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Abstract. The Strategy Game Description Game Language (SGDL)
is intended to become a complete description of all aspects of strategy
games, including rules, parameters, scenarios, maps, and unit types. One
of the main envisioned uses of SGDL, in combination with an evolution-
ary algorithm and appropriate fitness functions, is to allow the genera-
tion of complete new strategy games or variations of old ones. This paper
presents a first version of SGDL, capable of describing unit types and
their properties, together with plans for how it will be extended to other
sub-domains of strategy games. As a proof of the viability of the idea and
implementation, an experiment is presented where unit types are evolved
so as to generate complementary properties. A fitness function based on
Monte Carlo simulation of gameplay is devised to test complementarity.

1 Introduction

Strategy games are one of the most enduring and consistently popular game
genres, and have been around in one form or another for hundreds of years. This
genre of games is famous for being one of the most cerebral; world championship
tournaments exist for several such games. Meanwhile, the long learning curve and
strong skill differentiation usually leads dedicated strategy game players to de-
vote immense amounts of time to playing those games. Strategy games designed
to mimic real life scenarios are commonly used for training and simulation. At the
same time, the design, development and balancing of a modern digital strategy
game such as the latest installments of the Civilization or Starcraft series is very
labour-intensive and therefore expensive. Automating the design, development
and tuning of strategy games would therefore be highly desirable.

The field of procedural content generation (PCG) is devoted to algorithms
that automatically create various types of game content. While isolated exam-
ples of PCG in games date three decades back, and the SpeedTree software is
commonly used for creating vegetation in commercial games, it is very rare to
see PCG used for “necessary” content such as levels and mechanics rather than
just for peripheral, “optional” content such as textures and collectable items
in published games. Further, most PCG algorithms in published games are not
controllable, simply generating random content within bounds.

Recently, the term search-based procedural content generation (SBPCG) was
proposed for PCG algorithms that build on global stochastic search algorithms
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(such as evolutionary computation) and fitness functions designed to measure the
quality of game content [14]. Examples of this approach include the evolution of
platform game levels [7], of racing game tracks [11] and the distributed evolution
of weapons in a space shooter game [3].

But what about the most fundamental aspects of games: their rules and
the mechanics they imply? A language for describing the rules of a game (and
possibly other aspects) is known as a game description language (GDL). Several
GDLs have been proposed for different purposes. The Stanford GDL, created for
the general game playing competition, is a relatively genre-independent language
yet limited to perfect information games with discrete state space [6]. Based on
first-order logic, the Stanford GDL tends to be rather lengthy: a description of
Tic-Tac-Toe is approximately 3 pages long. Browne’s Ludi GDL trades generality
for conciseness — by limiting itself to two-player board games with restrictions
to pieces and boards, it allows Tic-Tac-Toe to be described in 6 lines [1]. An
interesting GDL variation is Smith’s and Mateas’ Ludocore, which expresses 2D
arcade games using logic programming [10]. To the best of our knowledge, a
GDL suited for describing strategy games has not yet been introduced.

Measuring the quality of a rule set appears to be a rather challenging task.
It is not clear what sort of rule set qualities one would like to incorporate within
a utility function. Meaningfulness and accessibility of a rule set are two options
among many. Some recent work has focused on the design of fitness functions
based on empirical measures of player experience, but this has not yet been
attempted for strategy games [16, 7, 17]. While a human can to some extent
judge the quality of level or character design of a game by just looking at it,
you need to play a game to judge the quality of its rule set; it stands to reason
that the same should be true for algorithms. Therefore, functions that accurately
measure the quality of game rules are likely to be simulation-based (according
to the classification presented in [14]), meaning that the functions build on the
game being played by an algorithm. Browne measured the quality of board games
using a number of custom-defined measurements [1], most of them simulation-
based. Togelius and Schmidhuber proposed a learnability-based fitness function,
where the entertainment values of 2D predator-prey games are estimated by
how they can be learnt by an algorithm [13]. Salge and Mahlmann evaluated
simple strategy game battles using the information-theoretic concept of relevant
information to determine the amount of information necessary to play well [9].

The only study of search-based PCG applied to strategy games that we are
aware of is focused on evolving maps for such games [12]. While the approach
taken in that work could conceivably form a component of a system for gener-
ating complete strategy games, it only addresses one aspect of strategy games.

In this paper, we investigate how PCG techniques could be potentially ap-
plied to all aspects of strategy games. Our aim is to create games that have
the potential for deep gameplay : games where a multitude strategies are possi-
ble, and that reward exploring ever more sophisticated strategies . We advocate
a search-based approach based on a customized game description language and
simulation-based fitness functions. The contributions of this paper are as follows:
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1. A plan for a strategy game description language (SGDL) for all aspects of
strategy games;

2. some examples of SGDL in the domain of unit types;
3. a simulation-based fitness function for measuring the complementarity of

units; and
4. an experiment where the SGDL fragment and the fitness function are com-

bined to evolve sets of unit types.

2 The Strategy Game Description Language

This section presents the main elements of the strategy game description lan-
guage including our design criteria and SGDL’s overall structure. Our design
criteria for SGDL are that it should be:

– complete: able to model all, or almost all, aspects of a rich variety of strat-
egy games, including some published and successful games.

– evolvable: be easy to search within. One of the main implications of this
property is that the language should have a high locality, meaning that that
similar descriptions (genotypes) in general give rise to games (phenotypes)
with similar fitness values.

– human-readable: it should be easy for a human to understand and edit
SGDL strings (genotypes) and understand their meaning, at least on a micro-
level.

2.1 Overall structure

A strategy game can be decomposed into three layers:

1. The mechanics layer. This layer determines the fundamental rules of the
game, such as what an attack action is, what it means to win the game and
in what type of game environment units are placed on (e.g. on a 2D grid).

2. The ontology layer. This layer specifies the types of key elements that may
exist in the game (e.g. rivers, mountains, tanks and factories) as well as their
properties (e.g. mountains have movement cost 5 for ground units).

3. The instance layer. The setup of an individual match, campaign or battle
are specified within this layer: the layout of the map, initial placement of
units, and any particular conditions that might apply (e.g. there is no fog of
war and the battle is lost if enemy survives after 100 turns).

We propose to describe at least the mechanics and ontology layers using a
tree-based representation, similar to the most common representations used in
genetic programming [8]. In the following, we reveal the basic structure of SGDL
using a strategy game unit as an example. Units are the most common game
elements a player can interact with in a strategy game. Units can be compared
to the pieces of a board game such as Chess. Furthermore, the challenge of the
game is increased since units usually belong to different classes which provides



4

them with dissimilar abilities and properties. A game often uses its theme to
make it more intuitive what the differences are, e.g. tanks and airplanes are
intuitively seen as objects with different properties.

In SGDL, an object class consists of three components: (1) A unique al-
phanumerical name/identifier ; (2) a set of attributes that are either numerical,
alphanumerical or boolean; and (3) a set of actions that consist of conditions
and effects. All these key components can be seen as nodes in a structural tree.

Unit class

Attributes Actions

Since the left Attributes subtree of a unit only consists of leaf nodes pairing an
alphanumerical identifier and a value, we’d like to focus on the Actions subtree
in this paper. Before we discuss this, we would like to give a short overview of
the structure. Our language currently supports the following nodes:

1. Actions (triangle shape) are container nodes, combining conditions and con-
sequences. If an action is invoked, all conditions are tested against the invo-
cation parameters. If all return true, all consequences are executed.

2. Comparators (oval shape) combine their children’s outputs and return a
boolean value to their parent. There are also two special types for this class:

(a) Object reference or parameter nodes can be used to refer to an instance
of a class that was passed into the current invocation of the action.

(b) Special function nodes take a parsable string and one or many child
nodes’ outputs to perform operations such as accessing the game’s map.

3. Operators (diamond shaped) have different behaviours depending on their
value: set operators like = or ! combine the value of their right child with the
operator and assign the outcome to their left child. Mathematical operators
(+,−,∗,/) behave like comparator nodes, but return numerical values instead.

4. Constants (circular shaped) are leaf nodes and may contain contain a con-
stant alpha- or numerical value.

Actions are sets of if ... then rules for each unit the player may choose from.
While the instance layer should define when a player may choose an action, the
mechanics layer defines the conditions and outcome of an action. We describe
how to express conditions and consequences below.

The representation of conditions mirror the parsed form of mathematical
tests, e.g. the simple mathematical formula a > b can be represented as seen
in Figure 1(a). Consequences can also be seen as mathematical operations, e.g.
variable assignments. In Figure 1(b) we show how to represent the action A with
the condition a > b and the consequence let x = 3 .

While conditions like if attribute x can be assigned 3 then ... would theoreti-
cally be possible, we exclude these cases for now as they would generate unwanted
side effects on condition testing; it would be possible to alter the game state by
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Fig. 1. Two elementary bits of SGDL

testing actions that are prevented from happen by other conditions. One way to
solve this would be to duplicate all referenced values during testing.

On the other hand, consequences may also trigger a sequence of follow-up
actions. Figure 2(a) should be read as: if a is greater than b then let x be 3 and
if additionally c equals d then let y be 5.

Figure 2(b) depicts the action Go North, which is used by units capable of
moving on a two-dimensional quadratic map: The action is possible if the output
of the special MAP node equals null. That node has two input parameters: the
x attribute of the first object passed into the action and its y attribute subtracted
by one. The consequence is that the first object’s y attribute is in fact subtracted
by one. While the other movement actions are modelled similarly, the attack
actions are more complex and involve a target object.

3 Evolving complementary unit types

As a proof of concept, and of implementation, we conducted an experiment where
we evolved complimentary unit types. A set of unit types is complimentary when
they have different strengths, so that each of them is better than the others
in some respect; and when combining the units is in general better to have
a balanced set than having the equivalent number of units of only one type.
Many strategy games include the unit types infantry, artillery and helicopter (or
something similar), where each unit type has unique strengths and weaknesses so
that a successful strategy depends on using them in combination. To emphasize
how important this aspect is for commercially successful strategy games, we
would like to point out that the closed beta testing for Blizzard’s Starcraft II
ran over five months with 40.000 players participating [15].

3.1 Method

We designed a very simple strategy game for our studies. The game takes place
on a 10×10 regular quadratic map. Each player has three units, and those start
evenly spaced out on opposite sides of the map. Each turn, one player can move



6

A

>

a b

=

x 3

B

==

c d

=

y 5

(a) An example of SGDL

goNorth

==

MAP

OBJECT(0)

x

−

OBJECT(0)

y

1

null

=

y −

OBJECT(0)

y

1

(b) A simple Go North example

Fig. 2. Tree demonstrating a more complex example and an action used in our test
bed.

or attack with one of his units1. A unit can move one step north, south, east,
west, or attack one of the enemy units. Units cannot move outside the map or
attack a unit which is not within their range.

Each unit type has seven attributes: health (range [0, 100]), ammunition
([0, 100]), three attack values ([0, 100]) and both maximum and minimum at-
tack range ([0, 6]). The attack values determine the damage that can be done
by one shot on each of the enemy unit types. This means that to define a com-
plete set of unit types, 21 values need to be specified (seven per unit class; three
classes in the game). Additionally, the value range restrictions are dropped after
the genome was created, letting the genetic algorithm change values arbitrarily.

1 We realize that this design choice, which was due to computational efficiency con-
siderations, in some ways makes our game resemble a traditional board game rather
than a strategy game; this is discussed further in Section 4.
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In order to search this 21-dimensional space for sets of complementary unit
types, we employed a µ+ λ evolution strategy with µ = λ = 50. For simplicity,
neither crossover nor self-adaptation was used. The mutation operator added
Gaussian noise with µ = 0, σ = 0.1 to all values in the genome. The gene values
were normalized to real values in the range [0, 1].

Designing a fitness function capable of accurately measuring unit type set
complementarity proved to be a challenge. As a prerequisite for a simulation-
based fitness function we need to be able to play out battles automatically. This
was achieved through Monte Carlo tree search (MCTS) with upper confidence
bounds applied to trees (UCT) [5]. When playing a game, each player has to
choose between a minimum of 2 and maximum of 21 available actions at each
turn, depending on the number of units at his disposal, how many targets are in
range and where units are placed. Action selection works by taking each action
in a copy of the game engine, and do 100 rollouts of random action sequences;
the action with the best average outcome (defined as difference in total health
between the two players) is chosen. The initial rollouts are 5 turns long. If the
difference between the outcomes of different actions is not significant with the
5-turn rollouts, 20-turn rollouts are performed.

Building on this foundation of automated gameplay, the actual fitness func-
tion was implemented as follows: six battles were played for each unit type set.
Balanced unit sets (denoted ABC) played against unbalanced sets with units
of only one type (AAA, BBB and CCC). Three games where played where the
balanced unit set started the game, and three games where the unbalanced set
started. The fitness was defined as the minimum fitness achieved by the balanced
set in any of the six games. To minimize noise, the fitness calculation was aver-
aged over 200 trials (t). This led to a computationally expensive fitness function,
taking more than a minute of computation on cluster node (a Core 2 Duo with
2.4GHz and 2GB RAM). More formally, the fitness of a genome is:

F := min(

∑t
a1 + a2
t

,min(

∑t
b1 + b2
t

,

∑t
c1 + c2
t

))

where a1, a2, b1, b2, c1, c2 are defined as 1 if the player with the balanced set has
won against the according non-balanced set, or 0 otherwise, and t = 200.

3.2 Results

Our first experiment was a sensitivity analysis of the fitness function. Fifty
genomes were generated with uniformly random values, and their fitnesses were
measured. Each fitness evaluation consisted of 50 trials, each of 1200 games.
The average fitness was 0.05, with a between-evaluation standard deviation of
0.07; min and max fitness values were 0.0 and 0.3 The average standard deviation
within these evaluations was 0.01. A positive correlation (strength 0.74) between
fitness and within-evaluation standard deviation was observed (see Figure 3).

We ran several evolutionary runs of 100 generations, each one taking several
days on a cluster of six computers. A graph of a typical run is depicted in Fig-
ure 4. An early and steady increase in the maximum fitness value suggests that
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Fig. 4. Average and maximum fitness during an evolutionary run.

the fitness function can be optimized effectively using a standard evolutionary
setup; the maximum fitness reaches 0.86 in the run illustrated here.

3.3 Analysis of evolved unit type sets

A key research question in this experiment is whether the fitness function accu-
rately captures the desired property of complementarity, and whether the highly
fit unit type sets are more interesting to play than poorly fit sets. To shed some
light on this, we analyse a few evolved unit type sets.

Table 1 presents one unit type set with fitness of 0.0. We can see that that
this particular set contains two basically non-functional unit types: the A and
C unit types are unable to shoot given that their shooting range is zero. While
games against AAA and CCC will always end in favor of ABC, ABC will never
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Type Health Ammo Attack 1 Attack 2 Attack 3 Min range Max range

A 53.0 33.0 60.0 20.0 92.0 10.0 0.0

B 82.0 78.0 85.0 60.0 62.0 0.0 23.0

C 39.0 45.0 37.0 100.0 12.0 0.0 0.0

Table 1. A unit type set with fitness 0.0.

Type Health Ammo Attack 1 Attack 2 Attack 3 Min range Max range

A 46.0 69.0 61.0 71.0 71.0 2.0 5.0

B 6.0 43.0 22.0 90.0 22.0 3.0 5.0

C 36.0 82.0 40.0 47.0 6.0 2.0 4.0

Table 2. A unit type set with fitness 0.24.

win against BBB. Even though ABC contains one functional unit and may even
kill one unit of BBB, it will always be eliminated by the second unit of BBB.
Therefore there exists a dominant combination that always wins over all other
combinations, making this configuration very uninteresting to play.

Table 2 presents a set with fitness of 0.24, which is a mediocre score. While
all three unit types appear to be functional and have different strengths and
weaknesses, this configuration does not perform very well. We believe that this
might be due to the observation, that all three types have very similar minimum
and maximum ranges. In conjunction with the alternating turn order it may
become a losing proposition to ever engage an enemy unit. The unit that moves
in range first will inevitably be the first one to take damage since the enemy
moves next. As our MCTS-based player will avoid such moves, most games will
be counted as unplayable after a turn limit of 100. The positive fitness is probably
because some games are won by one party or another by pure chance.

Table 3 presents the top-scoring individual found during one evolutionary
run described above. The unit types’ attack values are rather complementary
— each unit type vulnerable against at least another type. We see also see that
type B has the highest attack values on average as well as far more health than
the others. Type A and C can be seen as support units, while type B is more
of a general purpose combat unit.Range and ammunition values are such that
all units may shoot over the whole battlefield with no shortage of ammo. If
we recreate this scenario in our simulator, we observe that a round often ends
after a series of one-hits, meaning a unit kills another unit with one shot. There
is no spatial movement necessary anymore. Nevertheless, it turns out that the
balanced set in fact wins over the unbalanced set most of the time. While this
genome seems to score high with our fitness function, we doubt that this unit
configuration will appeal to players at all. The generated solution reduces the
gameplay to a few simple decisions on which unit to shoot and in what sequence.
Therefore, the level of gameplay complexity we aimed for is not reached. One
way of avoiding this problem in the future would be to limit the range values.
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Type Health Ammo Attack 1 Attack 2 Attack 3 Min range Max range

A 28.0 89.0 89.0 65.0 74.0 4.0 28.0

B 61.0 70.0 56.0 88.0 40.0 0.0 16.0

C 16.0 75.0 92.0 51.0 10.0 0.0 11.0

Table 3. A unit type set with fitness 0.83.

4 Discussion

In this paper, we have introduced the first steps towards the automatic design
and balancing of complete strategy games. We have described the basic structure
of a strategy game description language, a simulation-based fitness function for
complementary unit type sets and some initial results for evolving such sets.

While our search-based PCG algorithm generates highly fit solutions, the
evolved unit type sets do not appear to be very interesting to play against. This
suggests a potential flaw in the design of our fitness function and/or demonstrates
the inherent inability of the simple test-bed game used in this paper to support
deep gameplay. We aim to test our approach to more complex game environments
which are closer to well-known strategy games: this would include more units,
larger maps with terrain features, and ability for players to use all their units
each turn, hoping to achieve more interesting gameplay.

In addition we aim to develop more sophisticated and reliable fitness func-
tions. The theory-driven approach for the design of such functions would be to
adopt principles of interestingness for board strategy games and build heuristics
based on those principles (e.g. the player tension model [2] or the entertainment
model [4] proposed by Iida et al.). An alternative data-driven approach would
be to let human subjects play and rank a number of unit type sets on several
dimensions, such as gameplay depth, challenge, accessibility etc. We could then
develop a number of new fitness functions, and create a nonlinear model that
estimates the various dimensions of player experience based on this collection
of fitness functions [7]. Those fitness functions could then be used to guide the
evolution of strategy game content for particular players and desired experiences.

As a long-term goal, we are interested in evolving all aspects of strategy
games. This will require extending SGDL to describing e.g. game rules and
terrain types. We aim to do this using the current tree-based structure.
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