively complex
sequence of events, as the shell might bounce off walls, kill
enemies, fall into gaps etc. The fun inherent in setting of
complex chains of events with simple actions is something
many players can relate to and which features prominently
in many games, and relates to the theory supporting the
relationship between emergent gameplay and enjoyment [32].

B. Challenge

Eighteen features are significantly correlated with challenge.
The ten most highly correlated are (+/− in parenthesis
signifies positive or negative correlation): whether the level
was completed (−), proportion of power-up blocks pressed
(−), proportion of Mario deaths that were due to falling into
a gap (+), number of times Mario died from falling into a gap
(+), jump difficulty (+), average width of gaps (+), number
of times Mario ducked (−), proportion of time spent in the
last life (−), proportion of coin blocks that were pressed (−),
and the number of gaps (−). In addition, a weaker but still

significant positive correlation was found between gap entropy,
Hg, and challenge.

A first observation is that it is obviously much easier to
predict challenge than to predict fun — many more features
are significantly correlated, and the correlations are stronger.
It also seems that challenge is somehow orthogonal to fun, as
almost none of the features that are correlated with challenge
are correlated with fun. The exception is the proportion of coin
blocks pressed, but while this feature is positively correlated
with fun it is negatively correlated with challenge. (This is
somewhat expected: if the level is so hard that the player has to
struggle to survive it, she does not have time to make detours
in order to collect more coins.)

Most of the correlations are easy to explain. That a level
is perceived as less challenging if you complete it should not
come as a surprise to anyone. Likewise, we can understand that
players think a level is hard when they repeatedly die from
falling into gaps. Three particularly interesting correlations
are those between the controllable features and challenge:
increase in gap width, E{Gw}, and gap entropy, Hg , imply
increased challenge whereas increased number of gaps, G,
implies a linear decrease of challenge. These effects suggest
that challenge can be controlled to a degree by changing the
number, width and distribution of gaps.

The negative correlation between number of ducks and
challenge has a slightly less intuitive explanation. The main
reason for ducking in Super Mario Bros (at least in the tested
levels) is to avoid cannonballs, generally perceived as some
of the most difficult elements on a level, which would suggest
that ducking more would indicate a harder level. However,
players reported lower challenge on levels where they ducked
many times. The explanation is that ducking is only possible
when Mario is in the Big or Fire state, so being able to duck
means that you have not gotten hurt, which indicates a lower
challenge.

C. Frustration

Twenty-eight features are significantly correlated with frus-
tration, and some of the correlations are extremely strong.
Of the top ten correlated features, most are also in the top
ten list for features correlated with challenge, and correlated
in the same way. The exceptions are proportion of collected
items (−), time spent standing still (+), proportion of killed
opponents that were killed with fireballs (−), and proportion
of coins collected (−).

From these new features, it seems that a frustrated player is
most likely one that spends time standing still and thinking
about how to overcome the next obstacle; is far too busy
overcoming obstacles to collect coins and power-ups; and as
a result of not collecting power-ups is rarely in the Fire Mario
state (necessary to shoot fireballs). But frustration can also
be very well predicted from not winning the level and from
falling into gaps often, just like challenge.

D. Predictability

Seven features are statistically correlated with reported
predictability. The features are: the difficulty of the jumps,

7

TABLE I
TOP TEN STATISTICALLY SIGNIFICANT (P-VALUE < 1%) CORRELATION COEFFICIENTS BETWEEN REPORTED EMOTIONS AND EXTRACTED FEATURES .

CONTROLLABLE FEATURES APPEAR IN BOLD.

Fun Challenge Frustration Predictability Anxiety Boredom
ns 0.345 C −0.600 C −0.826 Jd −0.395 C −0.500 E{Gw} −0.308
ncb 0.311 np −0.480 np −0.815 E{Gw} −0.383 dj 0.377
kT 0.256 dj 0.469 ncb −0.688 dj −0.378 E{Gw} 0.373
nr 0.253 dg 0.447 dg 0.578 C 0.362 dg 0.333
tL 0.237 Jd 0.439 dj 0.564 dg −0.333 Jd 0.326
kP 0.222 E{Gw} 0.409 nI −0.544 tll 0.224
tr 0.192 nd −0.368 ts 0.520 tR 0.205

tll −0.312 kf −0.515
ncb −0.292 tll −0.513
G −0.287 nc −0.511

Jd (−), gap widths E{Gw} (−), number of deaths by falling
into gaps over the total number of deaths dj (−), whether or
not the level was completed C (+), total number of deaths by
falling into gaps dg (−), time spent of the last life in the level
over the total time spent on the level tll (+), and the time
spent going in the right direction over the total time tR (+).

The majority of the features correlated to predictability are
in some way linked to gaps, for example, it appears that the
game is less predictable when the difficulty of the gaps is
higher, the player dies from falling into gaps more often, and
when the gaps are wider. Moreover, unsurprisingly, a game
is reported as being more predictable if the player manages
to complete the level, which might indicate the existence of
gameplay experience with similar levels. On the same basis,
more time is spent on the level when either level completion
has been achieved or the game is played comfortably by the
player; both are indicators of higher level predictability which
is reported by the test subjects.

It also appears that players which spend more time on the
last life, compared to the times spent on previous lives, find
the game more predictable. This positive correlation is easily
justified since players have already seen parts of the level when
their last life is played.

Somewhat surprisingly, the entropy of gap placement is not
correlated with predictability. This suggest a possible nonlinear
relationship.

E. Anxiety

All five features correlated with reported anxiety are also
correlated with reported predictability; however, correlation
values for those features are inverted. This generates the as-
sumption that players get more anxious the less predictable the
level is. Intra-correlations between the two reported emotions
verify elements of this relationship; see Section VI-H. It is
also worth noticing that all five features are present among the
ten most correlated features of challenge; correlation values of
those features have the same sign in both affective states. This
observation is supported through the intra-correlation between
reported anxiety and challenge which is found to be positive
and statistically significant (see Section VI-H).

F. Boredom

The only feature highly correlated to boredom is the average
gap width E{Gw} (−). According to this statistically signifi-
cant effect, the game is reported as less boring the wider the
gaps existent in the level. The existence of only one correlated
feature shows the difficulty of predicting player boredom with
a linear model.

G. Controllable features and reported emotions

When only looking at linear correlations, it would appear
that fun and frustration are not connected to any of the four
controllable features. Fun and boredom are also less strongly
correlated with gameplay features than is the case for the
other four emotions. Challenge is easiest to model with linear
models, and it is also correlated with controllable features,
namely gap width and gap placement. Predictability, anxiety
and boredom are also correlated to gap width.

As the ultimate goal of this project is to be able to
optimize game levels for specified emotions given data on
a particular player’s playing style, we need to find models
of these emotions that include controllable features. It could
therefore be seen as a partial failure to only be able to find
significant correlations between controllable features and for
of the six investigated emotions. However, this overlooks
that controllable features might affect reported emotions in a
nonlinear fashion — it is for example plausible that a particular
controllable feature (e.g. jump width) contributes positively to
fun for a particular group of players (e.g. skilled players), but
negatively for another group (i.e. novice players). This points
to the need for nonlinear modeling of these emotions.

H. Intra-correlations among reported emotions

This section presents an analysis of the correlations (c(z))
between the six reported emotions. The significant effects
presented in Table II show that challenging games are likely to
be more fun, more frustrating, less boring, less predictable, and
eliciting more anxiety. Games reported as fun are more likely
to be less boring, less predictable, more challenging and less
frustrating. Statistically significant effects are also observed
between frustration and challenge (+), fun (−), predicability
(−), and anxiety (+). Players expressing more boredom for a
game appear to express less challenge, fun and frustration, and

8

more anxiety. In game variants perceived as more predictable,
players are more likely to report less challenge, fun, frustration
and anxiety, and more boredom. Finally, when Mario players
feel anxious, they appear more challenged and frustrated, and
less bored; furthermore those players feel that levels are less
predictable.

All aforementioned significant effects appear reasonable and
show the linear inter-dependencies between reported emotions.
These interrelationships appear orthogonal in several occa-
sions; e.g. challenge is positively correlated to fun and frustra-
tion but fun and frustration are negatively correlated. Such or-
thogonal dependencies might generate difficulties when player
experience needs to be optimized; game design implications
that may arise are discussed in the last section of the paper.

TABLE II
CORRELATIONS BETWEEN REPORTED CHALLENGE (C), FUN (F),

FRUSTRATION (FR), BOREDOM (B), PREDICTABILITY (P) AND ANXIETY
(A). STATISTICALLY SIGNIFICANT (P-VALUE < 1%) VALUES APPEAR IN

BOLD.

F FR B P A
C 0.346 0.462 −0.600 −0.640 0.636
F −0.266 −0.596 −0.465 0.217
FR −0.134 −0.245 0.472
B 0.619 −0.491
P −0.260

VII. MODELING OF PLAYER EXPERIENCE PREFERENCES

This section presents the two-phase procedure followed
towards modeling player experience. First, we utilize SLPs
to approximate the emotional preferences of the players. The
four dissimilar feature selection schemes are used to generate
the input vector for the SLPs. All features (both player and
controllable) are investigated at this stage.

After features that contribute to accurate SLP models
are found we optimize the topology of MLPs using neuro-
evolutionary preference learning. The ultimate aim of this
study is to control for level generation based on player
experience. On that basis, it is desired that level features and
game mechanics are adjusted dynamically so that the player
experience (output value of MLPs) is optimized. For that
purpose, all four controllable features (if not already selected
from the first phase) are forced into the input vector of the
MLP which includes the feature subset selected via the SLP
modeling procedure. The procedure followed is depicted in
Fig. 2.

The rationale behind this two-phase approach is three-fold:
1) Expressiveness of SLP models. Using simple nonlinear

models (rather than more complex MLPs) allows for a
clearer observation of the player characteristics, level
features and game mechanics that contribute to each
affective state investigated. This discussion is vital for
the deeper understanding of the unknown function that
lies between statistical features of play, controllable in-
game parameters and reported emotions. The MLPs
ultimately have more expressive power (and, as we shall
see, are capable of learning more accurate models) and

Fig. 2. The two-phase modeling approach followed

thus it is possible that there are some feature subsets,
depending e.g. on XOR-like relationships that are suit-
able for the MLPs but will not be found by SLP-based
feature subset selection. However, this is a tradeoff we
have to make, given that performing the feature subset
selection directly on MLPs is prohibitively computa-
tionally expensive. If we had unlimited computational
time, we could have performed the feature selection
using MLPs, but we could also have used exhaustive
search in feature subset space rather than the local search
heuristics currently employed.

2) Computational effort. It is computationally preferred to
apply feature selection on SLPs and then optimize the
topology of MLPs using the selected feature subset
rather than attempting to optimize both the input (feature
selected) and the topology of an MLP. To further support
this hypothesis we provide some indicative CPU times
for the two phases of the modeling process of fun. The
CPU time of SFS (or SFFS), being the most expensive
feature selection method, applied to an SLP equals
643.4 seconds for ten features respectively — for this
example we restrict the investigation to 10 features.
Furthermore, the total CPU time of a run investigating
all possible MLP architectures of two hidden layers,
with up to 30 and 10 hidden neurons respectively in the
first and second layer equals 493417.8 seconds. Thus
643.4 + 493417.8 = 494052.2 seconds are required for
the whole procedure as proposed. If both the input and
the topology of an MLP were to be optimized in a
single phase that CPU time would have been roughly
705769.1 seconds. Note that this is a lower-bound CPU-
effort approximator resulting from the addition of 643.4
seconds (SFS effort) to all 330 architectures investigated.
All experiments presented in this paper run on a 2.53
GHz, 4GB ram, 64 bit MS Windows machine.

3) Representation completeness. We force all four con-
trollable features to be embedded in the model. That
enforcement gives the designer all the flexibility the
parameter space offers to effectively tailor player expe-
rience by generating personalized content for the player.

A. Single Layer Perceptron Models: Feature Selection

The correlations calculated above provide linear relation-
ships between individual features and reported emotions. How-

9

ever, these relationships are most likely more complex than
can be captured by linear models. The aim of the analysis
presented below is to construct nonlinear computational mod-
els for reported emotions and analyze the relationship between
the selected features and expressed preferences. Furthermore
the feature subsets that derive from the combination of feature
selection on the SLP models presented here (phase 1 in Fig. 2)
are used as inputs of the MLP models constructed in the next
subsection.

For this purpose we evolve weights for nonlinear SLPs as
described in Section IV. The weights of the highest performing
networks are presented in Table III. All evolved networks
performed much better than networks with random weights,
which reached chance level prediction accuracy.

As a general observation, sequential forward selection ap-
pears to be the most appropriate feature selection mechanism
for all six emotions. SFS develops features subsets that feed
SLP models which achieve the highest cross-validation per-
formance. Even though SFFS is a more efficient hill-climber
which allows backward search it does not showcase that
advantage in small feature sets (e.g. less than 8 features) as the
ones examined in this paper. Note that SFFS performance is
different from SFS performance only in challenge prediction
since two backward steps occurred during that run; no suc-
cessful backward step was performed in any other affective
state predicted resulting in equal performance values for SFS
and SFFS. A detailed analysis of the SLP predictors of each
affective state is presented below.

1) Fun: In the comparison between the four different
selection mechanisms applied it is evident that SFS and SFFS
have advantages over nBest and PFS for fun preferences (see
Fig. 3(a)). nBest achieves a satisfactory performance (67.92%)
but requires 10 features as inputs to the ANN. PFS generates
the lowest classification accuracies; its best network has an
accuracy of 63.52% with a selected subset of 11 input features.

The best obtained perceptron model of fun preferences
is designed by SFS (and SFFS). This model achieves a
performance of 69.18% which is with a selected feature subset
of size three. The selected perceptron input vector consists
of the time spent moving left tL, the number of opponents
died from stomping over the total number of kills, ks, and
the controllable switching feature which is defined as the
percentage of level played in the left direction S3.

Fun is the second least correlated of the six modeled
emotions, and the hardest (along with boredom) to model with
a nonlinear perceptron as well. Still, it’s remarkable that this
complex affective state can be predicted to a moderate degree
simply by observing that Mario keeps running left and kills
enemies by stomping.

2) Challenge: The best-performing ANN for challenge
prediction has an accuracy of 77.77%. It is more complex than
the best fun predictor, using five features: time spent standing
still (−), jump difficulty (+), proportion of coin blocks pressed

3The S feature is there to correct for the fact that when the level direction
switches, Mario moves right rather than left to move forward, and so tL
is diminished. This points to an oversight on our part when designing the
gameplay features: we should have measured the time spent moving towards
the end of the level rather than moving left.

(−), number of cannonballs killed (−) and proportion of kills
by stomping (−). While the jump difficulty heuristic has the
largest corresponding weight — a testament to the central role
of gap placement and size for challenge — it is also the only
feature related to gaps used by this model, pointing to the
adequateness of this particular heuristic.

3) Frustration: Our best evolved ANN for predicting frus-
tration has an accuracy of 88.66%. We can predict with
near-certainty whether the player is frustrated by the current
game by just calculating the time spent standing still (+), the
proportion of time spent on last life (−), the jump difficulty
(−), and the proportion of deaths due to falling in gaps (+).

Somewhat surprisingly, time spent standing still counts
against challenge, whereas it is a strong positive predictor
of frustration. This observation could be valuable if trying to
design a feedback system that keeps the game challenging
but not frustrating. Another feature that has different effect on
challenge and frustration is jump difficulty, where frustration
is connected with lower jump difficulty. Maybe the player gets
frustrated by falling into gaps that she knows are not that hard.

That the player feels frustrated when dying after a short
time during his last life is understandable — many players
feel that their last attempt should be their best. Additionally,
a high frustration level can cause the player to care less about
the game and play worse in her final life.

4) Predictability: Predictability can be predicted relatively
accurately (76.28%). More features are selected as relevant for
predicting this emotion than any of the five other emotions,
and consists of jump difficulty (−), number of cannonballs
killed (+), gap width (−), time spent moving left (−), number
of mode shifts (−), difference between number of jumps and
gaps (+) and time spent moving right (+).

Overall, certain features that point to a more challenging
game also make it less predictable (harder gaps, failed jumps
over gaps, getting hurt more often); this is reinforced by the
strong negative correlation between challenge and predictabil-
ity. Additionally, and predictably, the direction switch feature
also makes the game less predictable. The role of the cannon
ball kills is not entirely clear, but one hypothesis is that players
kill more cannon balls when they are able to predict at what
time they are fired, and this capacity for predicting cannon
balls contributes to a feeling of being able to predict the game
as a whole.

5) Anxiety: Five selected features contribute to predicting
anxiety with an accuracy of 70.63%: gap width (+), comple-
tion time (−), number of ducks (−), proportion of coin blocks
pressed (−) and number of cannon balls killed (+).

That several features that are associated with challenge
(difficult gaps, long completion time, not having time to press
coin blocks and having to kill many cannon balls) contribute to
anxiety is not surprising, given the strong positive correlation
between challenge and anxiety. However, lest one think that
high anxiety, high challenge and low predictability is the same
cognitive state, it is worth pointing out that they differ with
respect to at least one important feature: number of cannon
balls killed is associated with high challenge and high anxiety,
but also with high predictability.

The negative contribution to anxiety from number of ducks

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

45

50

55

60

65

70

75

Number of features

P
er

fo
rm

an
ce

 (
%

)

PFS
nBest
SFS
SFFS

(a) Fun

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
50

55

60

65

70

75

80

Number of features

P
er

fo
rm

an
ce

 (
%

)

PFS
nBest
SFS
SFFS

(b) Challenge

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
50

55

60

65

70

75

80

85

90

95

Number of features

P
er

fo
rm

an
ce

 (
%

)

PFS
nBest
SFS
SFFS

(c) Frustration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
50

55

60

65

70

75

80

Number of features

P
er

fo
rm

an
ce

 (
%

)

PFS
nBest
SFS
SFFS

(d) Predictability

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
50

55

60

65

70

75

80

Number of features

P
er

fo
rm

an
ce

 (
%

)

PFS
nBest
SFS
SFFS

(e) Anxiety

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
50

55

60

65

70

75

80

Number of features

P
er

fo
rm

an
ce

 (
%

)

PFS
nBest
SFS
SFFS

(f) Boredom

Fig. 3. Performance comparison of the four feature selection mechanisms for all six affective states investigated.

TABLE III
LEARNING FROM PREFERENCES: FEATURES AND CORRESPONDING CONNECTION WEIGHTS FOR HIGHEST PERFORMING ANNS. FEATURES ARE

PRESENTED IN DESCENDING ORDER OF THEIR CORRESPONDING ABSOLUTE CONNECTION VALUES . ANN 3-FOLD CROSS VALIDATION ACCURACY IS
DEPICTED AT THE BOTTOM ROW OF THE TABLE. CONTROLLABLE FEATURES APPEAR IN BOLD.

Fun Challenge Frustration Predictability Anxiety Boredom
tL 4.90 Jd 3.80 ts 3.26 Jd −3.75 E{Gw} 2.35 do −4.70
S −3.87 ts −1.70 tll −1.85 kc 2.75 tc −1.10 tR 2.11
ks 0.94 neb −1.50 Jd −0.99 E{Gw} −2.49 nd −0.89

kc 1.07 dg 0.23 tL −1.38 ncb −0.85
ks −0.18 nm −1.16 kc 0.74

J ′ 0.54
tR 0.05

69.18% 77.77% 88.66% 76.28% 70.63% 60.87%

could signify that players who frequently duck to avoid
incoming cannon balls, rather than attempting to jump over
them, are better Mario players and therefore less anxious.

6) Boredom: Boredom is the hardest of the six reported
emotions to predict, with an accuracy of only 60.87%. The
trained network used only two features: number of deaths from
opponents (−) and time spent going right (+).

That dying from opponents makes the game less boring
could mean that those players who find the game boring are
good players that like to be presented with a challenge (indeed,
boredom and challenge are negatively correlated), and that if
such players die from anything it is from opponents. However,
given the low accuracy of boredom predictors, this indication
is somewhat tentative. As for the time spent moving right,
this is simply a confirmation that the direction switch feature
is appreciated by players.

B. Multi Layer Perceptron Models: Optimizing Topology

Above we have shown that fun, challenge, frustration,
predictability, anxiety and boredom of Super Mario Bros
players can be approximated with reasonable accuracy via a
single-layer perceptron model. In particular, reported fun, chal-
lenge, frustration, predictability, anxiety and boredom were
approximated with respective accuracies of 69.18%, 77.77%,
88.66%, 76.28%, 70.63% and 60.87% using SFS as the feature
selection mechanism. However, these nonlinear predictors (at
least for fun anxiety and boredom) are still not as good as
a designer would like them to be. Furthermore a designer
cannot predict those emotions from all available controllable
features since those are not embedded in the derived models.
Since controllable features (such as level design parameters)
are those that we can vary, and therefore those that can be
optimized by evolution or other global optimizers, we need to

11

be able to predict emotions, at least partly, from controllable
features. Tailoring player experience in real-time via automatic
game content generation defines the ultimate aim of this study;
however, such a goal is not possible without controllable
features embedded in the affective models constructed.

These observations point to the need for better models
and/or input feature sets. For that purpose all remaining
controllable parameters which are not included in the se-
lected feature subset are forced into the input of multi-layer
perceptron (rather than single-layer perceptron) models of
emotional preferences and their topologies are optimized for
maximum prediction accuracy (the reader is referred to the
second phase of the modeling approach depicted in Fig. 2).
MLPs have the advantage of universal approximation capacity;
in particular, combinatorial relationships (such as XOR) can be
represented. For instance, we might very well have a situation
were one controllable feature (such as gap width) can be
both negatively and positively connected with an emotion
(such as frustration) depending on the player’s playing style,
as measured through gameplay features (such as number of
jumps). Such relationships can be captured by MLPs but not
by nonlinear perceptrons.

The experiment designed to optimize the topology of MLP
affective models is as follows. MLP topologies of two hidden
layers, with up to 30 and 10 hidden neurons respectively in
the first and second layer are investigated; this sums to 330
different topologies which are tested for each input vector
(feature set selected from SLPs plus the remaining controllable
features). The model training procedure follows the preference
learning method described in Section IV. The smallest possible
MLPs (with respect to the number of connection weights
and number of hidden layers) that achieve the highest cross-
validation performance are selected and presented in Table IV.
For each emotion the SLP performance, the corresponding
MLP built on the selected feature subset (MLPs); and the
MLP built on controllable features solely MLPc are presented
for comparison purposes. MLPs and MLPc have the same
topology as the optimized MLP as presented in Table IV.

In general it is worth noticing that the networks have a
wide variety of sizes: from the relatively small networks of fun
and challenge, to the moderate-sized MLPs of predictability
and anxiety, to the large MLPs of frustration and boredom.
Independently of size, all MLP models exhibit an improvement
in their performance compared to the corresponding SLP
models (predictability is excluded from this observation since
the MLP model’s performance is maintained at 76.28%).

The best topology found for each affective state varies a
lot across all six emotions showcasing, in part, the complexity
of predicting the preferences of users for each affective state
individually. The topology of the fun MLP model (74.21%) is
the simplest among all six affective states that are predicted
consisting of two hidden layers that include two hidden neu-
rons each. Challenge is predicted with a very small MLP con-
sisting of 3 hidden neurons. The SLP performance (77.77%) is
improved slightly resulting to the MLP performance of 79.37%
which places the challenge model as the second best affective
predictor. The generated MLP topology for frustration is of
moderate size and achieves the highest performance (91.33%)

among all six affective state models. Predictability is predicted
with an accuracy of 76.28% via a moderate-sized MLP which
equals the performance of the corresponding SLP for this emo-
tion. The MLP architecture-optimization phase was beneficial
for anxiety since the performance of the resulted moderate-
sized MLP (77.78%) improved the prediction accuracy of
the SLP by more than 7%. This indicates the high impact
of ANN topology to anxiety prediction. Finally, boredom
prediction accuracy is improved by 12.32% resulting to an
MLP performance of 73.19%; however, the MLP architecture
generated is the largest among all ANN topologies consisting
of two hidden layers with 21 and 10 hidden neurons in the
first layer and second layer respectively.

It is also worth noticing that MLPs trained solely on
the four controllable features (MLPc) achieve a considerable
performance for most emotions. The difference between the
performance of MLP and MLPc shows, in part, the level of
personalization (subjectivity) required (via the player features)
to predict each emotion. For instance, player features con-
tribute to a much better predictor of fun, predictability and
frustration whereas the improvement due to the existence of
player features is only 4.76% for anxiety. Moreover, the impact
of forcing all controllable features to the MLP model varies
across the different emotions. The reader may notice that
the MLP performance drops in fun and predictability when
all controllable features are embedded to the model — by
comparing the performance of MLPs versus the corresponding
MLP performance for each affective state. While the perfor-
mance decrease for fun (0.63%) does not appear significant
the corresponding decrease for predictability (3.85%) reveals
that all controls are not necessarily appropriate for predicting
predictability. A designer might choose to use the MLPs,
instead of the MLP, model for predictability since the MLPs

model already contains the controllable feature of average gap
width (see Table III).

VIII. DISCUSSION

Using a combination of gameplay features and controllable
features, we are able to predict several key affective states
with a relatively high accuracy, but obviously not as high as
we would have liked to. It should, however, be noted that
we trained our predictors based on samples from only 120
players (480 games).Even though this is a considerable data
set derived though experimental game surveys, and the results
of cross-validation show that the data is indeed rich enough to
support substantial conclusions, we believe that better models
can be built on more data. It has recently been observed
that even relatively simple learning algorithms can perform
much better (including capturing more complicated nonlinear
relationships) when given access to order of magnitudes more
data [33]. Thus, data collection is continuing at the time of
writing, and probably at the time of reading (the reader is
welcome to contribute by visiting the project’s web site). We
intend to further use social media to attract new experimental
subjects and use those new data to improve the accuracy of
our predictions.

For the experiments presented in this paper, we only defined
four controllable features, of which three relate to the gaps

12

TABLE IV
BEST MLP TOPOLOGY AND CORRESPONDING PERFORMANCE. THE PERFORMANCE OF THE SLP NETWORKS IS COMPARED TO MLPS BUILT ON
SELECTED FEATURES: MLPs ; CONTROLLABLE FEATURES: MLPc ; AND SELECTED AND FORCED CONTROLLABLE FEATURES COMBINED: MLP.

Fun Challenge Frustration Predictability Anxiety Boredom
MLP Topology 6-2-2-1 9-3-1 8-10-10-1 10-4-6-1 8-5-3-1 6-21-10-1
SLP 69.18% 77.77% 88.66% 76.28% 70.63% 60.87%
MLPs 74.84% 78.84% 87.33% 80.13% 75.40% 67.39%
MLPc 66.04% 74.60% 78.67% 68.59% 73.02% 70.29%
MLP 74.21% 79.37% 91.33% 76.28% 77.78% 73.19%

in the level. The primary reason for restricting the level
parametrization to four features is that we wanted to the data
set to include players’ judgements on all possible combinations
of high and low states of the features, and that we were
concerned about the availability of test subjects. However, it
would be plausible to consider many more features, by letting
each generated level/game variant use a random sample of
values on all features. With a sufficiently large set of test
subjects, it would be possible to consider each feature in
sufficient independence from the other features. A number
of meaningful additional controllable features could easily be
designed; for example features relating to the number, type
and distribution of enemies and items, the existence of dead
ends in the level (forcing backtracking), height differences
between various positions in the level etc. Moving outside
of level design, it would be possible to design controllable
features that relate to the physics of the game (such as gravity
and inertia) and other aspects of game design (such as the
meaning of “dying” or winning a level).

Additionally, it would be interesting to include features
that are based on ordering in space or time. For example,
we would like features that somehow encapsulate whether a
player received a reward before or after a particular action
was taken. While such features could to some extent be
encoded using the current scheme and ad hoc definition of
order relationships, a more powerful and flexible alternative
would be to use techniques from sequence data mining, such
as recurrent neural networks.

Another question concerns the generality of the method-
ology and results gathered here — do they apply to just
the players and the particular game tested here, or do they
have wider applicability? Similar experimental methodologies
have been applied to a variety of game genres and interaction
modes [27], [7], [18] to construct predictors of affective states
(mainly fun). This paper supports the generality of the method
proposed here to more affective states of player experience in a
platform game. Furthermore, we venture that, as Super Mario
Bros more or less defined the platform game genre, the results
apply to some extent to all games of the same genre. As for
the population of experimental subjects, it is believed to be
very diverse, but this needs to be verified. A possible critique
is that the emotions reported are those that have been elicited
after only a few minutes of play. It is possible that challenge
or predictability would factor in more if play sessions were
longer, so subjects would have had a chance of getting bored
with the game.

We believe the approach presented here would generalize
well to other game genres, including but not limited to
popular genres such as first-person shooter (FPS) and real-
time strategy (RTS) games. Many of the features we define
here have straightforward analogues in such games. For an FPS
game, relevant gameplay features could include the numbers
of frequencies of jumps, shots, weapon and weapon switches,
the time spend running, shooting, hiding (ducking) and in
vicinity of other bots, and entropy of position over time. For
an RTS game it could include number of and entropy of clicks,
proportion of clicks that were on own units, other units, and
own base building, proportion of resources that are spend on
base building and unit production, resource gathering speed,
and entropy of position of own units. Controllable features for
an FPS level could include number of rooms, size, average
connectedness, and number, types and entropy of distribution
of both power-ups and enemies. For an RTS, suitable con-
trollable features could include number and spatial entropy of
resource sources (e.g. mines), proportions and distributions of
different terrain types (e.g. free space, mountains, forest), and
connectedness between open areas. Additionally, a number of
game-specific features could be implemented for each game.

The approach we present here could be used in games
in a number of different ways. Levels could be generated
offline, during development of a sequel to a game or of
downloadable content, based on data collected from players
of the current game. Here, a game designer could identify
the most common player types (clusters of gameplay feature
values) using unsupervised learning. The content generation
could also be part of the game and done online, serving
players new game content such as levels and game modes
based on how they individually have played previous levels.
At the extreme of online content creation, levels could be
modified in real-time by e.g. removing or adding enemies,
obstacles, shortcuts, items etc. based on the performance of
the player or group of players. The latter approach is already
taken by the collaborative FPS Left 4 Dead 2 (Valve 2009); the
approach is deemed effective and adding to replay value even
though the aspects of the levels that can be varied are rather
limited, and the player modeling is very simplistic (a single
scalar representing “intensity of play”). The more sophisticated
approach to player modeling we present in this paper needs
relatively large data sets of player behavior and preferences,
which would require instances of the game to “phone home”
to central game servers, but this is routinely done today in
many games for quality assurance purposes.

13

One of the limitations of the experimental protocol proposed
is post-experience. Users report affective states after playing a
pair of games which might generate memory-dependencies in
the reports. Effects such as order of play and game learnability
might also be apparent and interconnected to memory. The
experimental protocol, however, is designed to test for order of
play effects which, in part, reveal memory (report consistency
over different orders) and learnability effects, if any. Results
showcase that reported challenge and anxiety are affected by
the order of play which in turn reveals potential memory and/or
learnability effects for these two particular affective states.

Forced report (4-AFC) provides viable data for a machine
learner but it does not necessarily capture the dynamics of the
experience. On the other hand, free emotional report could
potentially provide more genuine response but it is harder to
analyze and requires a laboratory experimental setup, which is
not desired given the aims of this study. There exist solutions
for both testing affective models over different time windows
as introduced in [21] and capturing the association between
gameplay dynamics and emotional responses via e.g. recurrent
neural networks. Both include future directions of this research
prior to tailoring the game content for maximizing player
experience.

A more general limitation with our approach is that self-
evaluation of affects is inherently sensitive to self-deception.
There is, however, no clear way identifying such an effect. On
the other hand, no other information source would supply us
with quality subjective data on all those affective aspects we
are seeking to approximate. (Note that controlling the order
of games and questions, as we do, alleviates the order effects
inherent in naive questionnaires.) Other information sources,
including physiological measures and additional gameplay
metrics such as when a player stops playing the game, could
be used to complement but not supplant the self-reports.

We chose to model six different discrete and predefined
affective states, but it would certainly be interesting to model
more aspects of player experience. For example, we believe
that the concept of fairness deserves further study. Whether a
player judges a game to be fair or not can be a decisive factor
when deciding to continue playing or not.

Currently, work is ongoing to optimize the four controllable
features for producing desired emotions in particular players.
Our approach is to first let a player play a test level, and
record gameplay features. We then use the gameplay features
in combination with one of our trained predictors that depend
on both gameplay and controllable features. The controllable
features are then optimized using either genetic search (e.g.
genetic algorithms) or gradient search (e.g. steepest ascent
improved with line search), as proposed in [21], in order to
reach a desired output of the predictor (keeping both predictor
parameters and gameplay features fixed). If our predictors are
accurate enough, and our test subjects’ playing styles and
preference do not change too much between two play sessions,
this method will allow us to find level design parameters
which will produce desired player experiences (e.g. maximum
fun value) in particular players. This method will of course
need to be verified with studies on real players, using an
experimental paradigm similar to that which was used for the

initial data collection (see also the experimental protocol used
in [21]). Of particular interest will be whether we can use
the nonlinear nature of our predictors to elicit combinations
of experiences which are in themselves non-correlated or
negatively correlated, for example levels that are both fun and
frustrating or challenging but not frustrating.

IX. CONCLUSIONS

The work reported in this paper introduces data-driven
computational models that predict several dimensions of player
experience based on both level design features and gameplay
metrics. The work also constitutes the first player experience
study in the context of a platform game; follow-up experiments
will be the first where game levels are generated based on
quantitative player experience models. While our experiments
were successful in the sense that the predictors achieved high
accuracy on core aspects of player experience using 3-fold
cross-validation, there are potentially ways to further increase
those models’ performance. As noted above, gathering data
from more gameplay sessions could assist in the process of
improving these cognitive models of player experience. How-
ever, given the challenges of accurately capturing the user’s
affective state reported in the literature [26], [7] we deem the
models found so far good enough for use in optimizing level
design parameters for player experience.

ACKNOWLEDGMENTS

The authors would like to thank Aki Järvinen and Markus
Persson for insightful discussions, the anonymous reviewers
for useful comments and all subjects that participated in the
experiments. Additionally, we thank Ricardo Lopes for solving
the mystery concerning that players reported lower challenge
when ducking. The research was supported in part by the
Danish Research Agency, Ministry of Science, Technology
and Innovation; project name: AGameComIn; project number:
274-09-0083.

REFERENCES

[1] C. Bateman and R. Boon, 21st Century Game Design. Charles River
Media, 2005.

[2] K. Isbister and N. Schaffer, Game Usability: Advancing the Player
Experience. Morgan Kaufman, 2008.

[3] M. Csikszentmihalyi, Flow: the Psychology of Optimal Experience.
Harper Collins, 1990.

[4] R. Koster, A theory of fun for game design. Paraglyph press, 2005.
[5] J. Juul, Half-real. MIT Press, 2005.
[6] G. N. Yannakakis and J. Hallam, “Towards optimizing entertainment in

computer games,” Applied Artificial Intelligence, vol. 21, pp. 933–971,
2007.

[7] ——, “Entertainment modeling through physiology in physical play,”
International Journal of Human-Computer Studies, vol. 66, pp. 741–
755, 2008.

[8] J. Togelius, R. De Nardi, and S. M. Lucas, “Making racing fun through
player modeling and track evolution,” in Proceedings of the IEEE
Symposium on Computational Intelligence and Games, 2006.

[9] ——, “Towards automatic personalised content creation in racing
games,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2007.

[10] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proceedings of the Artificial Intelligence and Interactive
Digital Entertainment International Conference (AIIDE), 2006.

14

[11] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based
level generation for 2d platformers,” in Proceedings Foundations of
Digital Games, 2009.

[12] M. J. Nelson, C. Ashmore, and M. Mateas, “Authoring an interactive
narrative with declarative optimization-based drama management,” in
Proceedings of the Artificial Intelligence and Interactive Digital Enter-
tainment International Conference (AIIDE), 2006.

[13] M. O. Riedl and N. Sugandh, “Story planning with vignettes: Toward
overcoming the content production bottleneck,” in Proceedings of the
1st Joint International Conference on Interactive Digital Storytelling,
Erfurt, Germany, 2008, pp. 168–179.

[14] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Queensland University of Technology, Bris-
bane, Australia, 2008.

[15] J. Marks and V. Hom, “Automatic design of balanced board games,”
in Proceedings of the Artificial Intelligence and Interactive Digital
Entertainment International Conference (AIIDE), 2007, pp. 25–30.

[16] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2008.

[17] H. P. Martinez, A. Jhala, and G. N. Yannakakis, “Analyzing the Impact
of Camera Viewpoint on Player Psychophysiology,” in Proceedings
of the Int. Conf. on Affective Computing and Intelligent Interaction.
Amsterdam, The Netherlands: IEEE, September 2009, pp. 394–399.

[18] M. Schwartz, H. P. Martinez, G. N. Yannakakis, and A. Jhala, “Inves-
tigating the Interplay between Camera Viewpoints, Game Information,
and Challenge,” in Proceedings of Artificial Intelligence and Interactive
Digital Entertainment (AIIDE’09). Palo Alto, CA: AAAI Press, October
2009.

[19] A. S. Gertner, C. Conati, and K. VanLehn, “Procedural help in Andes:
Generating hints using a Bayesian network student model,” in Proceed-
ings of AAAI-98, 1998.

[20] B. Magerko, C. Heeter, B. Medler, and J. Fitzgerald, “Intelligent
Adaptation of Digital Game-Based Learning,” in Proceedings of the
2008 Conference on Future Play: Research, Play, Share, Toronto, 2008,
pp. 200–203.

[21] G. N. Yannakakis and J. Hallam, “Real-time Game Adaptation for
Optimizing Player Satisfaction,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 1, no. 2, pp. 121–133, June 2009.

[22] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Optimization of
platform game levels for player experience,” in Proceedings of Artificial
Intelligence and Interactive Digital Entertainment (AIIDE’09). Palo
Alto, CA: AAAI Press, October 2009.

[23] ——, “Modeling Player Experience in Super Mario Bros,” in Proceed-
ings of the IEEE Symposium on Computational Intelligence and Games.
Milan, Italy: IEEE, September 2009.

[24] T. W. Malone, “What makes computer games fun?” Byte, vol. 6, pp.
258–277, 1981.

[25] R. L. Mandryk and M. S. Atkins, “A Fuzzy Physiological Approach for
Continuously Modeling Emotion During Interaction with Play Environ-
ments,” International Journal of Human-Computer Studies, vol. 65, pp.
329–347, 2007.

[26] R. W. Picard, Affective Computing. Cambridge, MA: The MIT Press,
1997.

[27] G. N. Yannakakis and J. Hallam, “Game and Player Feature Selection
for Entertainment Capture,” in Proceedings of the IEEE Symposium on
Computational Intelligence and Games. Hawaii, USA: IEEE, April
2007, pp. 244–251.

[28] G. N. Yannakakis, M. Maragoudakis, and J. Hallam, “Preference
Learning for Cognitive Modeling: A Case Study on Entertainment
Preferences,” IEEE Systems, Man and Cybernetics; Part A: Systems and
Humans, vol. 39, no. 6, pp. 1165–1175, November 2009.

[29] J. Togelius, T. Schaul, J. Schmidhuber, and F. Gomez, “Countering
poisonous inputs with memetic neuroevolution,” in Parallel Problem
Solving From Nature 10, 2008.

[30] A. K. Jain and D. Zongker, “Feature-Selection: Evaluation, Application,
and Small Sample Performance,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 19, no. 2, pp. 153–158, 1997.

[31] M. Mejia-Lavalle and G. Arroyo-Figueroa, “Power System Database
Feature Selection Using a Relaxed Perceptron Paradigm,” in Proceedings
of 5th Mexican International Conference on Artificial Intelligence,
LNCS. Springer Berlin/Heidelberg, 2006, pp. 522–531.

[32] P. Sweetser, “An emergent approach to game design — development and
play,” Ph.D. dissertation, University of Queensland, Australia, 2006.

[33] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness
of data,” IEEE Intelligent Systems, 2009.

Christopher Pedersen completed his MSc in Media
Technology and Games at the IT University of
Copenhagen in 2009. He received a BA in Computer
Science and Business Economics from Copenhagen
Business School in 2007. His research interests
include cognitive modeling and player experience
modeling.

Julian Togelius (S’05–M’07) is Assistant Professor
at the IT University of Copenhagen (ITU). He re-
ceived a BA in Philosophy from Lund University in
2002, an MSc in Evolutionary and Adaptive Systems
from University of Sussex in 2003 and a PhD
in Computer Science from University of Essex in
2007. Before joining the ITU he was a postdoctoral
researcher at IDSIA in Lugano.

His research interests include applications of com-
putational intelligence in games, procedural con-
tent generation, automatic game design, evolutionary

computation and reinforcement learning. He is an Associate Editor of TCIAIG
and a vice chair of IEEE CIS Games Technical Committee.

Georgios N. Yannakakis (S’04–M’05) is Associate
Professor at the IT University of Copenhagen. He
received both the 5-year Diploma (1999) in Produc-
tion Engineering and Management and the M.Sc.
(2001) degree in Financial Engineering from the
Technical University of Crete and the Ph.D. degree
in Informatics from the University of Edinburgh
in 2005. Prior to joining the Center for Computer
Games Research, IT University of Copenhagen in
2007, he was a postdoctoral researcher at the Mærsk
Mc-Kinney Møller Institute, University of Southern

Denmark.
His research interests include user modeling, neuro-evolution, compu-

tational intelligence in computer games, cognitive modeling and affective
computing, emergent cooperation and artificial life. He has published around
40 journal and international conference papers in the aforementioned fields.
He is an Associate Editor of IEEE Transactions of Affective Computing and
the chair of the IEEE CIS Task Force on Player Satisfaction Modeling.

