
Sensorless but not Senseless:
Prediction in Evolutionary Car Racing

Hugo Marques, Julian Togelius, Magdalena Kogutowska, Owen Holland and Simon M. Lucas
Department of Computer Science

University of Essex
Colchester, CO4 3SQ, UK

{hgmarq, jtogel, mkogut, owen, sml}@essex.ac.uk

Abstract— In this paper we try to develop predictors in order
to drive a simulated car around a track without the most
recent sensor data. In order to test the predictive abilities of
our car we developed two experiments: one where the sensor
data was interrupted for a certain time and another where
the sensor data is constantly delayed by a certain amount.
The predictors are based on neural networks, and we compare
backpropagation and evolutionary computation as methods of
training these. In the end we found that predictors with good
driving performance do not sample the set of predictors which
minimize the prediction error in the sensors.

I. INTRODUCTION: PREDICTION AND IMAGINATION

Prediction has been acknowledged to play a possibly great
role in controlling complex biological bodies in dynamical
and often hostile environments [1] and [2]. Take the example
of a monkey swinging from branch to branch in a tree:
despite the complex interaction between all its body parts,
the muscles actuating them and the speed at which this
happens, the body moves smoothly. From an engineering
point of view such systems cannot afford waiting for sensor
feedback in order to decide which muscle activations should
happen next. This suggests the presence of an additional
system which removes the large computational overhead; the
forward model mechanism used in control theory seems to
fit the profile. In nature forward-models have been confirmed

FM

x(t)

x(t+1)
u(t)

Fig. 1. Given a set of motor commands - u(t) - and the current state - x(t)
- the forward model generates a prediction of the outcome - x(t+1).

to exist in frogs and are generally accepted to be part of the
motor control in mammals (there is still some discussion as
to whether or not they exist insects [3] and [4]).

A. Prediction in Biologically Inspired Artificial Intelligence

If relatively simple animals such as frogs are capable of
prediction, it is possible that the mechanism itself is simple.
The study of these minimal and simple, yet paradoxically,
complex behaviours goes back (at least) to the founding
fathers of Ethology, e.g [5]. The concept of studying min-
imal behaviours stripped of superfluous details also have

supporters in the field of cybernetics e.g. [6], advocates of
the subsumption architectures [7], in the dynamical systems
approach to studying minimally cognitive behaviours [8] and
by practitioners of evolutionary methods e.g. [9]. The crux of
the argument is that since it took billions of years to evolve
these simple behaviours the focus should be on those rather
than on the apparently more complex ones which have only
been around for the last few tens of thousands years or so.

B. Background

The main source of inspiration for our experiments with
prediction is Ziemke et al. who take a bottom-up approach
for investigating the properties of prediction/anticipation and
internal simulation (for details on experiments see [10] and
[11]). The overall aim of those experiments was to try
and find the elusive mechanism that allows an agent to
make predictions and act according to these. The theoretical
backdrop to the experiments involve the emulation theory
(see Grush [12] and Hesslow [11]) which explain how an
’inner world’ can exist in a simple agent. All the experiments
mentioned, used a Khepera simulator and most of them
some kind of variation of recurrent artificial neural net-
works (ANNs) trained with evolutionary algorithms (EAs).
The results, related to prediction, were partially successful.
Although the controllers evolved to navigate correctly in a
given environment, the results were somewhat lacking when
it came to navigating ”blindfolded” i.e., when all sensors
were switched off and the robots had to rely solely on their
”inner world” representations of the environment to navigate.

II. EVOLUTIONARY CAR RACING

In evolutionary car racing (ECR) evolutionary algorithms
are used to create and tune controllers, sensors or other
parameters for racing cars, in simulation or physical reality.
Only a limited amount of work has been done on ECR, all
quite recently; see [13] for a more comprehensive review.
Previous work has focused on:

• Investigating various controller architectures and sensor
representations [14]

• finding ways of developing ANNs with both general
and specialised driving skills that can proficiently race
a variety of tracks, as well as specialized controllers that
perform very well on particular tracks.



• Used competitive co-evolution to develop car controllers
capable of racing against, and avoiding (or sometimes
initiating) collisions with competitors on the same
track[15].

The obvious applications in computer games aside and
the future of autonomous cars, our work is also in line with
research in the field of evolutionary robotics. The way in
which ECR differs from most other evolutionary robotics
research is that racing a car around a track is a more
complicated control problem than driving a differential-drive
robot. It becomes harder still when more than one car and
more than one track is considered. The addition of features
raises the bar further by increasing the complexity of the
environment.

We have previously argued that car racing is a promis-
ing environment for evolving complex general intelligence,
because the task of navigating a basic track is relatively
simple to learn, but can gradually be made more and more
complex almost without limits; beating Michael Schumacher
at his own game would require path planning, anticipa-
tion/prediction, opponent modeling, and complex knowledge
about engine, tyre and surface characteristics, as well as fast
and appropriate reactions.

A. Motivations

Being able to predict the future is beyond doubt a ben-
eficial quality to possess. That goes for most agents, but
especially for an agent whose job it is to get from A to
B as quickly as possible. In a (potentially) changing world
with (potentially) competing opponents, such predictive skills
would be highly sought after. Having evolved general predic-
tive capabilities would probably also mean that the agent’s
performance improved across a wide range of situations
and environments. The trick, so to speak, is to evolve this
general predictor. Because of these benefits, we find it both
a worthwhile and important issue to focus our experiments
on.

1) The Real World VS Simulation: The justification for
using simulations of the real world rather than doing the
experiments in the real world has been discussed widely e.g.
[9] and [16]. Whilst in agreement with the proponents of
embodiment and situatedness [7] it may seem strange to
advocate the use of simulations. Fortunately, it has been
shown that if the task is well-specified, the dynamics of
the agent and environment thoroughly understood, then the
transition from simulation to real-world is successful [17].
Contrary to behaviour-based robotics which require evolv-
ing and adding behaviours in real-time in the real world,
the evolutionary robotics approach takes advantage of the
simulator which allows testing of many different behaviours,
morphologies and types of environments in a much shorter
period of time and without the added technical difficulties
that hardware poses. Although both approaches are based on
the goals and knowledge of the researcher; the goals and
knowledge can be implemented much more indirectly using
the evolutionary robotics approach. So that the end result

can be said to be less biased by the human designer if prior
assumptions are minimised [9]. Further arguments in favour
of using evolutionary techniques are outlined in [16].

2) Theoretical and Practical Motivations: The main mo-
tivations for this paper are two-fold: From the theoretical
point these experiments allows us to apply the theory that
biological organisms are capable of prediction using forward-
models. The practical requirements of driving a physical car
involves appropriate handling of faulty sensors as well as
the delay in them (e.g. caused by a webcam-controller loop
[14]). To achieve this we used evolutionary computation and
back-propagation networks in order to devise predictors in
different ways so that they could than be compared with
each other. Our aim is to address the following questions:

1) Can a predictor be evolved, using a forward model and
evolutionary algorithms?

2) How well can sensory data be predicted?
3) What would a good predictor look like? Would it be

related to the average error in the sensor prediction?
4) How differently will the predictors based on back-

propagation and evolutionary algorithms be? Will they
present different characteristics? Which of them will
work best?

III. METHODS

The experiments reported in this article were done in a
slightly updated version of the simulator used in [15].

A. Simulation Environment

The 2-dimensional simulator is intended to, qualitatively
if not quantitatively, model a standard radio-controlled (R/C)
toy car measuring 20*10 pixels (app. 17*8.5 cm) in an arena
with dimensions 400*300 pixels (app. 3*2 m), and a track
delimited by solid walls.

A track consists of a set of walls, a chain of waypoints, and
a set of starting positions and directions. The car is added to
a track in one of two starting positions, with corresponding
starting direction. Both the position and direction of the car
are subject to small random perturbations when the car is
added. The waypoints are used for fitness calculations.

The dynamics of the car are based on a reasonably accurate
mechanical model, taking into account the small size of the
car and bad grip on the surface, but is not based on any
actual measurements [18][19]. While the dynamics of the
car itself are fairly straightforward, the collision handling
has been subject to much tuning and exception-handling in
order to get a behaviour that feels right for the human player
and cannot easily be exploited in an unintended way by the
evolutionary algorithm.

B. Sensors

The car experiences its environment through three types of
sensors: the speed sensor, the waypoint sensor, and a number
of wall sensors. The speed sensor is simply the speed of the
car. The waypoint sensor gives the difference between the
car’s current orientation and the angle to the next waypoint
(but not the distance to the waypoint). When pointing straight



to a waypoint, this sensor thus outputs 0, when the waypoint
is to the left of the car it outputs a positive value, and vice
versa. As for the wall sensors, which are meant to be abstract

Fig. 2. The car and the environment. The dots are way-points and the lines
protruding from the car indicate the sensors and their range

“range-finders” similar to sonars or IR sensors, each sensor
has an angle (relative to the orientation of the car) and a
range, between 0 and 200 pixels. The output of the wall
sensor is zero if no wall is encountered along a line with
the specified angle and range from the centre of the car,
otherwise it is a fraction of one, depending on how close
to the car the sensed wall is. A small amount of noise is
applied to all sensor readings, as it is to starting positions
and orientations.

C. Controller Architecture

The controllers and the predictors in the experiments
below are based on ANNs. More precisely, we are using mul-
tilayer perceptrons with three neuronal layers (two adaptive
layers) and tanh activation functions. A controller network
has nine inputs: one fixed input with the value 1, one speed
input in the approximate range [0..3], one input from the
waypoint sensor, in the range [-Π..Π], and six inputs from
wall sensors, in the range [0..1]. All networks have two
outputs, which are interpreted as driving commands for the
car. If the first output is above 0.3, this is interpreted as
the forward command, less than -0.3 means backward, and
anything else means neutral. The output of the second neuron
means steer left if below -0.3, right if above 0.3, and straight
forward otherwise.

In previous papers the sensor parameters were evolved,
but in the current experiments each car is equipped with six
sensors at fixed angles and ranges. This is done in order to
ensure consistency in the representation of the state of the
car; the state vector, as presented to the controller, predicted
by predictors and stored in delay queues is simply an array
of nine real numbers, as described above.

D. Network Training Procedure

In order to use supervised learning to train the network we
gathered the state of the car and the control signal performed
at each timestep during 70000 time steps. The order in
which the samples were presented was always randomized
before training the network. In order to test the results of
the network we used a log file with 700 time steps gathered
independently from the samples just mentioned. The network

was always trained using a fixed amount of training sample
presentations (7 million), which means that when trained
with 7 examples the backpropagation algorithm ran for one
million epochs and when trained with 70000 it ran for 100
epochs.

E. Evolutionary Algorithm

When evolving a controller or a predictor, the genome is
a fixed-length array of floating point numbers, encoding the
weights of the connections in the ANN.

A fairly standard EA is used: 50 genomes (the elite) are
created at the start of evolution. At each generation, one
copy is made of each genome in the elite, and all copies are
mutated by adding a random number drawn from a gaussian
distribution with mean 0 and standard deviation 0.1 to every
value in the genome. After that, a fitness value is calculated
for each genome, and the 50 best individuals of all 100 form
the new elite. All evolutionary runs last 100 generations.

F. Fitness Function

There are two fitness functions, one for getting as quickly
around the track as possible and the other for the prediction.

1) Performance Fitness Function: The fitness for perfor-
mance is calculated as the number of waypoints the car has
passed, divided by the number of waypoints in the track, plus
an intermediate term representing how far it is on its way
to the next waypoint, calculated from the relative distances
between the car and the previous and next waypoint. A fitness
of 1.0 thus means having completed one full track within the
alloted time. Waypoints can only be passed in the correct
order, and a waypoint is counted as passed when the centre
of the car is within 30 pixels from the waypoint. In the
experiments reported below, each car was allowed 700 time
steps (enough to do two to three laps on most tracks in the
test set) and fitness was averaged over three trials. On the
track used in this paper, the best fitness achieved so far is
slightly higher than 3.0, with the best evolved controllers
narrowly outperforming the best human drivers.

2) Predictor Fitness Function: We also evolved predictors
for prediction ability. The fitness evaluation was done by
letting the original controller drive the car for 700 time
steps (with unimpaired sensor data) and comparing the last
prediction of the predictor with the real sensor state. Fitness
was thus defined as the negative of the sum of errors.

IV. EXPERIMENTS

In order to test our hypotheses, two extensions of the basic
car racing task were devised. A number of experiments were
performed on these two tasks, investigating the performance
and behaviour of the same controller combined with different
predictors. The predictors are multilayer perceptrons with 11
inputs and 9 outputs, which take as an input the sensor vector
at time t, the action taken by the controller at time t, and
returns a prediction of the real sensor vector of the car at
time t+1.



A. Tasks

Imagine driving in an unlit tunnel, in a car whose head-
lights has the irritating habit of flickering on and off, some-
times staying off for several seconds at a time. Or imagine
remotely controlling a vehicle based on an unreliable image
feed that blacks out from time to time. These scenarios are
the motivation for the intermittent task. The delay task, on the
other hand, is motivated by the delay in car state information
reaching the controlling computer from an overhead webcam
in some of our real-world experiments.

1) Intermittent: Technically speaking, both tasks change
the sensor model of the car. In the intermittent task, there
are two possible states

• The normal state, where current sensor information is
presented to the controller, or

• The blackout state, with all sensors off.

Environment

FM

Controller

Sensors
x(t)

x(t+1)

x(t+1)x(t+1)
Switch

x(t)u(t)

u(t)

Fig. 3. The switch mechanism

In order to decide what signal reaches the controller we
used the concept of switching proposed in [20](see figure 3).
This consists of using the signal directly from the sensors
whenever that signal is available and using the output of
the forward model otherwise. At each timestep, the sensor
model has a probability of 0.2 to go from the normal to the
blackout state, and will then stay in the blackout state for
a number of time steps drawn from a uniform distribution
with a maximum of 10 or 20 time steps. While in the
blackout state, the information received by the controller
depends on whether there is a predictor present or not, and
on the experimental setup. In the case without a predictor, the
controller input is a vector of all zeroes, or the last real sensor
vector before the start of the blackout. When a predictor is
present, the controller input is the output of that predictor,
which in turn receives input from the action and sensor vector
at time t, be it the real information or the output of previous
prediction, and tries to predict state t+1.

2) Delay: In the delay task, the controller never receives
the current sensor data. Instead, when no predictor is present,
the controller input is the current sensor vector from a
number of n time steps ago, n equals 3 in most of the
experiments. When a predictor is present, at each timestep
the controller receives the end result of the predictor being

run n times, starting with the real sensor vector and action
at time t-n, and then its own predictions for time steps t-n+1
to t.

B. Training And Evolving For Prediction And Fitness

Throughout the majority of these experiments, both the
same controller and method for evolving it is used as
described in [13]. When the sensor data is not altered in any
way, this controller completes on average 2.84 laps on the
chosen track, with a standard deviation of 0.007. This means
that while other controllers drive somewhat faster, this is a
very robust controller.

We chose to compare predictors created through three
different methods: backpropagation, evolving for prediction
ability, and evolving for driving ability. For the backpropa-
gation training, a log of sensor data from a number of runs
of the above controller with unaltered sensor data is used as
training data. When evolving for prediction, the predictor is
not affecting the control of the car, and the fitness value is the
negative mean prediction error. Evolving for driving ability
means measuring fitness as described in section III-E, with
the predictor being evaluated indirectly.

For all of these methods, we systematically varied the
size of the hidden layer in the predictor networks, with all
methods being tested for networks of 5, 10, 15, 20 and 25
hidden neurons. We also varied some parameters for the other
predictor creation methods: training with backpropagation
was done with training sets of 7, 70, 700, 7000 and 70000
data points; evolving for performance on the intermittent task
was done with maximum blackout lengths of 10 and 20 time
steps; and evolving for performance on the delay task was
done with delay lengths of 3 and 6 time steps.

C. The Intermittent Task

We trained 250 predictors using backpropagation mod-
ifying both the amount of training samples used (7, 70,
700, 7000, and 70000) and the amount of neurons in the
hidden layer (5, 10, 15, 20, 25). We created 10 predictors
for each data set size and number of neurons in the hidden
layer. The results are presented in table I where we can see
for example that for maximum blackout of 8, the fitness
generally increases with the number of samples used in the
training while the error decreases. In II we can see that the 50
controllers evolved for prediction had mean prediction error
of 0.046 and fitness 0.077. In addition we can also see the
mean results of the predictors evolved for maximum blackout
time of 10 and 20 time steps.

Figure 4 contrasts the performance of three different
predictors trained with backpropagation and the two non-
predictor conditions (where the last sensor vector is retained
during the blackout and where the sensors report zero during
the blackout) for all maximum blackout lengths between
0 and 30 time steps. The three predictors consist of the
predictor with the lowest prediction error of all the trained
predictors, the predictor with the highest prediction error, and
the predictor with the highest track fitness. It is clear that
the controller without any predictor does not do very well



TD AF sd min max ME C
7 1.055 0.373 0.332 1.906 0.142 0.180

70 0.965 0.264 0.495 1.481 0.028 0.311
700 1.192 0.253 0.542 1.632 0.006 0.184

7000 1.398 0.194 0.842 1.930 0.005 0.188
70000 1.415 0.144 0.915 1.687 0.005 -0.072

TABLE I

STATISTICS FOR TRAINING WITH BACKPROPAGATION. THE HEADINGS

ARE TD: TRAINING DATASET, AF: AVERAGE FITNESS, SD: STANDARD

DERIVATION, MIN: MINIMUM FITNESS, MAX: MAXIMUM FITNESS, ME:

MEAN ERROR, C: CORRELATION BETWEEN THE FITNESS AND THE

ERROR

Fig. 4. Fitness results of predictors trained with backpropagation. Baseline0
- controller without prediction, baseline1 - controller runs with the last
sensor input before blackout, min/max error - controller with lowest/highest
prediction error, max fitness - predictor with highest fitness.

on the intermittent task for maximum blackout lengths above
8 or so. Most of the predictors trained or evolved for error
minimisation make no improvement at all on this - some even
decrease fitness. However, a few of those predictors manage
to provide the controller with substitute sensor inputs that
allow it to continue driving successfully in the absence of real
data. The predictors evolved for performance are different.
Almost all of them provide substitute sensor data that enable
good driving. But useful as these sensor data are, they seem
not to be predictions of what the real sensor data would have
been at all, as the prediction errors for these predictors is very
large. Figure 5 plots the performance of the best predictor
evolved for performance with the maximum blackout length
set 10 against the best predictor evolved with maximum
blackout 20, the best predictor evolved for minimising the
error, the predictor with the lowest error, and the two non-
predictor conditions.

ET AF sd min max ME C
10 2.418 0.056 2.199 2.500 0.939 0.180
20 2.309 0.054 2.186 2.413 0.889 0.209
P 0.963 0.471 0.175 1.774 0.046 0.077

TABLE II

INTERMITTENT TASK: PERFORMANCE DURING BLACKOUT LENGTHS 10,

20 AND FOR PREDICTION. (ET: EVOLUTION TYPE AND P: PREDICTION.

OTHER HEADINGS AS IN TABLE I )

Fig. 5. Predictors evolved for performance

1) Behavioural Observations: Without a predictor, the
car starts accelerating, turning left when sensor inputs are
blocked. If the last sensation is kept at the start of a blackout
the car, perhaps obviously, keeps doing exactly what it was
doing before the blackout. The controller normally makes
numerous small turns (a sort of wiggling motion) even on
straight segments of the path. This often causes the car to
end up driving into a wall even during straight sections
of the track, when last sensations are retained. We also
found that the wall bumping behaviour was popular amongst
the majority of controllers trained for fitness; We were
surprised to see how little influence the predictors had on
the controllers - often doing nothing other than turning left
and accelerating when asked to predict sensor data. When it
comes to the evolved predictors, we are not entirely sure why
they are so successful. A possible solution for the controller
would be to apply brakes and thereby minimising the risk of
collisions until the sensors are back online. But this does not
seem to be the what happens. Instead, the controllers take
different actions depending on the last non-blocked sensor
vector, usually keeping the speed constant.

D. The Delay Task

The same 250 predictors used in the last experiment were
used here. The average fitness of the predictors obtained
for delay of 3 time steps is very low and there seems
to exist a negative correlation between the fitness and the
error (see III). In IV we can see the mean results of the
evolution (delay=3time steps) for the 50 predictors evolved
for prediction and for the 100 predictors evolved for track
fitness (50 predictors evolved for delay of 3 time steps and
the other 50 predictors for delays of 6 time steps). Here,
we can see that the performance achieved by the predictor
evolved for 3 time steps delay was good for a delay of 3 time
steps but very poor for delays of any other length. In figure
7 we compare the performance of the best-performing, best-
predicting and worst-predicting trained predictors running
without prediction over a wide number of delay lengths.
The corresponding plot for the evolved predictors is figure 8.



(a) (b)

(c) (d)

(e) (f)

Fig. 6. Figure showing the trajectories of a range of predictors during
the intermittent task with blackout length set to 10: a) The best performing
predictor trained with backpropagation, b) The trace of the predictor with
the lowest error when trained with backpropagation, c) The trace of the
predictor with the highest error when trained with backpropagation, d) The
best evolved predictor, e) The best evolved controller with the lowest error,
f) Predictor with no prediction

DP AF sd min max ME C
7 0.063 0.099 -0.019 0.558 0.142 0.223

70 0.237 0.318 -0.045 1.800 0.028 -0.412
700 0.437 0.410 -0.003 1.869 0.006 -0.139

7000 0.482 0.454 -0.002 1.495 0.005 -0.319
70000 0.424 0.452 -0.005 1.449 0.005 -0.322

TABLE III

RESULTS AFTER TRAINING WITH BACKPROPAGATION DURING THE

DELAY TASK. HEADINGS AS IN TABLE I

Fig. 7. Graph shows a comparison between the best-performer (max.
fitness), best-predictor (min. error), worst-predictor (max. error) using no
prediction and various delay lengths, trained with backpropagation. The
baseline is a controller without predictor

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

2.5

delay time

fit
ne

ss

fitness

fitness delay−3
fitness delay−6
fitness pred
min. error
baseline

Fig. 8. Comparison between the evolved best-performer, best-predictor and
worst-predictor using no prediction and various delay lengths. The baseline
is a controller without predictor

ET AF sd min max ME C
delay3 2.279 0.203 1.250 2.478 0.563 -0.358
delay6 0.740 0.770 -0.070 2.271 0.592 0.060

P 0.413 0.624 -0.053 2.067 0.046 -0.200

TABLE IV

DELAY TASK: PERFORMANCE DURING THE DELAY TASK WITH DELAY

LENGTHS 3 AND 6, AND FOR PREDICTION. (ET: EVOLUTION TYPE AND

P: PREDICTION. OTHER HEADINGS AS IN TABLE I )

Overall, the pattern from the intermittent task was repeated:
the predictors evolved for performance perform much better
than those trained for prediction error on the delay task,
though their prediction error was much higher. The good
performance of the evolved controllers is a bit puzzling, as
the controller never has access to real sensor data, and so it
would seem paramount that the predictor provides as good
a prediction as possible.

1) Behavioural Observations: All tested predictors and
non-predictors have displayed variations on two fundamental
behaviours. Most of the predictors trained for prediction
simply make the controller turn to the left and crash. All
other predictors (including no predictor at all) make the
controller swerve from side to side, as if the driver was
drunk. A plausible interpretation of this behaviour is that
the controllers are constantly overcompensating for being
too close to one wall or another. The fitness of a predictor
seems to be inversely proportional to the magnitude of these
oscillations, with the best predictors rarely if ever colliding
with the wall.

E. Testing The Generality Of Evolved Predictors

Given that the evolved predictors seem to do what is
asked of them in some way other than actually producing
accurate predictions, it is reasonable to assume that they
somehow exploit artifacts of the task, the track, simulator
or the controller. We therefore decided to vary these factors.

First, we tested predictors evolved for one task on the other
task. It turns out that predictors evolved for performance on



(a) (b)

(c) (d)

(e) (f)

Fig. 9. Figure showing the trajectory of a range of predictors with n
being the length of the delay: a) The best performing predictors trained with
backpropagation for n=3, b) The trace of the predictors with the lowest error
when trained with backpropagation and n=3, c) The trace of the predictors
with the highest error when trained with backpropagation and n=3, d) The
best evolved predictors with n=3, e) The best evolved controller with n=6
f) Predictor with not prediction and n=3

the intermittent task do extremely poorly when tested on the
delay task. Typically, they back into the wall behind them,
and so receive a slightly negative fitness. The performance
of predictors evolved for the delay task on the intermittent
task is a completely different matter. Here we saw a large
variation between the predictors we tested, with some having
a fitness of around 0.2, and others reaching as high as 1.9.
It is worth noting that the best predictor on the delay task
(with delay 3) was one of the worst on the intermittent task,
while we found others that performed well on both tasks,
with no distinctive pattern. We then tested the same predictor,
on the task for which it was evolved, with several different
tracks. We used the same six tracks of similar difficulty as
was used in [13] for testing generalization and specialization
among controllers. Three of the tracks run clockwise and
three run counter-clockwise. The predictors on the delay task
show some degree of generalization to other tracks, typically
performing well on two or sometimes three out of the six
tracks. Interestingly, almost all of them perform well on the
mirrored, clockwise version of the original (counterclock-
wise) track. When testing generalization ability of simple
controllers, they typically perform better on different tracks
going on the same direction than on the same track in other
direction. On the intermittent task, the predictors generalize
much better. Many of them reach a fitness greater than 1

on all the six tracks in the testing set. Finally, we tested
using the evolved predictors together with different evolved
controllers. Three new robust controllers were evolved, using
the same incremental method as used to develop the original
controller, and their performance tested. On the basic task
with uninterrupted sensors they generally had slightly lower
fitness than the original controller, in the range of 2.3 to 2.5.
Tested on the intermittent task without prediction, these three
controllers did slightly better than the original controller,
and on the delay task they did significantly better, in the
range of 1.5 to 1.8 with a delay of 3. This is probably
due to these controllers generally driving slower. However,
when combining the predictors evolved to cooperate with
the original controller with the new controllers, results look
different. On the delay task performance is abysmal, all
tested controller/predictor combinations had fitness between
0 and 0.7. On the intermittent task there is more variation,
with performance that is usually in the region of that the
tested predictor would have in combination with the original
controller, but with some combinations of controllers and
predictors failing completely. Again, there seems to be no
obvious way to predict which controllers will work with
which predictors. To sum up, the task-specificity of the
evolved predictors is largely one way: predictors for the delay
task often work well on the intermittent task, but predictors
for the intermittent task fail completely on the delay task.
Contrary to our expectations, the predictors seem not to be
confined to working on one track only, but instead generalize
reasonably well. On the other hand, evolved predictors seem
completely confined to working only with the controller they
were evolved with, at least on the delay task.

1) The ”remarkable” predictor: The best evolved pre-
dictor is shown in the graph of figure 8 with a delay
length of 6. This predictor is a bit of an anomaly in the
grand scheme of things, however it is worth noting as it
performs so well. The predictor continues to have a high
fitness during cycles of 20 timestep delays, furthermore it
is able to perform well (i.e successfully complete tracks)
on 4 out of 6 tracks (see overview of possible tracks in
[13]). Curiously though, it does not do very well on delay
lengths less than 3. The behaviour is the usual wiggle and
exploitation of the wall bumping tactic - hitting walls with
the side and back of the car during turns and corner making.
The likely reason for predictors to have a low fitness of less
than 1.1 during prediction delays less than 3 to, is due to
ineffective prediction abilities. Longer delay lengths allow
for exploitation of the fitness function by ignoring almost
anything to do with prediction and instead evolving a reactive
behaviour. This type of behaviour can emerge when there
is tight coupling between the agent and the environment,
examples of this can be found in [21]. The car does not
need any sensors in order to navigate successfully, wiggling
along at high speed enables the car to drive into walls and
more often than not avoid getting stuck. Another factor is
the majority of the environments in which the predictor was
tested had a similar topology. The predictor can exploit that



in most cases if it hits a wall it will more or less bounce of it
without getting stuck, because the ’wiggle’ ensures an angled
impact trajectory. This strategy is more likely to fail in tracks
with angled walls, narrower paths and fewer waypoints (see
[13] for examples of such environments).

F. Evolving without predictiors

Finally, we investigated how well a controller without a
predictor could perform, given that it was evolved specifically
to perform one of the sensor-impaired tasks. We evolved
several controllers from scratch for the intermittent task with
maximum blackout length 10, and for the delay task with
delay lengths 3, 6 and 20. For all cases we were able to find
controllers that performed satisfactorily, except for the delay
task with length 20. However, none of them were as good
as the combination of the original controller with the best
predictor. For the intermittent task the best fitness was 1.65;
the strategy of this controller took the simple form of a very
slow driving behaviour. For the delay task with delay 3 the
best fitness was 2.1, for delay 6 the best fitness found was
1.9, and for delay 20 it was 0.4.

V. CONCLUSIONS

This paper describes mainly the learning of predictors
used to drive a simulated car around a track in two different
experimental setups: the intermittent task and the delay task.
In relation to the questions presented in section II-A we can
conclude that

1) It is possible to create predictors which are good
enough to drive our simulated car along the track.
However, these predictors are only predictors in the
sense that they help the controller work without current
sensor information - they do not actually predict very
well in the sense of error minimization.

2) The sensory data can be predicted rather well in
terms of the error but that does not result in a good
performance

3) We found that predictors with the best fitness do not
work by minimizing the prediction error. Predictors
with small prediction errors did not generally perform
well in any of the tasks

4) Predictors trained with back propagation were gener-
ally surpassed by predictors evolved for performance.
It is plausible that they exploited the characteristics of
the controller, the track, simulator or a combination.

VI. FUTURE WORK

In the future we aim to study whether different sensor
configurations or the use of recurrent networks would im-
prove our predictive capabilities. We also want to try to co-
evolve accurate prediction together with performance to see
if the results differ from the ones presented here. Other ideas
include the use of abstractions rather than raw sensory data
to drive the car. We have already some preliminary results
on the use of abstractions where we managed to evolve a
controller driving fairly well (fitness above 2.1) using clusters
of the sensory data. Additionally, we would also like to try

co-evolving the clusters with performance and check whether
this changes our predictive abilities. We would also like to
improve our simulator by embedding it in a real physics-
simulator.

VII. ACKNOWLEDGEMENTS

We would like to thank Richard Newcombe and Renzo
De Nardi from the Machine Consciousness lab for all their
helpful comments and inspiring ideas. Hugo Marques is
financially supported by the Portuguese FCT (Funcação da
Ciência e Tecnologia)

REFERENCES

[1] A. Clark and R. Grush, “Towards a cognitive robotics,” Adaptive
Behavior, vol. 7, no. 1, pp. 5–16, 1999.

[2] R. R. Llins, I of the Vortex - From Neurons to Self. The MIT Press,
2002.

[3] B. Webb, “Neural mechanisms for prediction: do insects have forward
models,” Trends in Neurosciences, vol. 27, pp. 278–282, 2004.

[4] D. P. Harland and R. R. Jackson, “Portia perceptions: the umwelt of
an araneophagic jumping spider,” in Complex Worlds from Simpler
Nervous Systems, F. Prete, Ed., Cambridge, MA, USA, 2004, pp. 5–
40.

[5] K. Lorenz, The foundations of ethology. Springer-Verlag, 1981.
[6] V. Braitenberg, Vehicles, experiments in synthetic psychology. MIT

Press, 1984.
[7] R. Brooks, “Intelligence without representation,” Artificial Intelligence,

vol. 47, pp. 139–159, 1991.
[8] R. D. Beer, “The dynamics of adaptive behavior: A research program,”

Robotics and Autonomous Systems, vol. 20, pp. 257–289, 1997.
[9] S. Nolfi and D. Floreano, Evolutionary robotics:The Biology, Intel-

ligence, and Technology of Self-Organizing Machines. Cambridge,
MA: MIT Press, 2000.

[10] T. Ziemke and M. Thieme, “Neuromodulation of Reactive Sensori-
motor Mappings as a Short-Term Memory Mechanism in Delayed
Response Tasks,” Adaptive Behavior, vol. 10, no. 3-4, pp. 185–199,
2002.

[11] T. Ziemke, D.-A. Jirenhed, and G. Hesslow, “Internal simulation of
perception: a minimal neuro-robotic model.” Neurocomputing, vol. 68,
pp. 85–104, 2005.

[12] R. Grush, “The emulation theory of representation: motor control,
imagery, and perception (with commentary),” Behavioral and Brain
Sciences, vol. 27, no. 3, 2004.

[13] J. Togelius and S. M. Lucas, “Evolving robust and specialized car
racing skills,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2006.

[14] ——, “Evolving controllers for simulated car racing,” in Proceedings
of the Congress on Evolutionary Computation, 2005.

[15] ——, “Arms races and car races,” in Proceeding of Parallel Problem
Solving from Nature. Springer, 2006.

[16] I. Harvey, E. D. Paolo, R. Wood, M. Quinn, E. Tuci, and E. T. Iridia,
“Evolutionary robotics: A new scientific tool for studying cognition,”
Artificial Life, vol. 11, no. 1, pp. 79–98, 2005.

[17] O. Miglino, H. H. Lund, and S. Nolfi, “Evolving mobile robots in
simulated and real environments,” Artificial Life, vol. 2, no. 4, pp.
417–434, 1995.

[18] D. M. Bourg, Physics for Game Developers. O’Reilly, 2002.
[19] M. Monster, “Car physics for games,” http://home.planet.nl/ mon-

strous/tutcar.html, 2003.
[20] H. Marques and O. Holland, “Minimal architectures for embodied

imagination,” in Proceedings of Brain Inspired Cognitive Systems
2006, Lesvos, Greece, 2006.

[21] O. Holland and C. Melhuish, “Stimergy, self-organization, and sorting
in collective robotics.” Artificial Life, vol. 5, no. 2, pp. 173–202, 1999.


