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Abstract—In this paper we use the popular card game
Dominion as a complex test-bed for the generation of interesting
and balanced game rules. Dominion is a trading-card-like game
where each card type represents a different game mechanic.
Each playthrough only features ten different cards, the selection
of which can form a new game each time. We compare and
analyse three different agents that are capable of playing
Dominion on different skill levels and use three different
fitness functions to generate balanced card sets. Results reveal
that there are particular cards of the game that lead to
balanced games independently of player skill and behaviour.
The approach taken could be used to balance other games with
decomposable game mechanics.

I. INTRODUCTION

The field of procedural content generation (PCG) is con-
cerned with algorithms that automatically create various
types of game content. While isolated examples of PCG in
games date three decades back, and the SpeedTree software
is commonly used for creating vegetation in commercial
games, PCG in published games is almost never used for
“necessary” content such as levels and mechanics rather than
just for peripheral, “optional” content such as textures and
collectable items. Further, most PCG algorithms in published
games are not controllable as they generate random content
within bounds.

To address this issue, the term search-based procedural
content generation (SBPCG) [1] was proposed for PCG
algorithms that build on global stochastic search algorithms
(such as evolutionary computation) and fitness functions
designed to measure the quality of game content. Examples
of this approach include the evolution of platform game
levels [2] and racing game tracks [3] and the distributed
evolution of weapons in a space shooter game [4].

Recently, the idea of including the rules of a game in the
definition of “game content” and generating them through
SBPCG algorithms has gained some interest in the PCG
community. Like for other SBPCG problems, devising game
content representations that allows for effective search of the
content space and meaningful fitness metrics appear to be the
main challenges. Functions that accurately measure the qual-
ity of game rules are likely to be simulation-based (according
to the taxonomy presented in [1]), meaning that the functions
build on the game being played by an algorithm, since
their complexity makes an analytical approach very hard.
On that basis, Browne measured the quality of board games
using a number of custom-defined measurements [5], most of
them simulation-based. Togelius and Schmidhuber proposed
a learnability-based fitness function, where the entertainment
values of 2D predator-prey games are estimated by how they
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can be learnt by an algorithm [6]. Salge and Mahlmann
evaluated simple strategy game battles using the information-
theoretic concept of relevant information to determine the
amount of information necessary to play well [7].

Balance is a key concern in game design, and lack of
balance is usually considered detrimental to game quality
(conversely, games such as StarCraft are often praised for
their exquisite balance). Many authors address the problem of
game balancing (see [8]–[13] among others), and predictably
there a number of differing conceptions of what game bal-
ance is. It could mean that the game has a smooth challenge
level throughout a game session, that different players have
the same initial chance of winning despite different starting
positions or resources, or that different strategies can all
be effective given equally skilled player. The existence of
a dominant strategy that wins against all others is usually
considered evidence of poor balancing.

In this paper, we are mainly concerned with balance
between different strategies, and use the card game Dominion
as a test-bed for the design of balanced game rules. Inspired
by earlier work in the field of general game playing we test
three fitness functions that map to game balance metrics;
these fitness functions are based on three Dominion agents
implementing different types of AI. The card sets obtained
generate an interesting discussion and pose some initial
questions about game balancing in Dominion.

II. DOMINION

Dominion is a card game for 2 to 4 players created by
Donald X. Vaccarino and published by Rio Grande Games
in 2008. The game revolves around building a powerful
dominion, which is reflected in all cards’ design. It shares
many game mechanics with popular trading card games (e.g.
Magic the Gathering and Pokémon) like using resources to
buy new cards, separate card decks for each player, and turn
based gameplay with different classes of actions available.
On the other hand, it features no collectable cards or card
trading outside the game; every copy of the game contains
the same cards. At the moment of writing (March 2012) six
expansions of the game have been published, each extending
the game with new cards and rules. Like in other trading
card games, each player has his own deck from which he
draws cards from every turn. That deck contains just a few
cards at the start of the game, but is extended throughout the
game. The goal of the game is to accumulate as many points
as possible represented by victory cards.

Each game session uses a supply of seven basic cards and
ten kingdom cards. The ten kingdom cards are selected before
the start of the game, randomly or by players’ preference,
from a pool of 25 different cards (more with expansion



Fig. 1. A set of five Dominion cards: Copper, Province, Spy, and Festival.

Fig. 2. Typical Dominion setup seen from a player’s perspective. It shows
the supply and the player’s discard pile in the foreground.

sets). This makes more than 2 quadrillion combinations of
card sets possible with the base game alone (our current
implementation only models the base game).

Dominion cards are divided in four main categories (an
example of each card can be seen in Fig. 1):

• Victory cards: contribute to the player’s score.
• Curse cards: victory cards with negative point value.
• Treasure cards: used to buy other cards from the supply.
• Action cards: these cards are used in the action phase to

a variety of game effects. Action cards that harm other
players are called attack cards.

The seven card types present in every game are the basic
treasure cards copper, silver, and gold (each of those cards
provides a different amount of coin value) and the victory
cards estate, duchy, province, and curse (each providing a
different amount of victory points. A typical setup of the
game can be seen in Fig. 2.

Each turn, each player goes through the following phases:
a) Action phase: During this phase a player has one

action which he can use to play an action card from his hand,
if present. The player may gain additional actions, given as
properties of some cards. Example card properties are: “Draw
two more cards from your deck”, “Every player passes a card
to the player to his left”, or “Every card in the supply costs
one coin less this turn”.

b) Buy phase: In this phase the player uses her treasure
cards, which add to the coin value gained in the action phase.
The coins can be spent to buy new cards from supply. Each

card in the supply displays a price ranging from 0 to 8.
Normally players want to include cards from every cost tier
of the kingdom cards, i.e. both cheap and expensive cards.
The player can only buy one card per turn, but there are
action cards which grant additional buys.

c) Clean-up phase: when done with his turn, the player
discards all the cards he played this turn and those left in
his hand on a separate discard pile. He then draws five new
cards from his deck. If there are not enough cards left in his
deck, the discard pile is shuffled and used as the new deck.

The game ends when either the stack of Provinces is empty
or three stacks in the supply are depleted. The player with
the highest amount of victory points wins the game. The
main challenge for players is to develop a strategy to win
the game using the cards on the table. Different strategies
are effective in different games due to the synergy effects
(or the lack thereof) between different cards.

Each play-through generates different dynamics depend-
ing on the cards available which, in turn, yield dissimilar
playing experiences. However, not all card combinations are
interesting or fun to play with. For example, different card
combinations reward different playing styles, and some card
sets are allow for deeper or more diverse gameplay than
others. One card set can be said to more balanced than
another both in terms of differentiating better between strong
and weak players, and in terms of allowing for more different
strategies to be effective when played by a strong player.

The software used in our experiments is based on the
vDom engine which is part of the popular Dominion im-
plementation Androminion [14] for the Android operating
system. Both software programs are free and open source but
not affiliated with the original publisher, Rio Grande Games.
Presently, we only consider two-player games, both in order
to simplify our experiments and the analysis of them.

III. SEARCHING FOR DOMINION CARD SETS

For the experiments presented in this paper we employ an
integer-valued genetic algorithm (GA) [15] that evolves card
sets based on two different fitness functions that attempt to
approximate different notions of interestingness and balance.
Our GA implementation is based on the genetic algorithm
toolkit JGAP [16]. Every experiment reported in this paper
runs for 30 generations using a population of 100 individuals.

The chromosome is a ten-element integer vector where
each element represents a kingdom card. The value of each
gene corresponds to an index of all available cards. Any
chromosome with duplicate cards is invalid; such chromo-
somes are assigned a fitness value of zero but kept in the
population to promote diversity. Below we present the two
fitness functions used to evaluate card sets.

A. Skill differentiation-based fitness

From a pilot survey among the authors and their fellow
Dominion players we gained the impression that players who
self-reported to be a skillful enjoyed a game more if they
could achieve a clearer win (leading by a larger amount of
victory points) over their opponents. We therefore derived



the hypothesis that an interesting card set would allow more
skilled players to win by a larger amount of points. Thus, a
card set will be interesting if the victory point difference at
the end of the games including that card set is high. For our
skill differentiation fitness function we simulated a number of
N games per card set (N is 1000 in this paper) and calculated
the average victory point difference. The fitness function, fs
is formalised as:

fs =

∑N
i

hi−li
hi

N

where hi is the score of the winning player in game i and
li the score of the losing player in that game. Note that in
one experiment we instead minimised the score difference;
in that experiment the formula 1− fs was used instead.

B. Game metric-based fitness

The second fitness function we used is based on the work
of Cincotti et al. [17] on the Synchronized Hex game. Using
MCTS roll-outs in each of the game’s turn, they measured
the uncertainty of the outcome of the game. With the game
progressing, it normally gets easier to predict the winner
of a game. Cincotti et al. argued that in a good game this
uncertainty stays high until a very late point in the game. An
uninteresting game, where the winner is determined early,
might bore the players if there is no possibility to compete
for the second and third place.

The computational cost of the MCTS rollouts proved to
be a problem in that study as MTCS performance depends
on the branching factor of the game, which is rather high
in Synchronized Hex. Browne [5] was inspired by the idea
of Cincotti et al. [17] and further developed the concepts
of “Lead changes” and “Decisiveness”. He applied those
measurements for the design of two player combinatorial
games and used PCG techniques to create “interesting”
board games. We first describe those two principles and the
quantitative measures that encapsuate them in Dominion, and
we then present the fitness function that we constructed based
on these measures.

1) Lead changes: refers to the concept of the leading
player. While there are some games where this concept
does not apply (especially folk games), board- and video
games normally provide a metric that determines how far
a player is from winning or losing the game. Note that this
information may be hidden from the players during play, even
when it is well-defined. For every turn the leading player
is determined. If it differs from the previous turn a “lead
change” has occurred. Browne follows the hypothesis that
more lead changes may provide a more exciting game play.

It is not trivial to determine neither which player is leading
nor which player will win a Dominion game. It is not as
simple as simply counting the victory cards in the possession
of each player at any time (the material balance of e.g. Chess
and Checkers). The reason is that in most games a player
will try to accumulate as many treasure and action cards
as possible before buying their victory cards. Since victory
cards are also shuffled into the player’s deck, they reduce

the chance of drawing a more beneficial card in the early
game phase. Therefore, in early game phases, most players’
deck will contain few victory cards but, instead, numerous
treasure cards which are worthless at the end of the game.

This creates the necessity for a precise estimator of which
player is leading the game. We opt to train an Artificial Neu-
ral Network (ANN) (employing logistic transfer functions)
using backpropagation to predict the leader of the Dominion
game in every turn resulting in one ANN model per turn.
We choose ANN for their non-linear classification abilities
and their universal approximation capacities. The input of the
ANN is normalised to [0,1] and and it contains the following
20 values per player in the game:

• Number of action cards gained in this turn.
• Number of treasure cards gained in this turn.
• Number of victory cards gained in this turn.
• Accumulated number of action cards gained over the

last five turns.
• Accumulated number of treasure cards gained over the

last five turns.
• Accumulated number of victory cards gained over the

last five turns.
• Number of action played in this turn.
• Number of buys used in this turn.
• Total number of actions available in this turn.
• Total number of buys available in this turn.
• Accumulated number of actions over the last five turns.
• Accumulated number of buys over the last five turns.
• Total number of actions available accumulated from the

last five turns.
• Total number of buys available accumulated from the

last five turns.
• Number of curses other players have.
• Coin value of the treasure cards held, divided by the

total deck size (money density).
• Total number of action cards in a player’s deck.
• Total number of treasure cards in a player’s deck.
• Total number of victory cards in a player’s deck.
• The player’s victory points.

For a two-player game we used an ANN with 40 input
nodes, a layer of 10 hidden neurons, and 3 output nodes. Note
that we trained a separate network for each turn, therefore
the current turn is not fed into the network. Each output node
represents one of the following outcomes: player one wins
the game, player two wins the game, or the game ends in a
draw. The output node with the highest value is selected as
the most probable game outcome.

For each card set, 1000 games are played and used to train
the ANN. Then another 1000 games were played using the
trained network and in each turn the predicted leader of the
game was tracked. The number of lead changes is normalised
to the total number of turns, T , in a game.

2) Decisiveness: is related to the outcome uncertainty
of the game and measures the point in the game where
the leading player reaches a winning advantage (Decisive
Threshold) over the other player, i.e. when the player lead



changes. Ideally this point comes very late in the game and is
also followed by a very short end phase. So the decisiveness
value is the ratio of turns before and after the decision point.
For our experiments we normalise the decision point to the
number of total turns in that game:

fd =
tl
T

where tl is the turn in which the last lead change occurred,
and T is the total number of turns in that game.

3) Fitness function calculation: Lead change combined
with decisiveness measures have already been successfully
applied to different configurations of turn-based strategy
games [18]. Like in that study, the final fitness function is
constructed by forming the average of both measurements:

f =
fd +

L
T

2

where L is the number of lead changes.

IV. AI-CONTROLLED DOMINION PLAYERS

We used three different AI-controlled Dominion players
for our experiments: two agents are shipped with the VDom
game engine (Drew and Earl) and a player controlled by
a combination of NeuroEvolution of Augmented Topolo-
gies (NEAT) [19] and Monte-Carlo Tree Search [20], [21];
this Dominion player was developed by Fynbo and Nelle-
mann [22]. Initially a fourth random agent, which bought
and played cards on a random basis, was developed for the
experiments. However, this player was abandoned due to its
very poor performance (low win rate), making experiments
involving that agent degenerate. Such a low performance for
a random player, and much better performance for existing
artificial players, show that there is a considerable skill
element in Dominion which can at least partly be captured
by heuristics. However, although there are many decisions
on a tactical level that are quite obvious (e.g. which cards to
discard, or which action card to play) and are easily solved
with a deterministic heuristic, it is not straightforward how
to develop an overall strategy that provides a fair challenge
against experienced human players.

A. The Earl Player

The Earl player goes through a priority queue (also known
as “greedy buy”) based on the amount of available money
in its hand to buy a card. This way high valued cards like
provinces or gold are always bought. In the mid-game this
decision is overridden by always buying a duchy card. Every
cost tier has a set of defined cards to buy. If those cards are
not available, Earl continues with the next lower tier. In the
action phase Earl favours the Throne Room card if he has
another card from a pre-defined list of cards in his hand.
This decision is fed into the decision of the next action card
to play. The next action cards preferred are those that give
additional actions or (if non of these is available) those that
cause negative effects to other players, e.g. the Thief or the
Militia card. If none of these cards are present either, the
remaining cards are passed into a sanity check (i.e. cards

that make no sense to play in the current context are sorted
out) and a random card is selected.

B. The Drew Player

The Drew player is making decisions based on the progres-
sion of the game. Drew includes ad-hoc designed thresholds
for the predefined card sets (those that come as recommen-
dations with the game’s manual) and an “improvise” setting
for a random game. It always favours the high victory cards
and high treasure cards until the mid game, and has a number
of cards set as “valued cards”. If those are not available, it
buys a random card. In the action phase, Drew first plays all
the cards that would give the player additional actions in any
order, then any cards that multiply other cards’ effects, and
finally other reaming action cards in a random order.

C. Fynbo’s and Nellemann’s Player

This player, which is trained via neuroevolution using
the NEAT algorithm [19], was originally developed by
Fynbo and Nellemann [22]. The player was ported by us to
fit into the vDom framework. The player comprises of two
artificial neural networks (ANNs): one for selecting which
next card to buy, and one to select which action card to play.

a) Action phase: The player makes use of the general
Monte Carlo Tree Search [20], [21] algorithm. The original
algorithm is not feasible for this problem (since some actions,
e.g. drawing new cards from the player’s deck, would branch
the tree by a huge number of possible outcomes), and
simulating the whole game until its end is rather costly.
Instead, Fynbo and Nellemann developed a variant that was
inspired by a solution proposed by Ward and Cowling for
Magic: The Gathering [23]. For each action card in the
player’s hand a number of random simulations are performed
in which the tree is expanded until the player runs out of
actions or action cards. The resulting state is then evaluated
by another ANN. The ANN evaluating the game state takes
the following features as inputs (all normalised to [0,1]):

• Number of extra buys
• Number of extra coins (from treasure cards and action

cards’ effects)
• Number of Militias played
• Number of Witches played
• Number of Bureaucrat played
• Total coin value stolen by a thief
• Number of Spy effects
• Number of Remodel plays
• Number of Chapel plays
• Number of Chancellor plays
• Number of Council room plays
• Number of Mine plays
• Number of Money Lender plays
• Total number of coin in gains
• The estimate of the game’s progress (using a separate

evaluation function)
• Constant bias

Each resulting game state is assigned a value and the action
card sequence that yields the highest valued state is played.



TABLE I
FITNESS GROWTH BETWEEN FIRST AND LAST GENERATIONS. MAXIMUM
FITNESS IN GENERATION 1 AND 30, AVERAGED OVER 30 RUNS (fs AND

1− fs) OR 5 RUNS (f ), STANDARD DEVIATIONS OF THOSE AND P
VALUES FOR A TWO-TAILED STUDENT’S T-TEST. THERE IS SIGNIFICANT

FITNESS GROWTH FOR ALL EXPERIMENTS.

〈First〉 〈Last〉 σFirst σLast p <
Skill (fs)

Earl vs. F-N 0.44 0.64 0.07 0.04 0.0001
F-N vs. Drew 0.38 0.57 0.06 0.008 0.0001
Drew vs. Earl 0.28 0.65 0.05 0.04 0.0001
Skill (1− fs)
Earl vs. F-N 0.98 0.99 0.01 0.0001 0.0001

F-N vs. Drew 0.99 0.998 0.008 0.0002 0.0001
Drew vs. Earl 0.994 0.999 0.005 0.0002 0.0001

Lead changes (f )
Earl 0.43 0.24 0.191 0.131 0.0337
F-N 0.52 0.62 0.101 0.083 0.0706

Drew 0.06 0.05 0.02 0.01 0.6013

b) Buy phase: The ANN that decides whether to buy
a card takes as input the general game state and five inputs
for every kingdom card (“every” refers to all the cards that
come with the base game, not just those which are in the
current card set). Those inputs are:

• average value of the highest value card gained in the
last three rounds.

• the average coin value per card, based on treasure cards.
• the same measurement as the previous, but for the

opponents.
• the output of a progress evolution function that tries to

determine how far the game is to its end
For each kingdom card the following inputs are considered:

• whether the card is available in the current game
• the number of remaining cards in the pile on the table
• the number of cards in the player’s own deck
• the number of cards in opponents’ decks
• a control signal. The control signal of the current card

is set to 1, otherwise the control signal is set to 0.
This technique for ANN input selection is inspired by
Stanley [24].

Each input value is normalised between [0,1] using standard
min-max normalisation. The single output of the network is
an indicator of how promising the currently evaluated card
is. The card with the highest output is selected to be bought.

Since the number of inputs is fixed, the agent is limited
to play only with the cards in the base game, but it could
easily be generalised and trained to play with one or more
of the game extensions as well. However, the training effort
would make this approach improbable on current hardware
due to the increased number of inputs.

V. RESULTS

As a first experiment we wanted to make sure that all
three AI agents showed different skill levels, assuming that
this would correspond to a different playing style for each
agent. For that purpose we matched up two agents and let
them play a number of 50000 games, each with a different
card combination we randomly sampled. The results can

TABLE II
THE NUMBER OF WON GAMES BETWEEN THE DREW, EARL AND
FYNBO-NELLEMANN (FN) AGENT, USING A NUMBER OF 50000

RANDOMLY SAMPLED CARD SETS (DRAWS COUNT AS A VICTORY FOR
BOTH PLAYERS).

Drew vs. Earl 23827 29474
Drew vs. FN 19484 31958
Earl vs. FN 34190 17399

be seen in table II. where we observe performance (win
rate) differences among the three AI agents. The win rate
differences show that the three agents employ different
playing tactics. Draws are counted as a win for both players.

For the main study presented in this paper we run nine
separate sets of experiments. In each trial, one of the three
fitness functions (fs, 1−fs and f ) was used and the scores of
each individual in each generation was logged. 30 repetitions
were carried out of the experiments involving the first two
functions, but due to computational resource constraints only
5 repetitions were carried out of the experiments involving
f . Table I presents the numerical results of several runs of
the experiments. As a note on the computational effort of the
experiment, a run of the genetic algorithm with a population
size of 30 over 30 generations and the fs fitness function took
between 5 and 12 hours on a 2 GHz dual-core computer. We
used the second core to train multiple ANN in parallel where
applicable.

We recorded several runs for each fitness with each AI
agent. The skill differentiation function (fs), which requires
two agents, ran with all possible combinations of AI-agents.
In this initial set of experiments we did not consider the order
of play. The experiment with the game metrics-based fitness
ran with two instances of the same agent playing against each
other. This was done to prevent the predictor of the leading
player learning which agent was first and which was second.

A. Maximising the skill difference

The line-plots of the average and maximum fitness values
of the fs maximisation experiments (see Fig. 3(a), Fig. 3(b),
and Fig. 3(c)) show that the GA seems to converge on a local
optimum value at the 15th to 18th generation, approximately.
This behaviour was repeated by re-running the algorithm
for 3 times. Figure 3(a), Fig. 3(b), and Fig. 3(c) show the
results of the first run. The only card that was selected all
three times, independently of the AI player pair, is the cellar;
although Militia, Witch, and Woodcutter show up twice (see
table III(a)). The key findings of this set of experiments are
further discussed in Section VI.

B. Minimising the skill difference

In this set of experiments we, instead, attempt to mimimise
1−fs. The resulting card sets that can be seen in table III(b)
while the evolution of the average and maximum fitness
values are plotted in Fig. 4(a), Fig. 4(b), and Fig. 4(c).
Investigation of the highest performing card sets reveal that
all three sets include the bureaucrat card (see table III(b)).
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(a) Drew vs. Earl
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(b) Drew vs. Fynbo-Nellemann
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(c) Earl vs. Fynbo-Nellemann

Fig. 3. Maximising skill difference: Evolution of the fs fitness across
different player types.

The bureaucrat card forces the other player to put a victory
card from his hand back onto his deck thus drawing it again
next turn. If played repeatedly, this may actually hinder
the opponent player hence countering his skilful play. The
second card which exists in all three card sets — across
player combinations — is the spy card. Finally, there are five
cards which appear at least twice in the sets: the cellar, the
chancellor, the gardens, the throne room, and the witch card.
Apart from the witch card which is an attack card, and the
throne room card which is a multiplier for other cards, it is
hard to see what impact those cards have on skill difference
minimisation. The results are further discussed in Section VI.

C. Maximising for lead changes and decisiveness

Our attempts to maximise lead changes and decisiveness
yielded somewhat inconclusive results, with the high noise
level of this fitness measure coupled with the substantial
computational complexity hindering us from finding statis-
tically significant fitness growth. As can be observed from
Fig. 3(c), Fig. 5(a), and Fig. 5(b), all three runs show similar
convergence characteristics; nevertheless, the fitness values
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(a) Drew vs. Fynbo-Nellemann
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(b) Earl vs. Fynbo-Nellemann
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(c) Drew vs. Earl

Fig. 4. Minimising skill difference: Evolution of the 1- fs fitness across
different player types.

differ substantially between the three AI agents tested. The
resulting card sets (see table III(c)) are also much more
diverse between agents than in the other experiments. The
following section discusses these findings further.

VI. DISCUSSION

The results of the first experiment, which compared the
performance of the three AI agents, showed that playing
skill is not transitive: Drew and Earl showed nearly equal
performance against each other; however, Drew lost against
Fynbo-Nellemann’s player while Earl dominated that player.
As part of future research we would like to further analyse
which types of games are lost by which AI agent in the
future and examine the relationship between playing styles,
card sets and playing performance in Dominion.

Optimising card sets for minimising skill differentiation



TABLE III
RESULTING CARD SETS WITH THEIR CORRESPONDING (HIGHEST) FITNESS VALUES OBTAINED IN EACH EXPERIMENT

(a) Maximising skill difference (fs)

Drew vs. Earl Adventurer Cellar Chapel Council Festival Laboratory Mine Remodel Village Workshop 0.596
Drew vs. F-N Chancellor Cellar Militia Moat Smithy Thief Throne Village Witch Woodcutter 0.592
Earl vs. F-N Bureaucrat Cellar Chancellor Library Militia Smithy Spy Thief Witch Woodcutter 0.639

(b) Miminising skill difference (1− fs)

Drew vs. Earl Bureaucrat Chancellor Festival Gardens Library Remodel Spy Throne Village Witch 1.0
Drew vs. F-N Adventurer Bureaucrat Cellar Chancellor Chapel Council Gardens Mine Smithy Spy 1.0
Earl vs. F-N Bureaucrat Cellar Feast Laboratory Library Market Spy Throne Witch Woodcutter 1.0

(c) Maximising lead changes and decisiveness (f )

Drew Adventurer Bureaucrat Council Laboratory Market Money Lender Smithy Spy Thief Witch 0.458
Earl Adventurer Cellar Feast Festival Gardens Market Militia Moat Smithy Village 0.59
F-N Council Festival Gardens Laboratory Market Militia Spy Remodel Witch Workshop 0.894
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(c) Fynbo-Nellemann vs. Fynbo-Nellemann

Fig. 5. Maximising lead changes and decisiveness: Evolution of the f
fitness across different player types.

yielded consistently good results, quickly finding card sets
that allowed one agent to reliably win over the other. It
is likely that evolution found card sets that exploited the
inability of the agents to play with arbitrary card sets; in
other words, that evolution found exploits or bugs in the
agents. Since all generated card sets contained several attack
cards, it could be also possible that the AI agents hindered
each others play and, therefore scored evenly.

The results from the skill maximisation experiment were
less clear: the only card that is included in all three winning
sets was the cellar card. The cellar card lets players toss
unimportant cards (in a given turn) from their hand and draw
new ones from the deck. When creating a Dominion strategy
one has to consider that all cards that are bought (including
victory cards) go into the deck of the player. Thus, the higher
the number of potentially important cards in the deck is,
the lower the probability to draw a beneficial card from the
deck. Novice players often ignore this mechanic and buy as
many cards as they can get each turn. Given this observation
we suspect that a highly skilled player may use the cellar
to counteract this problem and, therefore, achieves a clearer
win over an unskilled player.

We have seen that most card sets generated contain one
or two attack cards. This was expected as without attack
cards the player interaction in Dominion is rather minimal:
the only possibility to affect the opponents’ progress is to
buy certain cards from the supply before the opponents
buy them. Yet attack cards are not mandatory to include in
the supply and many players enjoy a game with minimal
player-to-player interaction. Others enjoy playing Dominion
by actively sabotaging the opponents’ play through stealing
cards from them (Thief card) or giving them curses (Witch
card). It is interesting that our experiments — which are
driven by fitness functions that relate only implicitly to player
experience — show that those cards do not only serve an
entertainment purpose, but they constitute a critical element
of the game’s balance.

This paper presented an initial set of experiments testing
balance in Dominion. As part of our future research agenda,
we aim to test the game with more AI-controlled players and



different fitness functions. We also believe that this method
could be used more generally to help design and balance
other games. Each card in Dominion represents a single
game mechanic, and including the card in a set translates
to enabling the corresponding mechanic. By analogy, one
could modify other games to enable the toggling on/off
of individual mechanics, and search the space of sets of
mechanics for game variants that induce certain kinds of
balance or unbalance with regard to agents or sets of agents.
Depending on the level of abstraction, even simple games can
be said to have numerous mechanics – e.g., Super Mario Bros
has running, jumping, run-jumping, wall jumping, shooting,
stomping, crouching, jumping while crouching and many
others. A complex strategy game such as StarCraft of fighting
game such as Street Fighter II has such a wealth of mechanics
that it is scarcely humanly possible to keep track of how
they interact with each other. Searching the space of sets of
mechanics, on the other hand, is not a hard problem given
appropriate fitness functions and agents to base them on.

VII. CONCLUSION

In this paper we used three different fitness functions to
evolve different sets of cards for the Dominion game with the
aim to make it more balanced. We tested our genetic search
algorithm against three agents that are capable of playing
Dominion on different skill levels and we compared their
performance. Results obtained show that there are particular
cards in Dominion that make the game more balanced
independently of playing styles. We have also argued that
the method used here can be used more widely for automatic
game design and game balancing.
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