
SeekWhence
A Retrospective Analysis Tool for General Game Design

Tiago Machado
New York University

tiago.machado@nyu.edu

Andy Nealen
New York University

nealen@nyu.edu

Julian Togelius
New York University

julian.togelius@nyu.edu

ABSTRACT
�is paper describes the design of SeekWhence, a retrospective
analysis tool for gameplay session. SeekWhence is a new addition
to the Cicero AI-assisted game design tool, which is built on top
of the Video Game Description Language (VGDL) and the General
Video Game Framework (GVG-AI). With SeekWhence, designers
can prototype their games and record gameplay sessions simulated
by agents or human players. �ey can go back and forth on every
frame of the recorded session, analyzing it step by step and import it
into their current project to edit it. �is paper explains the technical
details of SeekWhence and gives examples of its usage.

CCS CONCEPTS
•Computingmethodologies→Arti�cial intelligence; Searchmethod-
ologies;

KEYWORDS
Gameplay Sessions, Game Analysis and Visualizations, Game Pro-
totyping, Retrospective Analysis
ACM Reference format:
Tiago Machado, Andy Nealen, and Julian Togelius. 2017. SeekWhence
A Retrospective Analysis Tool for General Game Design. In Proceedings of
FDG’17, Hyannis, MA, USA, August 14-17, 2017, 6 pages.
DOI: 10.1145/3102071.3102090

1 INTRODUCTION
AI-driven design assistance tools have now been developed for
many creative tasks. Especially in the cultural and creative indus-
tries, the number of tools which providing assistant components to
help aspirant and professionals users are available for a wide range
of activities. From text writing [17] to digital �lmmaking [3], there
are plenty of research and commercial tools.

Many such tools have been developed for games as well. Exam-
ples include Unity Analytics [24] and Bioware’s Skynet [28]. Both
called market and research a�ention by performing telemetry and
analysis on data gathered from players across the world. With this
information, game developers can work with accuracy to keep and
expand their user basis, besides apply their �ndings to improve the
games according to the desires of their target audience. Besides that,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
FDG’17, Hyannis, MA, USA
© 2017 ACM. 978-1-4503-5319-9/17/08. . .$15.00
DOI: 10.1145/3102071.3102090

these tools also can o�er assistance in tasks like game balancing,
bug tracking, usability, pro�ling and log analysis as well [6, 14].

Many of these tasks are related to advanced stages within a
game development process. However, we already have been seeing
tools designed to o�er assistance in early stages. For example,
Tanagra [23] and Ropossom [19] are tools whose main focus is the
creation and evaluation of game levels. Independent of their �nal
purposes, many of these systems are straightly a�ached to just one
game or a game genre in the best hypothesis.

Cicero is an AI-assistant tool developed to address this lack
of generality. It allows designers to prototype 2D games across
di�erent genres like action, shooters and puzzles that users can
simulate by themselves or by using intelligent agents. Previous
evaluations of Cicero revealed that the users were in need of a tool
to o�er them the possibility of going back and forth in a gameplay
sequence and highlight it with the Cicero’s visualization system to
help them in evaluating their players (human or agents) and �nd
system failures.

SeekWhence was designed to a�end these requirements, it is a
retrospective analysis tool enriched by a visualization system with
the power to replay games played by humans or arti�cial agents.
It does telemetry whenever a game is playing. Every frame of
the gameplay session is stored and becomes available to the users
in a sequential media �le. �e users can play it and analyze all
the gameplay session frame by frame. �ey also can activate a
visualization system to further help with the analysis task. Finally,
they can import any frame of the sequence into their current project
to edit it with all the information about the game and its components
already available, from the beginning until that point (the frame
which was chosen to be imported).

In this paper, we report our experiences regarding the Seek-
Whence development and the bene�ts that game developers can
have with such a retrospective analysis tool. We discuss our ap-
proach, the background which motivated this work and our teleme-
try process. Finally, use cases and examples which illustrate the
uses of the tool are presented as well.

2 BACKGROUND
Despite the signi�cant contribution to the game development pro-
cess in general and its large adoption by companies and research
institutions in the recent years, we can observe that game teleme-
try and the analytics tools based on it, especially visualization, is
still in its infancy [1]. Nevertheless, developers can have a more
accurate analysis of the (in-game) behavior of players who play
their products [2, 10], they can track a myriad of events (deaths,
enemies a�acked, items used, etc.) and even know when a player
is about to abandon their games [13].

FDG’17, August 14-17, 2017, Hyannis, MA, USA Tiago Machado, Andy Nealen, and Julian Togelius

As games tend to diversify from one to another, most of the tools
are created within a speci�c project, for instance, Data Cracker is
a tool designed to gather and analyze data from one of the titles
in the Dead Space franchise [14]. Cure Runners, a 2D runner game
also had a telemetry and visualization system implemented just
for it. In [26], the authors used the game as a case study about
how to integrate game analytics tools into the development cycle.
Finally, the game Super Mario Bros 3 was used by [22] to analyze
gameplay through input controllers. �e same is true for AI-game
design assisted tools, where the systems, usually, are also developed
within a speci�c game project. A notable example is Tanagra [23],
a tool that provides assistance in designing 2D platform games.
Its features include real-time editing and multiple partial levels
generations with a guarantee of playability.

Ropossum [19] is an application that shares some levels of sim-
ilarities with Tanagra. However, it is entirely based on the game
Cut �e Rope. It helps users in creating and evaluating their own
levels with features such as real-time feedback level solutions. Simi-
larly, Smith et al. [21], generates solvable levels, however, according
to the player progression in the educational puzzle game Refraction.

Slightly more general, we have Sentient Sketchbook [9]. Its
assistance is also focusing on generating game levels, however
across the genres of strategy or roguelike. It provides a real-time
suggestion system that shows up level’s recommendations at the
time that users are creating their own.

Finally, StreamLevels [7] provides the tools to create the shape
of 2D platform game levels. However, the main idea is to have a
general level editor. �e user interacts by drawing strokes on the UI
canvas, the system uses this input as a player trace and generates
the shapes. �e idea is that the users can adapt the shape in their
future game project.

As mentioned earlier [11, 12], Cicero is an AI-assisted tool de-
veloped with the intention of reducing this lack of generality. It
provides a user interface to prototype games as well as a myriad
of AI agents to play them. By using its agents, Cicero is capable of
gather in-game data.

In order to analyze these data, SeekWhence allows the designers
to inspect their games step-by-step, they can interpret the data as a
whole sequence of events or any event in the sequence separately.
Besides that, they can import any frame of a sequence into their
current project, edit, test and play it as if it was designed at that
single moment. �e development of SeekWhence was inspired
by a previous evaluation of the Cicero system. When testing the
application, several users suggested that it would be helpful in
having a tool to help them in seeing what was happening in the
game at every time-step. Almost like a slow-motion retrospective
analysis.

Retrospective analysis was previously used by [25] as a player-
centric visualization work geared to evaluate types of visualizations
in the team-based combat game World of Tanks [27]. It was also
presented in the serious and open-ended game RumbleBlocks [8]
where the authors used the technique to solve alignment issues.

Following the terminology de�ned by [1], whereas the work
of Wallner and Kriglstein [25] is a retrospective analysis tool de-
signed with the purpose of training players and the work of [8]
is designed to align game design with educational outcomes our
work is a retrospective analysis tool designed to help developers

in tasks such as debugging and balancing. �erefore, its purpose,
target audience, its usage across di�erent game genres, the use of
agents to simulate the games and the visualizations to enrich the
navigation are the main contributions of SeekWhence.

3 PREVIOUS WORK ON CICERO
Cicero is an acronym for Computationally Intelligent Collaborative
EnviROnment for game and level design. It is built on top of the
GVGAI Framework and allows designers to prototype games by
using the VGDL language. As SeekWhence uses many resources
of Cicero, we will do an explanation of it and its features to be�er
explain later how SeekWhence was developed.

3.1 VGDL and GVGAI
�e Video Game Description Language is a language which allows
the development of 2D games like some classical ones available
for the Atari 2600 and the Nintendo Entertainment System [18]. A
game de�nition consists of two text �les, one to describe the game
rules and another one to design the game level (See Figure 1); a game
can have any number of levels. �e game description �le consists
of four di�erent sections: SpriteSet, LevelMapping, InteractionSet
and TerminationSet.

SpriteSet De�nes the behaviors of actors (avatar, enemies
and immovable objects). A sprite in VGDL is not just an
image, it carries information about how the image should
behave according to the game rules.

LevelMapping Creates a symbol for each sprite in the Sprite-
Set. �e symbols are used to design the game levels.

InteractionSet De�nes what happens with the sprites when
they colliding each other.

TerminationSet De�nes the conditions which lead the game
to an end (Win or Lose).

�e General Video Game AI [15] framework is designed to allow
AI developers to create general agents to play VGDL games with-
out any previous knowledge about them. Every year the GVG-AI
competition pushes developer skills in creating new agents for the
framework. �e agents can be based on several techniques and al-
gorithms such as tree search and evolutionary ones. �e framework
is entirely developed in Java and uses only Java native libraries.

Figure 1: Sokoban game written in VGDL. Game rules (le�)
and game level (right).

SeekWhence
A Retrospective Analysis Tool for General Game Design FDG’17, August 14-17, 2017, Hyannis, MA, USA

3.2 Cicero Features
Cicero has a user interface in which the users can edit game rules
and levels without any previous knowledge about VGDL. For every
action of the user, underneath, the system generates lines of VGDL
code which �lls the description and level �les explained in the
previous section. When the users are done with the game de�nitions
they can choose one of the available agents to play their games. At
this point, the system combines the description and level �les to
generate a game to be played by the agent previously selected by the
user. Besides the tasks of editing and playing VGDL games, Cicero
o�ers three other features: a stats tool, a mechanics recommender
and a visualization system.

3.2.1 Stats Tool. �e stats tool tracks every interaction in a
game. An interaction in VGDL is part of the core mechanics of each
game. When running a prototype, the user can have access to a
real-time report that shows a diagnosis about what interactions
are in use, from the most to the least accessed or if there are rules
not accessed at all. �is way, the user can take the information
of this diagnostic to design test cases and decide if the interaction
continues relevant.

3.2.2 Mechanics Recommender. �e Mechanics Recommender
is inspired by the situationalist school of creativity, as de�ned
by Ben Scheneiderman [20]. It works whenever a user presses
a bu�on to get recommendations from the system. �e system
compares the game in development with the ones available in the
VGDL library. �en it de�nes a rank of similarities and suggests
sprites and interactions (the core elements which represents game
mechanics in VGDL) [11].

3.2.3 Visualization System. �e visualization system, as the
name indicates, shows the behaviors of the game elements (agent,
enemies, power-ups, portals, etc.). In real-time, the user can see
what each element do during a gameplay session.

3.2.4 Evaluation of Cicero. In previous work, a user study with
10 participants was performed. Overall, Cicero’s features were well
accepted. Most of the users agreed with their usefulness and that
they would like to see more prototype tools like the ones available
during the study. However, they also mentioned that they would
like to see some kind of sequential analysis. While they could see
the data in real-time, they could not stop the game to analyze a
particular event. �ey said that the stats and visualizations reports
are interesting, but see when and where the events happen could be
even more useful. �ese results were the main motivation behind
the development of SeekWhence.

4 RETROSPECTIVE ANALYSIS AND
VISUALIZATION IN CICERO

�is section details the implementation of SeekWhence, with ex-
planations about the GVGAI and Cicero’s UI extensions.

4.1 GVGAI Extensions
GVGAI has two classes which are fundamental to this implemen-
tation: the StateObservation and AbstractPlayer. �e former
is responsible for keeping information about the game at every
state, the la�er is the class that every agent has to extend in order

to execute their functions when playing. Every agent overrides a
method called act from AbstractPlayer. �is method receives a
StateObservation as a parameter. It analyzes the current game
state and as a result it takes one of the actions available to move to
another state. �e agent has one game tick to take a decision and
every decision leads to a new state con�guration.

�is means that at every game tick, the sprite level matrix, con-
tained into the StateObservation is stored. �is matrix contains
the position of every sprite in the level and the sprite unique ID,
which we can use to access sprite information at that particular
game tick.

Also, at every game tick, the position of every sprite is stored
in order to do a summation and come out with the normalized
alpha value for the color track at that position. It is storing the
visualization information of each sprite for every game tick. �is
computation considers the range that goes from the the �rst to
the current game tick. In other words, it is pre-caching the nec-
essary information in order to provide to the user step-by-step
visualization.

�en, when a gameplay session is ended by an agent winning or
being defeated (or by a decision of the developer) every information
tracked on the �y is then stored in di�erent �les.

4.2 SeekWhence File Generation
For each new game tick, a SeekWhence �le is generating by com-
bining the collections of level map matrices and the collections
of stored color tracks (see Figure 2) of sprites and events. More
speci�cally there are four �les to know:

Map Matrices �is �le stores the position of every sprite in
the level in the form of a 2D matrix. It is straight related to
the LevelMapping section of the VGDL game description
(See ssection 3.1) and each index of the matrix contains the
necessary information to rebuild the level at the speci�ed
game tick.

Avatar �is �le stores the color tracks of the positions on
the level visited by the avatar (human player or AI agent).

Enemies Analogue to the last one. However focused on
enemies1.

Events Stores the color tracks of any given event. An event
in a VGDL game is every interaction among two sprites
described in the InteractionSet (See section 3.1). We have
kill events, clone events, hit events, dropping resource
events and so on.

�e �rst step to assembly the SeekWhence �le is to read the Map
Matrices �le and for every tick, we recreate, in a secondary �le, the
level as it was.

So, when having the level sequences all together and indexed by
game ticks, we can access every frame from a stored game session
step-by-step. Furthermore, based on the same tick we can print the
visualization color tracks for game elements and events.

FDG’17, August 14-17, 2017, Hyannis, MA, USA Tiago Machado, Andy Nealen, and Julian Togelius

Figure 2: Every color track stores the game tick when it was
registered in a gameplay session, its x and y position on the
matrix and the its RGBA values.

4.3 Retrospective analysis - Cicero UI
extension

In order to allow the users to analyze the sequence of events, we
extended the Cicero’s UI. We implemented a component similar to
a video player (Figure 3). �e user can interact with the component
by clicking on the arrow bu�ons (le� and right) to go back and
forth in the sequence frame by frame. A slider bar also does this
service allowing the user to skip quickly several frames. �e com-
ponent also has an export bu�on, which allows the user to export
any particular frame to the Cicero’s main interface. An important
highlight of SeekWhence is that it is not just a tool for Replay �e-
ater in which the users can watch a replay of a game session and
have a control over what they are watching. More formally, Replay
�eater in general, works like a video where players use to see
their own and their opponents progress. It is also in use by devel-
opers to catch bugs. However, in essence, it restricts viewers to
watch a non-interactive animation [1]. SeekWhence enhances the
Replay �eater concept by allowing a designer to actually use any
given frame of any gameplay video sequence, edit it, and changing
whatever game element they want, like the agents for example.

By editing, we mean the process of describing the level map. By
importing a frame from SeekWhence, the user gets all the infor-
mation of the level (and its elements) at that state of the game. By
changing it, the user will change the sequence of game states, from
the one being edited to last until the game �nishes. Obviously, it
can reach many of the former gameplay session states, but it is not
guaranteed since it depends on the kind of changes the user did
and the algorithm (or player) decisions when playing again.
1As other game elements are analogue, we decided to skip their explanations for the
sake of space.

Figure 3: �e SeekWhence UI contains buttons to allow a
user to go back and forth in the stored gameplay session. It
also contains a slide bar, a search for a frame speci�ed by
its tick number, button to turn the visualization on and the
button to export the frame to the Cicero’s main UI.

5 USE CASES
�is section presents some use cases and examples where Seek-
Whence can be used: agent and level evaluation. We also present
our �ndings based on an informal test conducted with three volun-
teers.

5.1 Agent evaluation
Designers can use SeekWhence to help they in analyzing their
agent’s implementation. In the normal way, to specify in detail the
agent behavior, the user needs to use the available Java debugging
tools included in the most popular IDEs among developers. How-
ever, these tools do not o�er an easy way to navigate through all
the data the users needs to have a clear and easy comprehension
about what their agents are doing. �ere are no graphics or other
visual clues that could help. Besides that, it is a responsibility of
the users to write some parts of the code in order to access speci�c
information. SeekWhence, in this case, can present to the users a
visual interface to go back and forth through a recovered game-
play session. �ey will not only know where is the agent position,
they will see where it is at any given game tick. More than that,
they will also see where are all the other elements in the level and
how they may (or may not) in�uence agents decisions. �is is
much more convenient than checking printed lines in a console
showing positions and actions of game elements. Particularly, if
the users are trying to do a hybrid agent, SeekWhence o�ers the
option of changing the game and level con�gurations whenever
they want. So they can start a sequence with a AStar agent, change
it to a Monte Carlo Tree Search and �nally use one of the champion
agents of the GVGAI competition. �en, by running the recorded
sequence, they analyze the agents individually and come out with
their conclusions about how to improve their hybridization. �is
kind of advantage, import the stored frames and editing the level,
makes SeekWhence more than just a Replay �eater application as
mentioned before in the subsection 4.3. In the example illustrated
in this section, the designer switches among a human player and
adrienctx (a previous GVGAI champion).

Figure 4: Human player playing a cave level. �is is the last
frame before he got killed by the enemies highlighted by the
red circles.

In the Figure 4 we see a human player who is constantly killed
by random enemies. �e enemies are fast and they make hard his
mission of ge�ing the key. �e designer got the last frame of this
session played by the human (the frame before his avatar get killed

SeekWhence
A Retrospective Analysis Tool for General Game Design FDG’17, August 14-17, 2017, Hyannis, MA, USA

by one of the enemies) and replaced him by the adrienctx agent. It
was able to kill the monsters and get the key. However, it wastes
too much time walking in circles and a�acking empty spaces. At
this point, the designer gives the control back to the human player
to play again and complete the level.

5.2 Level evaluation
One use of SeekWhence is level editing and evaluation. Although
there are many methods and heuristics involved [4], level eval-
uations are done by players following formal or informal proce-
dures [5] in which they answer questions and provide feedback
about what they think. Sometimes both the designer and the player
needs to use their memories in order to remember all the events
that happened during the session, what can be pre�y inaccurate.
So by providing a way of accessing these events, SeekWhence can
help users and players to be�er express themselves and increase the
accuracy of their communication [16]. Besides that, if the players
have the same opinion about a similar event, it is di�cult for the
designer to access the exact point and rebuild the level to edit it.

SeekWhence allows the designers to have these kinds of access.
�ey can go to the mentioned events, import the frames and all the
information a�ached to, inspect them as many times they want to
and perform the changes they �nd necessary.

We did small changes in a VGDL clone of the classical game
Space Invaders. We decreased the enemies cooldown, what does
the game pace increases, and some barriers cannot be destroyed by
enemies’ bombs. To evaluate the gameplay session, the designers
needs to use SeekWhence, otherwise, by not see it step-by-step,
they can lose important details due to the speed of the game.

In the �gure 5 we have the last frame of the VGDL Space Invaders
clone 5a. �e red dots shows areas where the enemies were killed.
Green dots shows the enemies‘ moves and the blue ones shows the
player’s moves.

By running SeekWhence and moving the gameplay session back-
ward the users can see that a barrier is killing enemies 5c. �is
fact is highlighted by the visualization system. In the �gure 5a,
the black le� circle shows two killing spots, one of them is exactly
the position of a barrier. Also, they can notice another �aw rule in
the �gure 5b. While in the le� black circle they can see an enemy
ge�ing a shot from the player in the right black circle the enemies’
bombs are not destroying the barriers.

5.3 Informal User Study
We conducted an informal study in order to evaluate users‘ reactions
related to SeekWhence. In this study, we were interested in seeing
if our users would be able to �nd bugs in a gameplay session. �ree
users helped us with the test, all of them are Ph.D. students doing
research in areas related to game design and arti�cial intelligence.

�e setup for the study included making some modi�cations to a
VGDL game called Firestorms. It is a puzzle game where the player
must �nd the exit in a labyrinth crowded with portals, which cast
�reballs in di�erent directions.

We introduced two chaser enemies (so called because they chase
the player) and two random enemies, which just move randomly

(a)

(b)

(c)

Figure 5: From (a) to (c)we can see frames of a Space Invaders
gameplay session. �e black circles highlights areas where
the users found �aws in the game rules.

around the level and shoot. �en, we created some bugs, on pur-
pose, like enemies going through walls or portals which don�t cast
�reballs.

We explained the game to the users and our modi�cations (except
for the bugs), followed by a short demonstration of an agent playing
it. �en, we explained how SeekWhence works and asked them to
spend some time trying the tool and reporting us if they could �nd
something wrong with the Firestorms gameplay session.

At the beginning of the session, the users seemed confused be-
cause of the sheer amount of events happening in the game. How-
ever, they mastered the tool very quickly and could easily �nd the
bugs. What surprised us is that they could even �nd bugs that
were not listed for us (this was a �nding that made us con�dent
about this tool purpose). A portal which is not casting �reballs,
enemy’s bullets which go over the level top and bo�om borders,
�reballs which appear suddenly on the screen and enemies which
go through walls were the most reported bugs. Overall, the users
stated that they think it is a useful feature and the option of export

FDG’17, August 14-17, 2017, Hyannis, MA, USA Tiago Machado, Andy Nealen, and Julian Togelius

and edit the level frames was very appreciated. One of the users
even reported the frames where he found bugs in order to make
easier the process of correcting them.

6 LIMITATIONS
SeekWhence is limited to the space of VGDL games. It is based on a
discrete game state structure what makes it capture and reproduce
in-game data in a very reliable way, however, it is not suitable for
continuous spaces. Also, �oat-point events like game objects with
an increasing speed tend to mislead users.

7 FUTUREWORK
We are currently working to addresses some limitations of Seek-
Whence. For example, if we have more than one sprite competing
for the same game space, a single game tile, just one of them will be
rendered. �is was a limitation identi�ed during our informal tests
that confused our testers in the beginning of the system evaluation.
We also are working on a query system in order to facilitate the
process of knowing what, when, where and who were involved in
game events (VGDL interactions). We believe that a system like that,
combined with the navigation provided by SeekWhence, together
with the visualizations, will enhance the analysis tasks involved in
the game development process.

8 CONCLUSION
In this paper, we presented SeekWhence. It is a tool that allows
users to do sequential analysis in a recorded gameplay session.
SeekWhence is an extension of Cicero, an AI-assisted game design
tool built on top of the GVGAI framework. As SeekWhence works
along with GVGAI, it can store actions of sessions of a game played
by an agent or a human player. �e users can analyze a level step-
by-step and use their conclusions, at least, in two situations: to
build and debugging agents and to edit and evaluate levels. As
users can go back and forth in all the sequence of events stored in
a session, they can use every frame of that sequence and export it
to Cicero. �en they can edit the level as they wish and with all
the information until that point already available. We did informal
tests and the �rst reactions were positive. We are also using our
�ndings to improve the experience with SeekWhence and develop
a query system to enhance the analysis tasks.

ACKNOWLEDGMENTS
Tiago Machado is supported by the Conselho Nacional de Desen-
volvimento Cient�co e Tecnolgico (CNPQ), under the Science with-
out Borders scholarship 202859/2015-0

REFERENCES
[1] Brian Bowman, Niklas Elmqvist, and TJ Jankun-Kelly. 2012. Toward visualization

for games: �eory, design space, and pa�erns. IEEE transactions on visualization
and computer graphics 18, 11 (2012), 1956–1968.

[2] Paul Coulton, Will Bamford, Keith Cheverst, and Omer Rashid. 2008. 3D Space-
time visualization of player behaviour in pervasive location-based games. Inter-
national Journal of Computer Games Technology 2008 (2008), 2.

[3] Nicholas Davis, Alexander Zook, Brian O’Neill, Brandon Headrick, Mark Riedl,
Ashton Grosz, and Michael Nitsche. 2013. Creativity Support for Novice Dig-
ital Filmmaking. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’13). ACM, New York, NY, USA, 651–660. DOI:
h�p://dx.doi.org/10.1145/2470654.2470747

[4] Heather Desurvire, Martin Caplan, and Jozsef A Toth. 2004. Using heuristics to
evaluate the playability of games. In CHI’04 extended abstracts on Human factors
in computing systems. ACM, 1509–1512.

[5] Heather Desurvire and Charlo�e Wiberg. 2009. Game usability heuristics (PLAY)
for evaluating and designing be�er games: �e next iteration. In International
Conference on Online Communities and Social Computing. Springer, 557–566.

[6] Magy Seif El-Nasr, Anders Drachen, and Alessandro Canossa. 2013. Game
Analytics: Maximizing the Value of Player Data. Springer Publishing Company,
Incorporated.

[7] Lucas N Ferreira. 2015. StreamLevels: Using Visualization to Generate Platform
Levels. (2015).

[8] Erik Harpstead, Christopher J MacLellan, Vincent Aleven, and Brad A Myers.
2015. Replay analysis in open-ended educational games. In Serious games
analytics. Springer, 381–399.

[9] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. 2013. Sentient
Sketchbook: Computer-aided game level authoring.. In FDG. 213–220.

[10] Yun-En Liu, Erik Andersen, Richard Snider, Seth Cooper, and Zoran Popović.
2011. Feature-based projections for e�ective playtrace analysis. In Proceedings of
the 6th international conference on foundations of digital games. ACM, 69–76.

[11] Tiago Machado, Ivan Bravi, Zhu Wang, Andy Nealen, and Julian Togelius. 2016.
Shopping for Game Mechanics. (2016).

[12] Tiago Machado, Andy Nealen, and Julian Togelius. 2017. Computationally
Intelligent Collaborative EnviROnment for game and level design. (2017).

[13] Tobias Mahlmann, Anders Drachen, Julian Togelius, Alessandro Canossa, and
Georgios N Yannakakis. 2010. Predicting player behavior in tomb raider: Under-
world. In Computational Intelligence and Games (CIG), 2010 IEEE Symposium on.
IEEE, 178–185.

[14] Ben Medler and others. 2009. Generations of game analytics, achievements and
high scores. Eludamos. Journal for Computer Game Culture 3, 2 (2009), 177–194.

[15] Diego Perez, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Simon Lucas,
Adrien Couëtoux, Jeyull Lee, Chong-U Lim, and Tommy �ompson. 2015. �e
2014 general video game playing competition. (2015).

[16] Eric D Ragan and John R Goodall. 2014. Evaluation methodology for comparing
memory and communication of analytic processes in visual analytics. In Proceed-
ings of the Fi�h Workshop on Beyond Time and Errors: Novel Evaluation Methods
for Visualization. ACM, 27–34.

[17] Shubhangi Salinkar and Anirudha Joshi. 2015. Jodo: A Tool for Foreigners to Build
and Speak Hindi Sentences. In Proceedings of the 7th International Conference
on HCI, IndiaHCI 2015 (IndiaHCI’15). ACM, New York, NY, USA, 137–144. DOI:
h�p://dx.doi.org/10.1145/2835966.2836285

[18] Tom Schaul. 2013. A video game description language for model-based or
interactive learning. In Computational Intelligence in Games (CIG), 2013 IEEE
Conference on. IEEE, 1–8.

[19] Noor Shaker, Mohammad Shaker, and Julian Togelius. 2013. Ropossum: An
Authoring Tool for Designing, Optimizing and Solving Cut the Rope Levels.. In
AIIDE.

[20] Ben Shneiderman. 2007. Creativity support tools: Accelerating discovery and
innovation. Commun. ACM 50, 12 (2007), 20–32.

[21] Adam M Smith, Erik Andersen, Michael Mateas, and Zoran Popović. 2012. A case
study of expressively constrainable level design automation tools for a puzzle
game. In Proceedings of the International Conference on the Foundations of Digital
Games. ACM, 156–163.

[22] Brian A. Smith and Shree K. Nayar. 2016. Mining Controller Inputs to Understand
Gameplay. In Proceedings of the 29th Annual Symposium on User Interface So�ware
and Technology (UIST ’16). ACM, New York, NY, USA, 157–168. DOI:h�p://dx.
doi.org/10.1145/2984511.2984543

[23] Gillian Smith, Jim Whitehead, and Michael Mateas. 2010. Tanagra: A mixed-
initiative level design tool. In Proceedings of the Fi�h International Conference on
the Foundations of Digital Games. ACM, 209–216.

[24] Unity. 2017 (accessed February 3, 2017). Unity. h�ps://unity3d.com
[25] Guenter Wallner and Simone Kriglstein. 2016. Visualizations for Retrospective

Analysis of Ba�les in Team-based Combat Games: A User Study. In Proceedings
of the 2016 Annual Symposium on Computer-Human Interaction in Play (CHI PLAY
’16). ACM, New York, NY, USA, 22–32. DOI:h�p://dx.doi.org/10.1145/2967934.
2968093

[26] Günter Wallner, Simone Kriglstein, Florian Gnadlinger, Michael Heiml, and
Jochen Kranzer. 2014. Game User Telemetry in Practice: A Case Study. In
Proceedings of the 11th Conference on Advances in Computer Entertainment
Technology (ACE ’14). ACM, New York, NY, USA, Article 45, 4 pages. DOI:
h�p://dx.doi.org/10.1145/2663806.2663859

[27] Wargaming.net. 2017 (accessed February 3, 2017). World of Tanks. h�p:
//worldo�anks.com/

[28] Georg Zoeller. 2010. Development telemetry in video games projects. In Game
developers conference.

http://dx.doi.org/10.1145/2470654.2470747
http://dx.doi.org/10.1145/2835966.2836285
http://dx.doi.org/10.1145/2984511.2984543
http://dx.doi.org/10.1145/2984511.2984543
https://unity3d.com
http://dx.doi.org/10.1145/2967934.2968093
http://dx.doi.org/10.1145/2967934.2968093
http://dx.doi.org/10.1145/2663806.2663859
http://worldoftanks.com/
http://worldoftanks.com/

	Abstract
	1 Introduction
	2 Background
	3 Previous work on Cicero
	3.1 VGDL and GVGAI
	3.2 Cicero Features

	4 Retrospective analysis and visualization in Cicero
	4.1 GVGAI Extensions
	4.2 SeekWhence File Generation
	4.3 Retrospective analysis - Cicero UI extension

	5 Use Cases
	5.1 Agent evaluation
	5.2 Level evaluation
	5.3 Informal User Study

	6 Limitations
	7 Future Work
	8 Conclusion
	References

