
Towards generating arcade game rules with VGDL
Thorbjørn S. Nielsen∗, Gabriella A. B. Barros∗, Julian Togelius†, and Mark J. Nelson‡

∗Center for Computer Games Research, IT University of Copenhagen, Denmark
†Department of Computer Science and Engineering, New York University, NY, USA

‡Anadrome Research, Houston, TX, USA
{thse@itu.dk, gbar@itu.dk, julian@togelius.com, mjn@anadrome.org}

Abstract—We describe an attempt to generate complete arcade
games using the Video Game Description Language (VGDL)
and the General Video Game Playing environment (GVG-AI).
Games are generated by an evolutionary algorithm working on
genotypes represented as VGDL descriptions. In order to direct
evolution towards good games, we need an evaluation function
that accurately estimates game quality. The evaluation function
used here is based on the differential performance of several
game-playing algorithms, or Relative Algorithm Performance
Profiles (RAPP): it is assumed that good games allow good
players to play better than bad players. For the purpose of such
evaluations, we introduce two new game tree search algorithms,
DeepSearch and Explorer; these perform very well on benchmark
games and constitute a substantial subsidiary contribution of the
paper. In the end, the attempt to generate arcade games is only
partially successful, as some of the games have interesting design
features but are barely playable as generated. An analysis of these
shortcomings yields several suggestions to guide future attempts
at arcade game generation.

I. INTRODUCTION

Could a computer independently design a complete game?
This question has been posed in the past by us as well as
other researchers [1], [2], [3], [4], [5], [6], and a number
of attempts have been made to generate complete games –
usually with limited success. We will discuss some approaches
to game generation in the next section, but for now let us
instead ask: why would a computer not be able to design
a complete game? After all, computers have been able to
independently design tables [7], antennas [8], theorems [9],
pictures of many different kinds [10], [11], music [12] and
many other things. Evolutionary algorithms are often used for
computational design; in fact, Evolution Strategies were origi-
nally developed in the context of automated design of aircraft
wings [13]. Designing parts of games – levels, textures and
items – is a burgeoning enterprise under the name procedural
content generation in games [14]. It therefore stands to reason
that complete games, including their rule sets, should be as
computer-designable as other types of artifacts.

However, we have a problem with quality evaluation. An
aircraft wing can be tested in a wind tunnel or with aerody-
namic simulation, and the correctness of a theorem can be
verified by following the steps in the proof; in either case,
the testing activity are mostly mechanizable. But what about
games? It would seem that the quality of a game is much
more ephemeral than that of an antenna or wing, more like the
quality of a picture or piece of music. But whereas pictures
or music can be experienced more or less passively, games

require active appreciation: you must interact with a game,
specifically by playing it, in order to understand it.

For a computer program to design games, it therefore needs
to also be able to play its own games. To use evolutionary
computation or any similar search/optimization algorithm as a
generation method, many thousands of bad games will need to
be evaluated before we find a good game. We therefore need
artificial players that are able to play all those unseen games
with some skill, and who can do so very fast. In other words,
we need competent and fast general game playing algorithms.

If this sounds like a tall task, note that the challenges don’t
end there: just because we can play a game automatically
does not mean that we have a way of evaluating its quality.
(Game-playing algorithms tend not to have opinions on the
games they play.) However, we could tell something about
the quality of the game by observing how one or several
algorithms play the game. Specifically, in recent work we
explored the idea of estimating game quality by how much
better good players play a game compared to how bad players
play it [15]. In other words, a good game would allow for
more skill differentiation. This idea was operationalized as
the Relative Algorithm Performance Profile (RAPP), where
a number of game-playing algorithms are tested on all games
and the relative performance of these algorithms are compared.
We showed that human-designed games did indeed exhibit
higher performance difference between strong and weak game-
playing algorithms than random or mutated games did.

The current paper builds on our previous work, deepening
our analysis of game quality using RAPP, devising a concrete
fitness function and variation operator for game evolution, and
analyzing the results of several attempts to generate games. We
focus on simple arcade games expressed in the Video Game
Description Language (VGDL). We introduce two new game
tree search algorithms with very different performance pro-
files, one of which is the currently top-performing algorithm
for the original test set of games1. The original contributions
of this paper thus include the first attempt at generating games
using VGDL and two new game playing algorithms.

II. RELATED WORK

The concept of RAPP is similar to that of player perfor-
mance profiles [16], [17], which compare players’ perfor-
mances against opponents that have various levels of strengths.

1One of the algorithms, “Explorer”, was briefly described previously; the
current paper describes an updated version and provides more detail.



Performance profiles are used to compare different player
strategies in a given-game, to evaluate these strategies. On
the other hand, RAPP involves comparing different strategies
against different games, in order to evaluate the game, not the
strategies. Furthermore, this work is also related to general
video game playing and game generation, as described below.

A. General video game playing

Research on general game playing (GGP) aims to create
artificial players that can proficiently play not just one but a
large number of games, in particular games that are unseen
(not known by the algorithm designer). The arguably most
famous outlet and impetus for this research is the General
Game Playing Competition, organized since 2004 [18]. Com-
petitors submit game-playing agents to this competition; the
agents are provided with descriptions of several unseen games
written in a specialized game description language (GDL) and
judged on their capability to play these games. The GDL used
provides a rather low-level description of games, and players
will have to build up their own mechanics representation from
the description. Due to constraints of the GDL, games used in
the GGP competition are mostly board or puzzle games.

One notable development in GGP agents is the emergence
and dominance of agents based on Monte Carlo Tree Search
(MCTS), a statistical tree search algorithm. It requires very
little to no prior knowledge of the game’s domain, and has
been used successfully in many games [19].

Besides the board-game-focused GGP competition, another
domain that has seen GGP research is playing Atari games.
The Atari Learning Environment (ALE) is a framework for
testing agents using emulated Atari 2600 games [20]. Agents
are given the raw screen data and the score of the game
as inputs, and return joystick commands. The Atari 2600
was originally released in 1977, and today it is considered
useful for research purposes due to its large collection of
titles, that go from board games to shooters. Approaches using
MCTS [20], temporal difference learning [20] and neuroevo-
lution [21] have been applied to ALE.

Finally, and what we base our work on here, the General
Video Game AI Competition framework (GVG-AI) is a bench-
mark for general game playing that uses games described in
the Video Game Description Language (VGDL) [22], [23],
[24]. VGDL can be used not only for testing GGP algorithms,
but also for game generation, in a 2D environment.

B. Game generation

Game generation could be done in a number of different
ways. Generally speaking, any system for generating complete
games including their rules is likely to be either constructive
(e.g. grammar-based), solver-based or search-based [6]. An
example of a solver-based method is Variations Forever, which
uses Answer Set Programming (ASP) to explore the search
space of 2D game design rules [25]. The majority of attempts
to generate games are however search-based. Browne’s Ludi
system is capable of creating good quality board games,
by searching a constrained space of games [3]. Similarly,

ANGELINA evolves new games, expanding the search space
to not only rules, but also characteristics and levels [4].

Due to its complexity, the task of complete game gener-
ation is usually not attacked in full. This work focuses on
the generation of 2D arcade-style games, due to their more
restrictive nature: being focused on the interaction between
game elements in a two-dimensional space. It has previously
been argued that this class of games should be relatively
“generatable” when compared to other types of games [6].

III. METHODS

A. VGDL and the GVG-AI framework

The Video Game Description Language (VGDL) is a GDL
designed to express 2D arcade-style video games of the type
common on hardware such as the Atari 2600 and Commodore
64. It can express a large variety of games in which the
player controls a single moving avatar (player character) and
where the rules primarily define what happens when objects
interact with each other in a two-dimensional space. VGDL
was designed [22], [23] and implemented [24] in order to
support both general video game playing and video game
generation. A VGDL game is composed of a description and
one or more levels. The description consists of four parts:
SpriteSet, InteractionSet, LevelMapping and TerminationSet.
The SpriteSet describes all game object’s types and properties.
IntectionSet defines how these objects will interact with each
other. The LevelMapping describes how game objects are
represented in a level text file, and the TerminationSet defines
what are the conditions for this game to finish.

The GVG-AI framework is a testbed for general game-
playing controllers on VGDL descriptions. Controllers are
called once at the beginning of each game for setup, and then
once per clock tick to select an action. They do not have access
to VGDL descriptions of games, and receive only the games
current state: the position and type (e.g. portal, immovable,
resource) of each sprite. However these states can be forward-
simulated to future states. Thus game rules are not directly
available, but a simulatable model of the game can be used.

The framework comes with a number of example con-
trollers, including a controller that acts randomly and an
implementation of Monte Carlo Tree Search (MCTS).

B. New controllers

We introduced three controllers of an increasing degree of
cleverness: One-step, Deep-search and Explorer. Each uses a
different strategy when simulating the forward model provided
by the GVG-AI framework. They are described below:

The OneStep algorithm advances the game’s current state
once for each allowed action. State value is based on score
and win/lose result, and the action with the best resulting state
value is chosen. If no state is better, a random action is chosen.

The DeepSearch controller is a mix between a depth-first
search and MCTS, seeking to advance deep into a tree with
a few initial actions. It starts out in a similar fashion as
OneStep, by expanding all possible actions. These game-states
are then simulated further upon by advancing each game state



a single time, with a partly random action, without copying
the previous state. This continues until the controller runs out
of time. Each action is evaluated by considering the score and
win/lose-value for the states that can be achieved from each
of the initial states. Also, the controller inputs the initial game
state to be simulated from again when other simulations have
failed or it has reached a certain search depth.

Algorithm 1: DeepSearch algorithm

1 queue ← initial gameState
2 justExpandedFromInitial ← false
3 while has time left do
4 gameState = queue.poll()
5 if gameState == initialGameState then
6 for action : PossibleActions do
7 queue ← gameState.copy().advance(action)

8 justExpandedFromInitial ← false
9 else

10 queue ← gameState.advance(random, but not
opposite to first-, action)

11 d ← depth of search //amount actions performed
12 value[action] ← value[action] +

value(newGameState) / PossibleActions.lengthd

if d == 4 and !justExpandedFromInitial then
13 queue ← initial gameState
14 justExpandedFromInitial ← true

15 return action leading to highest value, or random action
if values are equal

Finally, the Explorer was designed specifically to play
arcade-style games. Unlike controllers that only use the current
state to decide on an action, it stores information about visited
tiles and prefers visiting unexplored locations. In addition, it
uses three sets of accumulated statistics: how probable death
is from each action; the score that can be achieved from each
actions; and how boring each action is. If the controller has
died too many times, it takes the action with the lowest death
rate. This death rate of an action uses the forward simulation
of that action, and if it leads to a death the death rate is given
by the sum of 1 ∗ kn per action in this sequence, where n is
the total of actions in the sequence, and k == 4, chosen by
testing different values. Otherwise, it takes the action with the
best score. If several actions have similar scores, boringness
breaks the tie. In this context, boringness refers to how often
the avatar has visited a certain tile, i.e. the fewer times it has
been visited, the less boring it is. The controller also addresses
a common element of VGDL games: randomness. It gains an
advantage in several games by simulating the results of actions
repeatedly, before deciding the best course to chose.

IV. PLAYING EXISTING AND GENERATED GAMES

The GVG-AI framework comes with 21 human-designed
games. Some are adaptations of classic arcade games, which
can be plausibly assumed to represent good games. Others

Algorithm 2: Explorer algorithm

1 queue ← initial gameState
2 deathActions, scoreActions, boredActions ← []
3 while has time left do
4 gameState = queue.poll()
5 if gameState == initialGameState then
6 for action : PossibleActions do
7 queue ← gameState.copy().advance(action)

8 else
9 d ← depth of search //amount actions performed

10 firstAct ← first action performed
11 deathActions[firstAct] + = isDead(gameState)

/ PossibleActions.lengthd

12 scoreActions[firstAct] + =

scoreValue(gameState) / PossibleActions.lengthd

13 boredActions[firstAct] + =
boredValue(gameState)

14 queue ← gameState.advance(with least boring
action)

15 if deathActions values higher than threshold then
16 return action for lowest deathAction value

17 if scoreActions difference higher than threshold then
18 return action for highest scoreActions value

19 return action for lowest boredActions value

were newly written for the competition. We excluded the
newly written games, and in addition excluded games where
no algorithms played well (all of which were puzzle games),
since they don’t provide us useful information with our current
approach. We then added two newly encoded adaptations of
classic arcade games, bringing us to 13 games to use as ex-
amples of non-generated “good” games: Aliens, Boulderdash,
Frogs, Missile Command, Zelda, DigDug, Pacman, Seaquest,
Eggomania, Solar Fox, Crackpots, Astrosmash, and Centipede.

We then produce two kinds of generated games. One set are
variants of the existing games, which we call “mutated” games.
Each of the 13 designed games is mutated in 10 different
ways (described below), to produce 130 mutated games. The
other set are randomly generated without reference to existing
games; we generate 400 of these, each accompanied by a
randomly generated level (of size 15x15).

Six different controllers play through each game in all three
sets: SampleMCTS, Explorer, DeepSearch, OneStep, Random
and DoNothing. SampleMCTS and Random are from the GVG-
AI framework. The first is a vanilla MCTS algorithm, while the
second simply returns a random action each turn. DoNothing,
as the name suggests, always returns a null action.

We modified the GVG-AI framework so that players cannot
score below 0, which was already the case in the human-
designed games. This makes comparing scores across con-
trollers more straightforward.



A. Mutating games

In the first set of generated games, we produce 130 “mu-
tated” versions of the 13 human-designed games. How to best
mutate games is not immediately apparent, however, since
VGDL games have a number of elements (rules, sprites, levels,
etc.) and some are interdependent. The sprite definitions and
rules of a VGDL game are constructed from a combination of
a class and a series of parameters specific to the class, so it
is necessary to change the parameters if the class is changed,
but the parameters of an existing class can freely be mutated.

In order to increase the chances of creating a playable
mutation, we limited mutations to only be able to change
interaction rules from the InteractionSet, with 25% mutation
probability per interaction rule. Levels, win/loss rules, and
sprite sets were left unchanged.

B. Generating random games

To generate new games completely from scratch, we need
to construct the four parts of a VGDL description: an array
of sprites for the SpriteSet, interaction rules for the Interac-
tionSet, termination rules for the TerminationSet, and level
mappings in the LevelMapping.

We need some limits on the search space, so somewhat
arbitrarily limited the number of sprites, interaction rules,
and termination rules: games must have 3− 8 sprites, 3− 10
interactions and 2 terminations (one “win” and one “lose”
termination). In addition, no parent-child structure was allowed
in the SpriteSet, i.e. no sprite could be a sub-type of another.
All objects were then given random sprite images.

Generating a game is intimately linked to generating levels
appropriate for the game’s rules. One could end up with
generating high quality game descriptions, but if the level does
not fit the gameplay the games might be deemed bad. In these
experiments, we don’t address that issue in detail, and instead
randomly generate levels with the only constraint that it should
not make the game engine crash, e.g. objects in the level must
exist in the game definition, avatar sprites cannot be spawned
and sprites cannot transform into an avatar.

C. Testing and result analysis

The six controllers each played through the set of human-
designed, mutated, and randomly generated games. To con-
strain playthrough time, each game was played ten times,
with 2000 maximum clock ticks per playthrough, and 50 ms
maximum per tick. In addition, games were aborted if a clock
tick ever took more than 50 ms. For each game playthrough,
data recorded was: score, win-loss value, number of clock ticks
used, and a list of actions performed.

D. Results

Figure 1 shows the normalized average score for all three
types of games, Figure 2 the win rate, Figure 3 average clock
tick count, and Figure 4 the average action entropy, i.e. how
much variety there is in action selection.

There is clearly a large difference between the results of the
more intelligent algorithms and those of the intended “bad”

controllers, with both a higher win rate and a significantly
higher average score. Surprisingly, the DeepSearch algorithm
has a significant lead over the other algorithms – in spite of
its simple action selection approach – making it a suitable
candidate for a “good player”.

On the other hand, clock-ticks and action entropy do not
show a similarly clear difference between more and less
intelligent algorithms. Examining the results from each game,
it is noticeable that the profiles for these values are very
different from game to game.

The results suggests that there exists some relationship be-
tween the performance profiles of different controller types, on
different sets of games, especially in relation to win-rate. This
supports the hypothesis that relative algorithm performance
profiles can be used to differentiate between games of different
quality. However it should be noted here that some games from
both the mutated and generated game set, contains games that
when examined by themselves have similar distributions as the
average designed game. In randomly generated games, which
arguably tend to be less interesting than the others, smarter
controllers (e.g. Explorer and MCTS) do only slightly better
than the worse ones (i.e. Random and DoNothing). This is due
to a general a lack of consistency between rules generated in
this manner. Mutated games, however, derive from a designed
game. Therefore, they maintain some characteristics of the
original idea, which can improve the VGDL description’s
gameplay and playability.

While it is possible that random actions can result in good
outcomes, this chance is very low, especially when compared
to the chance of making informed decisions. In spite of that
both Random and DoNothing do fairly well in randomly
generated games. The performance of DoNothing emerges as
a secondary indicator of (good) design: In human-designed
games, DoNothing very rarely wins or even scores.

In regard to randomly generated games, performances were
mostly indistinguishable from designed games. Upon further
examination of many of these descriptions, it was noticed that
they were in general too trivial and aimless to be entertaining.
However, by also comparing these games with others without
“well-formed” performance profiles, it became clear that algo-
rithms performance profiles could at least be used to separate
“not-completely-bad” games from terrible games.

This examination strengthens our initial assumption that the
generated games, at least from the randomly generated set, are
of a overall low quality. Besides the above, a few re-occurring
problems was found in the generated games: Sprites often
completely leave the level playing field, the game can only
be won in the first few (¡50) frames, the outcome of the game
is too random (e.g. some sprites cannot be interacted with) or
several of the sprites- and/or rules are never used.

V. EVOLVING NEW GAMES

A. Fitness

The tests shown in Section IV-D indicate that general game
playing controllers performance could potentially be used to
determine the quality of games. But there were many different
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Fig. 1: Normalized average score across all games of the three different set of games: Designed-, mutated- and completely
generated games

Explorer DeepSearch MCTS Onestep Random Do Nothing
0

0.2
0.4
0.6
0.8
1

A
ve

ra
ge

w
in

-r
at

e

designed
mutated

generated

Fig. 2: Averaged win-rate for the three sets
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Fig. 3: Averaged clock tick for the three sets
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Fig. 4: Averaged action entropy for the three sets

features and relationships between algorithms. Therefore, it
was necessary to identify the most important statistical values
from said results for use in a fitness function, while trying to
exclude statistics that do not signify game quality.

Out of all outcomes, the score and the win-rate seem to
have the most distinct distributions for different type of games,
making them interesting to use for an evaluation function.
For example, the Explorer and the Random showed significant
difference between them. Likewise, the action entropy might
also be appropriate to use, but the difference in the statistical
distributions are much smaller for these.

Even after limiting fitness features to score and win-rate,
there are still many possible combinations. For instance, we
could have a feature for the difference in average score

between every single controller, but it would result in
(
6
2

)
= 15

features for a single statistic. We could also use a series of
different score values: minimum and maximum score, stan-
dard deviation of score, median, quartiles or any form of
normalised score, and of course we could use combined values
between features (e.g. the score increase per clock tick).

It is also not straightforward to calculate a feature even after
deciding which controllers and values to compare. We could
use a simple relative difference formula (e.g. f = | a−b

max(a,b) |),
but it might make more sense to hand-craft each feature to
a specific goal. For instance, for action entropy, it appears
that designed games cause intelligent controllers to have
similar values as the Random controller, which is not true for
randomly generated games – where the intelligent controllers



often find a simple solution requiring similar actions. A feature
could thus consist of having a value of 1 if entropies are close,
decreasing towards 0 when Random has a higher entropy, and
not rewarding the game for having the intelligent controllers
action entropy be higher than Random.

To avoid a large set of possible fitness features, we started by
using only two relative difference scores: between the mean
score of DeepSearch and DoNothing, and between the win
rates of the same two controllers. The total fitness of a game is
the sum of these two values. Using these features, 12 designed
games have a “perfect score” of 1, while the game DigDug
only scores 0.5 (since the DeepSearch controller was never
able to win). 30 mutated games have a score of 0.95 or higher
(23 have perfect score), while only 4 of the generated games
have a fitness above 0.5 (though these are all perfect scores).

After preliminary experiments, it became clear that we
needed more fitness features to exclude certain classes of
bad games given high fitness with the simple approach. First,
games where intelligent controllers can win too quickly (under
50 clock ticks) are penalized. Secondly, games in which intel-
ligent controllers can only win (and never lose) are penalized.

The result is the following fitness function:

f =
RD(score) +RD(wins) + win 50 + win lose

4

Where RD means relative difference between algorithms
for the given parameter, win 50 is -1 if a controller can win
in fewer than 50 clock ticks, 1 otherwise, and win lose is
1 if the game can be both won and lost, -1 otherwise. The
resulting fitness is always between -1 and 1.

In addition a game was automatically given a fitness of -1
if any controller is disqualified in any playthrough, the score
and wins are always the same, or the controllers all finish in
fewer than 50 clock ticks.

B. Game generation methods

As with the experiments in Section IV, we evolve games
here in two different ways: by mutating human-designed
games, and by generating new VGDL descriptions. Both ap-
proaches use a simple evolution strategy (ES) algorithm, with
mutation and crossover operations across several generations.
In each iteration, a population of game descriptions was
tested using two controllers: DeepSearch and DoNothing.
Fitness is calculated for each game, with the lowest fitness
games removed from the population. As in the mutation
experiments in Section IV, only the InteractionSet was
modified in each generation.

The evolution process stopped when the highest fitness no
longer increased in 10 generations, when the best game’s
fitness was above 0.98 (an almost perfect score), or when the
maximum 15 generations allowed were over.

In order evolve randomly generated games, it was necessary
to verify if minimum criteria for a game were fulfilled (i.e. the
description is well-formed and the game is winnable). Once
this randomly generated game was assessed to be playable, it
was then evolved in the same manner.

C. Results

We evolved 54 total games: 45 from the human-designed
games, and 9 from a randomly generated starting point. Of
these, 40 mutated, and 6 randomly generated games had a
perfect, or near-perfect fitness of over 0.98, making them the
most interesting to examine further.

Figure 5 compares the original InteractionSet of Boulder-
dash with one of its mutated descendants. Figure 6 describes a
game evolved from a randomly generated description - without
its LevelMapping section.

I n t e r a c t i o n S e t
d i r t a v a t a r > k i l l S p r i t e
d i r t sword > k i l l S p r i t e
diamond a v a t a r > c o l l e c t R e s o u r c e
diamond a v a t a r > k i l l S p r i t e sco reChange =2
moving w a l l > s t e p B a c k
moving b o u l d e r > s t e p B a c k
a v a t a r b o u l d e r > k i l l I f F r o m A b o v e scoreChange=−1
a v a t a r b u t t e r f l y > k i l l S p r i t e sco reChange=−1
a v a t a r c r a b > k i l l S p r i t e sco reChange=−1
b o u l d e r d i r t > s t e p B a c k
b o u l d e r w a l l > s t e p B a c k
b o u l d e r diamond > s t e p B a c k
b o u l d e r b o u l d e r > s t e p B a c k
enemy d i r t > s t e p B a c k
enemy diamond > s t e p B a c k
c r a b b u t t e r f l y > k i l l S p r i t e
b u t t e r f l y c r a b > t r a n s f o r m T o s t y p e =diamond scoreChange =1
e x i t d o o r a v a t a r > k i l l I f O t h e r H a s M o r e r e s o u r c e =diamond l i m i t =9

−−>
I n t e r a c t i o n S e t

d i r t a v a t a r > k i l l S p r i t e
d i r t sword > k i l l S p r i t e
b o u l d e r a v a t a r > a t t r a c t G a z e
d i r t diamond > k i l l I f F r o m A b o v e
moving w a l l > s t e p B a c k
moving b o u l d e r > s t e p B a c k
a v a t a r b o u l d e r > k i l l I f F r o m A b o v e scoreChange=−1
b u t t e r f l y d i r t > k i l l I f H a s M o r e l i m i t =15 r e s o u r c e =diamond
a v a t a r c r a b > k i l l S p r i t e sco reChange=−1
b o u l d e r d i r t > s t e p B a c k
b u t t e r f l y a v a t a r > k i l l I f F r o m A b o v e
sword c r a b > c l o n e S p r i t e
b o u l d e r b o u l d e r > s t e p B a c k
a v a t a r EOS > k i l l I f H a s L e s s l i m i t =13 r e s o u r c e =diamond
diamond d i r t > t r a n s f o r m T o s t y p e =diamond
c r a b b u t t e r f l y > k i l l S p r i t e
diamond a v a t a r > c o l l e c t R e s o u r c e
e x i t d o o r a v a t a r > k i l l I f O t h e r H a s M o r e l i m i t =9 r e s o u r c e =diamond
b u t t e r f l y b o u l d e r > k i l l S p r i t e

Fig. 5: The original (above) and evolved (below) set of
interaction-rules of a VGDL description, generated by mu-
tating the description of Boulderdash.

VI. DISCUSSION

In many cases, evolving games quickly breaks important
aspects of the original games, often removing the core chal-
lenge of the game. Examples: giving the player the ability to
walk through walls or boulders; not removing items after they
have been picked up; or even not defining that enemies can
harm the player. Nonetheless, many generated games do have
interesting properties and features.

In one mutation of Boulderdash, boulderdash_mut09,
gems do not disappear when collected, making the player able
to win very quickly (one just has to stand still on a gem for a
second, then head for the exit). But enemies have also become
more mobile, so overall the game has some sense of challenge
and difficulty when compared to most of the generated games.
An interesting feature was that the avatar has gained an ability
to push boulders, making them glide across the level, thus
being able to kill certain enemies. However, the enemies that



Fig. 7: Visual representation of two “evolved-from-random-generated” VGDL games: evol_game001 (left), having a fitness
score of 1, and evol_game002 having a score of ≈0.98

BasicGame
S p r i t e S e t

a v a t a r > MovingAvatar img= a v a t a r
gen1 > P a s s i v e img=honey
gen2 > Resource l i m i t =4 s i n g l e t o n =TRUE img= m i s s i l e v a l u e =2
gen3 > Immovable img= p e l l e t
gen4 > Bomber o r i e n t a t i o n =DOWN s t y p e =gen5 img= f r o g prob =0.22090000000000004
gen5 > S p r e a d e r l i m i t =33 s t y p e =gen2 img= f i r e
gen6 > F l e e i n g s t y p e = a v a t a r img= d i r t

I n t e r a c t i o n S e t
gen6 gen4 > a t t r a c t G a z e
gen5 EOS > wrapAround
gen1 gen3 > k i l l I f H a s L e s s l i m i t =3 r e s o u r c e =gen2
gen2 a v a t a r > t r a n s f o r m T o s t y p e =gen1 scoreChange =2
gen2 a v a t a r > w a l l S t o p
gen2 a v a t a r > changeResou rce r e s o u r c e =gen2 v a l u e =0 scoreChange =7
gen6 gen2 > k i l l I f O t h e r H a s M o r e l i m i t =0 r e s o u r c e =gen2
a v a t a r EOS > k i l l S p r i t e
a v a t a r EOS > s t e p B a c k
gen1 EOS > s t e p B a c k
gen3 gen3 > s t e p B a c k
gen3 EOS > s t e p B a c k
gen1 gen1 > spawnIfHasMore l i m i t =11 s t y p e =gen6 r e s o u r c e =gen2 scoreChange=−2
gen5 EOS > s t e p B a c k
gen6 EOS > s t e p B a c k
gen2 gen5 > c o l l e c t R e s o u r c e

T e r m i n a t i o n S e t
S p r i t e C o u n t e r l i m i t =0 s t y p e =gen6 win=TRUE
S p r i t e C o u n t e r l i m i t =0 s t y p e = a v a t a r win=FALSE

Fig. 6: The VGDL game description for an evolved game,
without LevelMapping

can be killed by boulders no longer harm the avatar, and so the
new ability does not cause much change to the actual game.

Randomly generated games, on the other hand, appear to
have more unique designs. A generally undesirable feature that
recurs in several games is that the outcome is partly or com-
pletely independent of the player’s actions. Since the fitness
function was supposed to explicitly search for games where
better players perform better, games in which performance
doesn’t matter at all should have been eliminated. That they
weren’t is likely a product of using a rather small sample of
playthroughs, six per controller. The games are overall quite
simple, but many contain some interesting game design for
human players, some which seemingly appeared by accident:

In the evolved game evol_game001 (Figure 6 shows its
description and Figure 7 a screenshot), the goal is to kill a
block of dirt that whizzes around the level, trying to flee from
the avatar. However, true to the action-arcade genre of the
game, the player can additionally increase his/her score by
moving the avatar to a laser-sprite (gen2 in the description).
Only one laser-sprite can exist in the level at any given time,
and the player can only increase his/her score by repeatedly

going to each laser that is spawned. If the player picks up a
laser in the same position of a previously picked up laser, the
player loses all his points.

Another game, evol_game002 (Figure 7), is rather sim-
ple: its goal consists in killing the avatar, which can be
achieved by walking to the “cog” sprite (in the screenshot,
it appears at the top of the screen). However the game is lost
if the bat sprite (a RandomNPC) ever collides with the same
object, making the outcome rather random.

Overall, the VGDL game generation process was not able
to create any game of reasonably high quality, especially in
comparison to the human-designed arcade games. To increase
the game generator’s quality, it seems necessary to refine
the fitness function, possibly by identifying more aspects of
games and playthroughs. For instance, one could examine how
each controller increased its score across a playthrough, the
proportion of sprites and rules that have been in use in the
game, the amount of sprites that has left the level field, or the
amount of objects that have been killed or created.

Seeing that a main problem of many of the generated games
is their requirement for superhuman responses or otherwise
miscalibrated timescale, another way of improving the gener-
ation process could be to restrict all controllers to only act on
a human timescale, for example, by restricting the number of
times per second the active decision could be changed, or by
introducing some temporal indeterminacy into when exactly a
chosen action would be executed.

One major issue with a straightforward evolutionary ap-
proach is that it takes a lot of time for intelligent controllers
to play each game. Even the quite severe limits we put on
controllers’ playthroughs here can lead to large total time bud-
gets. If a controller is allowed up to 800 ticks of 50 ms each,
one simulated playthrough can take up to 40 seconds. With
a population size of 50, and 6 samples per fitness evaluation,
that results in over 3 hours for a single generation in the worst
case. Addressing this might require better ways of allocating
limited CPU budget to fitness evaluation, such as failing fast
on “obviously bad” games. Alternatively, one could probe each
game or level with simple controllers, which can play the game
quickly, and decide if the game is worth spending time on for
a more precise analysis using “intelligent” controllers.



We do not, at the moment, verify with humans if the games
are really good or bad. This should be done, possibly by
letting a set of experienced and novice users play each game
and compare their performance, removing games where the
performance does not significantly differ between players.

VII. CONCLUSION

The goal of this project was to automatically generate a
complete “as-enjoyable-as-possible” 2D game using VGDL.
In order to do so, we needed a manner of evaluating said
games. Firstly, generating the VGDL game descriptions of
action-arcade games, we attempted at correlating the quality
of a game with the performance of general game playing algo-
rithms. Our results using six different controllers and human-
designed, mutated human-designed and randomly generated
games show indication that a relation between a game’s quality
and a relative performance evaluation exists.

Thereafter, we proposed a method for generating and eval-
uating games automatically. Our approach was successful at
generating interesting game designs, and indicates that using
the performance of game playing algorithms to generate con-
tent is worth examining further. Using an evolutionary strategy,
a set of playable VGDL games of varying quality was created,
some using existing human-designed games as basis, with the
original game’s levels, and others using randomly generated
games and levels. Our process was able to generate several sets
of interesting game-rules, but at the same time many games
generated contain severely trivial game design, or game rules
largely based on luck. Overall, the generators are not able
to pin-point interesting games in the space of VGDL games
– instead they are able to find a subset of more interesting
game description that human game designers can examine
further to decide which games are actually “good”, which
suggests that this process may be useful to idea generation.
In addition, it can be applied to further evolve initial ideas
created by a human game designer. Allowing the algorithm to
select specific mutation operations [26] might vastly improve
its ability to search for variations of a given game, while
potentially decreasing the chances of ”breaking” the game.

In addition, we found that time is a significant limitation.
Tree search-based game playing algorithms spend a large
amount of time playing through each game, since they need
time to decide on an action on every frame. Even with the
rather short time frames allowed in the tests and programs (50
ms per frame, 800/2000 frames per playthrough), it can take
several days for a single run of the evolutionary algorithm.
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