
Modeling Player Experience in Super Mario Bros

Chris Pedersen, Julian Togelius and Georgios N. Yannakakis

Abstract— This paper investigates the relationship between
level design parameters of platform games, individual playing
characteristics and player experience. The investigated design
parameters relate to the placement and sizes of gaps in the level
and the existence of direction changes; components of player
experience include fun, frustration and challenge. A neural
network model that maps between level design parameters,
playing behavior characteristics and player reported emotions
is trained using evolutionary preference learning and data from
480 platform game sessions. Results show that challenge and
frustration can be predicted with a high accuracy (77.77% and
88.66% respectively) via a simple single-neuron model whereas
model accuracy for fun (69.18%) suggests the use of more
complex non-linear approximators for this emotion. The paper
concludes with a discussion on how the obtained models can
be utilized to automatically generate game levels which will
enhance player experience.

Keywords: Platform games, player satisfaction, content
creation, fun, preference learning, entertainment modeling,
neuroevolution

I. INTRODUCTION

Numerous theories exist regarding what makes computer
games fun, as well as which aspects contribute to other types
of player experience such as challenge, frustration and im-
mersion [1], [2], [3], [4], [5]. These theories have originated
in different research fields and in many cases independently
of each other (however, there is substantial agreement on
several counts, e.g. regarding the importance of challenge
and learnability for making a game fun). While useful high-
level guidance for game design, none of these theories is
quantitative — derived models of player experience are not
mathematical expressions — and they tend to apply to games
in general rather than specific aspects of specific games. This
means that if we want to develop algorithms that design or
adapt games (or aspects of games) automatically, we have to
make several auxiliary assumptions in order to achieve the
necessary specificity and preciseness of our models.

It seems clear that we need empirical research on particular
games to acquire such models. Recently, research in player
satisfaction modeling has focused on empirically measuring
the effects on player experience of changing various aspects
of computer games, such as non-player character (NPC)
playing styles in the Pac-Man game [6]. Similarly, efficient
quantitative models of player satisfaction have been con-
structed using in-game data, questionnaires and physiological
measurements in augmented-reality games [7].

At the same time, a parallel research direction aims to
find methods for automatically generating entertaining game

The authors are with the Center for Computer Games Research, IT
University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen
S, Denmark. Emails: gammabyte@gmail.com, {juto, yannakakis}@itu.dk

content. Automatic content generation is likely to be of great
importance to computer game development in the future;
both offline, for making the game development process
more efficient (design of content such as environments and
animations now consume a major part of the development
budget for most commercial games) and online, for enabling
new types of games based on player-adapted content. These
efforts see some aspect of a game as variable, define a
fitness (“goodness”) function based on a theory of player
satisfaction, and use a learning or optimization algorithm to
change the variable aspect of the game so as to become more
“fun” according to some definition. The literature on this is
so far scarce, as it is a new research direction. The aspects
of games that have been optimized include:

• Environments, such as tracks for racing games [8] and
levels for platform games [9].

• Narrative [10]
• Rules for board games [11], [12] and Pac-Man-like

games [13].

What the above studies have in common is that the fitness
or cost functions used for optimization have been somewhat
arbitrary, in that they have been based on intuition in com-
bination with some qualitative theory of player experience.
Optimization of game aspects based on empirically derived
models have so far been limited to the impact of NPC be-
havior [6] and the adjustment of NPC behavioral parameters
for maximizing satisfaction in games [14]. To the best of
our knowledge, game content such as rules or environments
has not been generated based on empirically derived models.
We consider better modeling of player experience to be of
utmost importance for making automatic content generation
techniques more sophisticated and usable.

The work we describe in this paper is concerned with the
construction of computational models of player experience,
derived from gameplay interaction, which can be used as
fitness functions for game content generation. We use a mod-
ified version of a classic platform game for our experiments
and collect player data through the Internet.

In the following, we describe the game used for our
experiments; which player interaction data was collected and
how; the preference learning method we used to construct
player experience models; how feature selection was used
to reduce the number of features used in the model; results
of an initial statistical analysis; and the results of training
nonlinear perceptrons to approximate the functions mapping
between selected gameplay features and aspects of player
experience. Finally, we discuss how the induced models will
be used for automatically generating game content. This
paper significantly extends [15] in which only the core ideas

of the methodology proposed are outlined.

II. TESTBED PLATFORM GAME

The test-bed platform game used for our studies is a
modified version of Markus Persson’s Infinite Mario Bros
(see Fig. 1) which is a public domain clone of Nintendo’s
classic platform game Super Mario Bros. The original Infinite
Mario Bros is playable on the web, where Java source code
is also available1.

The gameplay in Super Mario Bros consists of moving the
player-controlled character, Mario, through two-dimensional
levels, which are viewed sideways. Mario can walk and run
to the right and left, jump, and (depending on which state
he is in) shoot fireballs. Gravity acts on Mario, making it
necessary to jump over holes (or gaps) to get past them.
Mario can be in one of three states: Small (at the beginning
of a game), Big (can crush some objects by jumping into
them from below), and Fire (can shoot fireballs).

The main goal of each level is to get to the end of the
level, which means traversing it from left to right. Auxiliary
goals include collecting as many as possible of the coins
that are scattered around the level, clearing the level as fast
as possible, and collecting the highest score, which in part
depends on the number of collected coins and killed enemies.

The presence of gaps and moving enemies are the main
challenges of Mario. If Mario falls down a gap, he loses a
life. If he touches an enemy, he gets hurt; this means losing
a life if he is currently in the Small state, whereas if he
is in the Big and Fire state he shifts to Small and Large
state respectively. However, if he jumps so that he lands
on the enemy from above, the outcome is dependent on the
enemy: Most enemies (e.g. goombas, fireballs) die from this
treatment; others (e.g. piranha plants) are not vulnerable to
this and proceed to hurt Mario; finally, turtles withdraw into
their shells if jumped on, and these shells can then be picked
up by Mario and thrown at other enemies to kill them.

Certain items are scattered around the levels, either out in
the open, or hidden inside blocks of brick and only appearing
when Mario jumps at these blocks from below so that he
smashes his head into them. Available items include coins
which can be collected for score and for extra lives (every
100 coins), mushrooms which make Mario grow Big if he
is currently Small, and flowers which make Mario turn into
the Fire state if he is already Big.

No textual description can fully convey the gameplay of a
particular game. Only some of the main rules and elements of
Super Mario Bros are explained above; the original game is
one of the world’s best selling games, and still very playable
more than two decades after its release in the mid-eighties.
Its game design has been enormously influential and inspired
countless other games, making it a good experiment platform
for player experience modeling.

While implementing most features of Super Mario Bros,
the standout feature of Infinite Mario Bros is the automatic
generation of levels. Every time a new game is started,

1http://www.mojang.com/notch/mario/

Fig. 1. Test-bed game screenshot, showing Small Mario jumping over a
piece of flat terrain surrounded by two gaps.

levels are randomly generated by traversing a fixed width
and adding features (such as blocks, gaps and opponents)
according to certain heuristics. In our modified version of
Infinite Mario Bros most of the randomized placement of
level features is fixed since we concentrate on a few selected
game level parameters that affect game experience.

III. DATA COLLECTION

Before any modeling could take place we needed to collect
data to train the model on. We collected three types of data
from hundreds of players over the Internet:

1) Controllable features of the game, i.e. the parameters
used for level generation, and affecting the type and
difficulty of the level. These were varied systematically
to make sure all variants of the game were compared.

2) Gameplay characteristics, i.e. how the user plays the
game. We measured statistical features such as how
often and when the player jumped, ran, died etc. These
features cannot be directly controlled by the game as
they depend solely on the player’s skill and playing
style in a particular game level.

3) The player’s experience of playing the game, measured
through a 4-alternative forced choice questionnaire
administered after playing two pairs of games with
different controllable features and asking the players
to rank the games in order of emotional preference.

Below we describe in detail which features were collected
for each type of data.

A. Controllable features

We modified the existing level generator to create levels
according to four controllable parameters presented below.
Three of these parameters are dedicated to the number, width
and placement of gaps. The fourth parameter turns a new
function, the direction switch, on or off.
• The number of gaps in the level, G.
• The average width of gaps, E{Gw}.
• The spatial diversity of gaps which is measured by the

entropy of the number of gaps appearing in a number of

G (equally-spaced) segments of the level. The entropy
of gap-placements Hg in the G segments is calculated
and normalized into [0, 1] via (1):

Hg =

[
− 1
logG

G∑
i=1

gi

G
log
(gi

G

)]
(1)

where gi is the number of gap-placements into level
segment i. If the gaps are placed in all G level segments
uniformly then gi = 1 for all G parts and Hg will be 1;
if all gaps are placed in one level segment Hg is zero.
This controllable feature provides a notion of unpre-
dictability of gaps and, therefore, jumps in the level.
Unpredictability has been identified as an important
factor of playing experience [16].

• Number of direction switches, S. No direction switch
means that the player needs to move from left to right
in order to complete the level, as in the original Super
Mario Bros. If one or more direction switch is present,
the level direction will be mirrored at certain points,
forcing the player to turn around and go the other way,
until reaching the end of the level or the next switch.

The selection of these particular controllable features was
done after consulting game design experts, and with the
intent to find features which where common to most, if not
all, platform games.

Two states (low and high) for each of the four controllable
parameters above are investigated. The combinations of these
states result in 24 = 16 different variants of the game which
are used in the user study designed. In the Super Mario Bros
game investigated here the number of coins, opponents, coin
blocks, powerup blocks and empty blocks are fixed to 15, 3,
4, 2, and 8 respectively.

B. Gameplay features

Several statistical features are extracted from playing
data which are logged during gameplay and include game
completion time, time spent on various tasks (e.g. jumping,
running), information on collected items (e.g. type and
amount), killed enemies (e.g. type, amount, way of killing)
and information on how the player died. The choice of those
specific statistical features is made in order to cover a decent
amount of Super Mario Bros playing behavior dynamics. In
addition to the four controllable game features that are used
to generate Super Mario Bros levels presented earlier, the
following statistical features are extracted from the gameplay
data collected and are classified in five categories: jump,
time, item, death, kill and misc.

Jump: difference between the total number of jumps, J ,
minus the number of gaps, G; number of jumps
over gaps or without any purpose (e.g. to collect an
item, to kill an opponent), J ′; difference between
J ′ and the number of gaps, G; and a jump difficulty
heuristic, Jd, which is proportional to the number
of Super Mario deaths due to gaps, number of gaps
and average gap width.

Time: completion time, tc; playing duration of last life
over total time spent on the level, tll; percentage of
time that the player: is standing still, ts, running, tr,
is on large Mario mode, tl, is on fire Mario mode,
tf , is on powerup mode, tp, is moving left, tL, is
moving right, tR, and is jumping, tj .

Item: number of collected items (coins, destroyed blocks
and powerups) over total items existent in the level,
nI ; number of times the player kicked an opponent
shell, ns; number of coins collected over the total
number of coins existent in the level, nc; number
of empty blocks destroyed over the total number of
empty blocks existent in the level, neb; number of
coin blocks pressed over the total number of coin
blocks existent in the level, ncb; number of powerup
blocks pressed over the total number of powerup
blocks existent in the level, np; and the sum of all
blocks pressed or destroyed over the total number
of blocks existent in the level nb = neb +ncb +np.

Death: number of times the player was killed: by an op-
ponent, do; by jumping into a gap, dg; by jumping
into a gap over the total number of deaths dj .

Kill: number of opponents died from stomping over the
total number of kills, ks; number of opponents
died from fire-shots over the total number of kills,
kf ; total number of kills over total number of
opponents, kT ; number of opponent kills minus
number of deaths caused by opponents, kP ; and
number of cannonballs killed, kc.

Misc: number of times the player shifted the mode (Small,
Big, Fire), nm; number of times the run button
was pressed, nr; number of ducks, nd; number of
cannonballs spawned, ncs; and whether the level
was completed or not C (boolean).

C. Reported player experience and experimental protocol
We designed a game survey study to solicit pairwise

emotional preferences of subjects playing different variants
of the test-bed game by following the experimental protocol
proposed in [7]. Each subject plays a predefined set of four
games in pairs: a game pair of game A and game B played in
both orders. The games played differ in the levels of one or
more of the four controllable features presented previously.
For each completed pair of games A and B, subjects report
their emotional preference using a 4-alternative forced choice
(4-AFC) protocol:
• game A [B] was/felt more E than game B [A] game

(cf. 2-alternative forced choice);
• both games were/felt equally E or
• neither of the two games was/felt E.
Where E is the emotional state under investigation and

contains fun, challenging, boring, frustrating, predictable and
anxious. The selection of these six states is based on their
relevance to computer game playing and their popularity
when it comes to game-related user studies [17]. In this
initial investigation of player experience we focus only on
three emotions: fun, challenge and frustration.

Data is collected over the Internet. Users are recruited
via posts on blogs and mailing lists and directed to a web
page containing a Java applet implementing the game and
questionnaire2. As soon as the four games are played and
the questionnaire is completed, all the features (controllable,
gameplay and player experience) are saved in a database at
the server hosting the website and applet. Data collection is
still in progress and at the moment of writing, 181 subjects
have participated in the survey experiment. The minimum
number of experiment participants required is determined
by C16

2 = 120, this being the number of all combinations
of 2 out of 16 game variants. The experimental protocol is
designed in such a way that at least 2 preference instances
should be obtained for each pair of the 16 game variants
played in both orders (1 preference instance per playing
order). The analysis presented in this paper is based on the
240 game pairs (480 game sessions) played by the first 120
subject participants.

IV. PREFERENCE LEARNING FOR MODELING PLAYER
EXPERIENCE

Based on the data collected in the process described above,
we try to approximate the function from gameplay features
(e.g. number of coins gathered) and controllable game level
features (e.g. number of gaps) to reported emotional prefer-
ences using neuroevolutionary preference learning.

The data is assumed to be a very noisy representation of
the underlying function, given the high level of subjectivity
of human preferences and the expected variation in playing
styles. Together with the limited amount of training data,
this makes overfitting a potential hazard and mandates that
we use a robust function approximator. We believe that
a non-linear function such as an artificial neural network
(ANN) is a good choice for approximating the mapping
between reported emotions and input data. Thus, a simple
single-neuron (perceptron) is utilized for learning the relation
between features (ANN inputs) — selected from feature
selection schemes presented in Section V — and the value
of the investigated emotional preference (ANN output) of
a game. The main motivation for using a single neuron
instead of a multi-layered perceptron (MLP) in this study
is that we want to be able to analyze the trained function
approximator. While an MLP can potentially approximate
the function investigated with a higher accuracy, it is much
easier for a human to understand the obtained function when
represented as a single-neuron ANN.

The single neuron uses the sigmoid (logistic) activation
function; connection weights take values from -5 to 5 to
match the normalized input values that lie in the [0, 1]
interval. Since there are no prescribed target outputs for the
learning problem (i.e. no differentiable output error func-
tion), ANN training algorithms such as back-propagation are
inapplicable. Learning is achieved through artificial evolution
by following the preference learning approach presented in

2The game and questionnaire are available at
www.bluenight.dk/mario.php

[18]. A generational genetic algorithm (GA) is implemented,
using a fitness function that measures the difference between
the subject’s reported emotional preferences and the relative
magnitude of the corresponding model (ANN) output.

V. FEATURE SELECTION

We would like our model to be dependent on as few
features as possible, both to make it easier to analyze, and
to make it more useful for incorporation into future games
for purposes of e.g. content creation. Therefore, feature
selection is utilized to find the feature subset that yields that
most accurate user model and save computational effort of
exhaustive search on all possible feature combinations. The
quality of the predictive model constructed by the preference
learning outlined above depends critically on the set of input
data features chosen. Using the extracted features described
earlier the n best individual feature selection (nBest), the Se-
quential Forward Selection (SFS) and the Perceptron Feature
Selection (PFS) schemes are applied and compared.

A. nBest

nBest feature selection ranks the features used individually
in order of model performance; the chosen feature set of size
n is then the first n features in this ranking. The nBest method
is used for comparative purposes, being the most popular
technique for feature selection.

B. SFS

SFS is a bottom-up search procedure where one feature is
added at a time to the current feature set. The feature to be
added is selected from the subset of the remaining features
such that the new feature set generates the maximum value
of the performance function over all candidate features for
addition. The SFS method has been successfully applied to
a wide variety of feature selection problems, yielding high
performance values with minimal feature subsets [7], [19]

C. PFS

The third method we investigate is Rosenblatt’s perceptron
as a methodology for selecting appropriate feature subsets.
Our algorithm which is similar to [20] is adjusted to match
preference learning problems. Thus, the perceptron used
employs the sigmoid activation function in a single output
neuron. The ANN’s initial input vector has the size of
the number of features examined. The perceptron feature
selection (PFS) procedure is as follows:

Step 1Use artificial evolution to train the perceptron on
the pairwise preferences (see Section IV). Perfor-
mance of the perceptron is evaluated through 3-fold
cross-validation. The initial input vector consists of
all features extracted F (40 in this paper).

Step 2Eliminate all features F ′ whose corresponding ab-
solute connection weight values are smaller than
E{|w|} − σ{|w|}, where w is the connection
weight vector.

Step 3If F ′ = ∅ continue to Step 4, otherwise use the
remaining features and go to Step 1.

Step 4Evaluate all feature subsets obtained using the
neuro-evolution preference learning approach pre-
sented in Section IV.

Note that all three methods are incomplete. Neither is
guaranteed to find the optimal feature set since neither
searches all possible combinations (they are all variants of
hill-climbing). To evaluate the performance of each input
feature subset, the available data is randomly divided into
thirds and training and validation data sets consisting of
2/3 and 1/3 of the data respectively are assembled. The
performance of each user model is measured through the
average classification accuracy of the model in three inde-
pendent runs using the 3-fold cross-validation technique on
the three possible independent training and validation data
sets. Since we are interested in the minimal feature subset
that yields the highest performance we terminate the SFS
selection procedure when an added feature yields equal or
lower validation performance to the performance obtained
without it. On the same basis, we store all feature subsets
selected by PFS and explore the highest performing subset
starting with the smallest feature subset generated.

VI. STATISTICAL ANALYSIS

This section describes testing for correlations between
playing order, controlled features and gameplay features and
the reported emotions of fun, challenge and frustration.

To check whether the order of playing Super Mario game
variants affects the user’s judgement of emotional prefer-
ences, we follow the order testing procedure described in
[6] which is based on the number of times that the subject
prefers the first or the second game in both pairs. The
statistical analysis shows that order of play does not affect
the emotional preferences of fun and frustration; however a
statistically significant effect is observed in challenge pref-
erences (p-value = 0.006). The effect reveals a preference
for the second game played which implies the existence
of random noise in challenge preference expression. On
the other hand, the insignificant order effects of fun and
frustration, in part, demonstrate that effects such as a user’s
possible preference for the very first game played and the
interplay between reported emotions and familiarity with the
game are statistically insignificant.

More importantly, we performed an analysis for explor-
ing statistically significant correlations between subject’s
expressed preferences and extracted features. Correlation
coefficients are obtained through c(z) =

∑Ns

i=1{zi/Ns},
where Ns is the total number of game pairs where subjects
expressed a clear preference for one of the two games (e.g.
A � B or A ≺ B) and zi = 1, if the subject preferred
the game with the larger value of the examined feature and
zi = −1, if the subject chooses the other game in the game
pair i. Note that, Ns is 161, 189 and 151 respectively, for
reported fun, challenge and frustration

The variation of the Ns numbers above indicates, in part,
the difficulty in expressing a clear emotional preference
on different game variants. The percentage of A � B

and A ≺ B selection occurrences over all 240 preference
instances for different emotional states varies from 78.7%
(challenge) to 62.9% (frustration). These percentages provide
some first evidence that the selected game level and rule
parameters have an dissimilar impact on the emotional states
investigated. For instance, challenge appears to be very
much affected by varying the selected parameters whereas
frustration, on the contrary, does not appear as an emotion
which is directly affected by variations in the game.

TABLE I
TOP TEN STATISTICALLY SIGNIFICANT (P-VALUE < 1%) CORRELATION

COEFFICIENTS BETWEEN REPORTED EMOTIONS AND EXTRACTED

FEATURES.

Fun Challenge Frustration
ns 0.345 C −0.600 C −0.826
ncb 0.311 np −0.480 np −0.815
kT 0.256 dj 0.469 ncb −0.688
nr 0.253 dg 0.447 dg 0.578
tL 0.237 Jd 0.439 dj 0.564
kP 0.222 E{Gw} 0.409 nI −0.544
tr 0.192 nd −0.368 ts 0.520

tll −0.312 kf −0.515
ncb −0.292 tll −0.513
G −0.287 nc −0.511

A. Fun

Statistically significant correlations are observed between
reported fun and seven features: number of times the player
kicked a turtle shell, proportion of coin blocks that were
“pressed” (jumped at from below), proportion of opponents
that were killed, number of times the run button was pressed,
proportion of time spent moving left, number of enemies
killed minus times died, and proportion of time spent run-
ning. All of these were positive correlations.

Such correlations draw a picture of most players enjoying
a fast paced game that includes near-constant progress, plenty
of running, many enemies killed and many coins collected
from bouncing off the coin blocks. One might argue that
this picture fits with the concept of Flow, in that the player
makes unhindered progress [3]. However, the Flow concept
also includes a certain level of challenge, and no features
that signify challenge are associated with fun in this case.
It might be that players enjoy when the game is easy — at
least when they only play a single level of the game.

The feature that correlates the most with fun preferences is
kicking turtle shells. Kicking a turtle shell is a simple action
which often results in the unfolding of a relatively complex
sequence of events, as the shell might bounce off walls, kill
enemies, fall into gaps etc. The fun inherent in setting of
complex chains of events with simple actions is something
many players can relate to and which features prominently
in many games, but which is to our knowledge not part of
any of the “established” theories of what makes games fun.

B. Challenge

Eighteen features are significantly correlated with chal-
lenge. The ten most highly correlated are (+/− in paren-
thesis signifies positive or negative correlation): whether the
level was completed (−), proportion of power-up blocks
pressed (−), proportion of Mario deaths that were due to
falling into a gap (+), number of times Mario died from
falling into a gap (+), jump difficulty (+), average width of
gaps (+), number of times Mario ducked (−), proportion of
time spent in the last life (−), proportion of coin blocks that
were pressed (−), and the number of gaps (−). In addition,
a weaker but still significant positive correlation was found
between gap entropy, Hg , and challenge.

A first observation is that it is obviously much easier to
predict challenge than to predict fun — many more features
are significantly correlated, and the correlations are stronger.
It also seems that challenge is somehow orthogonal to fun, as
almost none of the features that are correlated with challenge
are correlated with fun. The exception is the proportion
of coin blocks pressed, but while this feature is positively
correlated with fun it is negatively correlated with challenge.
(This is somewhat expected: if the level is so hard that the
player has to struggle to survive it, she does not have time
to make detours in order to collect more coins.)

Most of the correlations are easy to explain. That a level
is perceived as less challenging if you complete it should not
come as a surprise to anyone. Likewise, we can understand
that players think a level is hard when they repeatedly
die from falling into gaps. Three particularly interesting
correlations are those between the controllable features and
challenge: increase in gap width, E{Gw}, and gap entropy,
Hg , imply increased challenge whereas increased number
of gaps, G, implies a linear decrease of challenge. These
effects suggest that challenge can be controlled to a degree
by changing the number, width and distribution of gaps.

The correlation with number of ducks would have been
easy to explain — if it was positive. The main reason for
ducking in Super Mario Bros (at least in the tested levels) is
to avoid cannonballs. To the authors, cannons are perceived
as some of the most difficult elements on a level. However,
players reported lower challenge on levels where they ducked
many times. We have yet to find an explanation for this.

C. Frustration

Twenty-eight features are significantly correlated with
frustration, and some of the correlations are extremely strong.
Of the top ten correlated features, most are also in the top
ten list for features correlated with challenge, and correlated
in the same way. The exceptions are proportion of collected
items (−), time spent standing still (+), proportion of killed
opponents that were killed with fireballs (−), and proportion
of coins collected (−).

From these new features, it seems that a frustrated player is
most likely one that spends time standing still and thinking
about how to overcome the next obstacle; is far too busy
overcoming obstacles to collect coins and power-ups; and

as a result of not collecting power-ups is rarely in the Fire
Mario state (necessary to shoot fireballs). But frustration can
also be very well predicted from not winning the level and
from falling into gaps often, just like challenge.

D. Controllable features and intra-correlations

When only looking at linear correlations, it would appear
that fun is not connected to any of the four controllable
features. Fun is also less strongly correlated with gameplay
features than is the case for challenge and frustration. The
latter two emotions are easier to model with linear models,
and are also strongly correlated with controllable features,
namely gap entropy, gap width and number of gaps.

The three emotions are also all significantly (p-value <
0.001) correlated to each other. The correlation coefficient
c(z) between challenge and fun and between challenge and
frustration is 0.346 and 0.462, respectively, while the corre-
sponding correlation between fun and frustration is −0.284.
The positive effect of challenge on fun and frustration,
combined with the negative effect of fun on frustration
indicate the nonlinearity (and possibly complexity) of those
emotions’ interrelationships.

VII. NONLINEAR PREFERENCE MODELLING

The correlations calculated above provide linear relation-
ships between individual features and reported emotions.
However, these relationships are most likely more complex
than can be captured by linear models. The aim of the analy-
sis presented below is to construct non-linear computational
models for reported emotions and analyze the relationship
between the selected features and expressed preferences.

For this purpose we evolve weights for nonlinear percep-
trons as described in Section IV. The weights of the highest
performing networks are presented in Table II. All evolved
networks performed much better than networks with random
weights, which reached chance level prediction accuracy.

TABLE II
LEARNING FROM PREFERENCES: FEATURES AND CORRESPONDING

CONNECTION WEIGHTS FOR HIGHEST PERFORMING ANNS

Fun Challenge Frustration
tL 4.905 ts −1.703 ts 3.267
ks 0.942 Jd 3.805 tll −1.851
L −3.873 neb −1.502 Jd −0.995

kc 1.073 dg 0.233
ks −0.189

A. Fun

In the comparison between the three different selection
mechanisms applied it is evident that SFS has advantages
over nBest and PFS for fun preferences (see Fig. 2(a)). nBest
achieves a satisfactory performance (67.92%) but requires
10 features as inputs to the ANN. PFS generates the lowest
classification accuracies; its best network has an accuracy of
63.52% with a selected subset of 11 input features.

The best obtained perceptron model of fun preferences
is designed by SFS. This model achieves a performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
40

45

50

55

60

65

70

75

Number of features

Pe
rfo

rm
an

ce
 (%

)

PFS
nBest
SFS

(a) Fun

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
50

55

60

65

70

75

80

Number of features

Pe
rfo

rm
an

ce
 (%

)

PFS
nBest
SFS

(b) Challenge

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
60

65

70

75

80

85

Number of features

Pe
rfo

rm
an

ce
 (%

)

PFS
nBest
SFS

(c) Frustration

Fig. 2. Performance comparison of feature selection mechanisms on
emotional preferences.

of 69.18% which is with a selected feature subset of size
three. The selected perceptron input vector consists of the
time spent moving left tL, the number of opponents died
from stomping over the total number of kills, ks, and
the controllable switching feature which is defined as the
percentage of level played in the left direction L3.

Fun is the least correlated of the three modeled emotions,
and the hardest to model with a nonlinear perceptron as
well. Still, it’s remarkable that this complex emotion can
be predicted to a moderate degree simply by observing that
Mario keeps running left and kills enemies by stomping.

B. Challenge

The best-performing ANN for challenge prediction has an
accuracy of 77.77%. It is more complex than the best fun
predictor, using five features: time spent standing still (−),
jump difficulty (+), proportion of coin blocks pressed (−),
number of cannonballs killed (−) and proportion of kills by
stomping (−). While the jump difficulty heuristic has the
largest corresponding weight — a testament to the central
role of gap placement and size for challenge — it is also the
only feature related to gaps used by this model, pointing to
the adequateness of this particular heuristic.

C. Frustration

Our best evolved ANN for predicting frustration has an
accuracy of 88.66%. We can predict with near-certainty
whether the player is frustrated by the current game by just
calculating the time spent standing still (+), the proportion
of time spent on last life (−), the jump difficulty (−), and
the proportion of deaths due to falling in gaps (+).

Somewhat surprisingly, time spent standing still counts
against challenge, whereas it is a strong positive predictor
of frustration. This observation could be valuable if trying to
design a feedback system that keeps the game challenging
but not frustrating. Another feature that has different effect on
challenge and frustration is jump difficulty, where frustration
is connected with lower jump difficulty. Maybe the player
gets frustrated by falling into gaps that she knows are not
that hard.

That the player feels frustrated when dying after a short
time during his last life is understandable — many players
feel that their last attempt should be their best. Additionally,
a high frustration level can cause the player to care less about
the game and play worse in her final life.

VIII. DISCUSSION

While we have found relatively good predictors for all
three emotions, two problems remain: the predictions (at least
for fun and challenge) are still not as good as we would
like them to be, and we cannot reliably predict fun from
controllable features. As controllable features (such as level

3The L feature is there to correct for the fact that when the level direction
switches, Mario moves right rather than left to move forward, and so tL
is diminished. This points to an oversight on our part when designing the
gameplay features: we should have measured the time spent moving towards
the end of the level rather than moving left.

design parameters) are those that we can vary, and therefore
those that can be optimized by evolution or other global
optimizers, we need to be able to predict emotions at least
partly from controllable features.

This points to the need for better models and/or features.
First of all, we will try to induce multi-layer perceptron
models of emotional preferences. MLPs have the advantage
of universal approximation capacity; in particular, combina-
torial relationships (such as XOR) can be represented. We
might very well have a situation were one controllable feature
(such as gap width) can be both negatively and positively
connected with an emotion (such as frustration) depending
on the player’s playing style, as measured through gameplay
features (such as number of jumps). Such relationships can
be captured by MLPs but not by nonlinear perceptrons.

Data collection is continuing at the time of writing, and
probably at the time of reading (the reader is welcome to
contribute by visiting the project’s web site), the new data
will be used to improve the accuracy of our predictions.

Depending on the success of finding predictors partly
dependent on controllable features, we might need to design
new controllable features or revise the existing ones. New
features might include the number and type of enemies, the
existence of dead ends in the level (forcing backtracking) etc.

After good models have been learned, evolutionary algo-
rithms will be used to optimize the level design parameters
(relating to gaps and switches) for different objectives. We
hope to, this way, be able to generate levels that tailor the
playing experience according to the needs of the game design
(e.g. a challenging level combined with a non-frustrating
experience). The success of our optimization attempts will
be validated with further user studies.

Another question concerns the generality of the results
gathered here — do they apply to just the players and
the particular game tested here, or do they have wider
applicability? We venture that, as Super Mario Bros more
or less defined the platform game genre, the results apply
to some extent to all games of the same genre. Further, the
population of experimental subjects is believed to be very
diverse, but this needs to be verified. A possible critique is
that the emotions reported are those that have been elicited
after only a few minutes of play. It is possible that challenge
or variety (gap entropy) would factor in more if play sessions
were longer, so subjects would have had a chance of getting
bored with the game.

IX. CONCLUSIONS

We designed a user study focused on a version of the Super
Mario Bros platform game, in which a population of subjects
played in a number of different versions (mainly differing in
the game environments encountered). Controllable features
and emergent gameplay features were correlated with re-
ported emotions during gameplay. We found a large number
of statistically significant correlations, and were able to train
good predictors of player emotions using preference learning
and neuroevolution. These results will be improved upon
and form the basis for attempts to automatically generate

environments for this game using artificial evolution with
the induced player experience models as fitness functions.

ACKNOWLEDGMENTS

The authors would like to thank Aki Järvinen and Markus
Persson for insightful discussions, and all subjects that par-
ticipated in the experiments.

REFERENCES

[1] C. Bateman and R. Boon, 21st Century Game Design. Charles River
Media, 2005.

[2] K. Isbister and N. Schaffer, Game Usability: Advancing the Player
Experience. Morgan Kaufman, 2008.

[3] M. Csikszentmihalyi, Flow: the Psychology of Optimal Experience.
Harper Collins, 1990.

[4] R. Koster, A theory of fun for game design. Paraglyph press, 2005.
[5] J. Juul, Half-real. MIT Press, 2005.
[6] G. N. Yannakakis and J. Hallam, “Towards optimizing entertainment

in computer games,” Applied Artificial Intelligence, vol. 21, pp. 933–
971, 2007.

[7] ——, “Entertainment modeling through physiology in physical play,”
International Journal of Human-Computer Studies, vol. 66, pp. 741–
755, 2008.

[8] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards automatic
personalised content creation in racing games,” in Proceedings of the
IEEE Symposium on Computational Intelligence and Games, 2007.

[9] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proceedings of the Artificial Intelligence and Interactive
Digital Entertainment International Conference (AIIDE), 2006.

[10] M. J. Nelson, C. Ashmore, and M. Mateas, “Authoring an interactive
narrative with declarative optimization-based drama management,”
in Proceedings of the Artificial Intelligence and Interactive Digital
Entertainment International Conference (AIIDE), 2006.

[11] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Queensland University of Technology,
Brisbane, Australia, 2008.

[12] J. Marks and V. Hom, “Automatic design of balanced board games,”
in Proceedings of the Artificial Intelligence and Interactive Digital
Entertainment International Conference (AIIDE), 2007, pp. 25–30.

[13] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2008.

[14] G. N. Yannakakis and J. Hallam, “Real-time Game Adaptation for
Optimizing Player Satisfaction,” IEEE Transactions on Computational
Intelligence and AI in Games, 2009, (to appear).

[15] C. Pedersen, J. Togelius, and G. Yannakakis, “Optimization of platform
game levels for player experience,” in Proccedings of the Artificial
Intelligence and Interactive Digital Entertainment International Con-
ference (AIIDE), 2009.

[16] T. W. Malone, “What makes computer games fun?” Byte, vol. 6, pp.
258–277, 1981.

[17] R. L. Mandryk and M. S. Atkins, “A Fuzzy Physiological Approach
for Continuously Modeling Emotion During Interaction with Play
Environments,” International Journal of Human-Computer Studies,
vol. 65, pp. 329–347, 2007.

[18] G. N. Yannakakis and J. Hallam, “Game and Player Feature Selection
for Entertainment Capture,” in Proceedings of the IEEE Symposium on
Computational Intelligence and Games. Hawaii, USA: IEEE, April
2007, pp. 244–251.

[19] G. N. Yannakakis, M. Maragoudakis, and J. Hallam, “Preference
Learning for Cognitive Modeling: A Case Study on Entertainment
Preferences,” IEEE Systems, Man and Cybernetics; Part A: Systems
and Humans, 2009, (to appear).

[20] M. Mejia-Lavalle and G. Arroyo-Figueroa, “Power System Database
Feature Selection Using a Relaxed Perceptron Paradigm,” in Proceed-
ings of 5th Mexican International Conference on Artificial Intelli-
gence, LNCS. Springer Berlin/Heidelberg, 2006, pp. 522–531.

