CICERO:
Computationally Intelligent Collaborative EnviROnment
for game and level design

Tiago Machado
New York University
tiago.machado @nyu.edu

Abstract

Mixed-initiative Al-based game design tools assist game de-
signers by automating or semi-automating part of the design
process, while also allowing free editing of game physics,
graphics and/or mechanics. This can be done by providing
suggestions, feedback, and constraint checking, often based
on automatic playtesting. Several prototype tools that incor-
porate such abilities have been developed in recent years,
however, they are all specific to a single game or a very
narrow game genre. We present CICERO, a general-purpose
Al-assisted design tool built on top of the General Video
Game Al (GVGAI) framework. By leveraging the general
game playing and game representation abilities of that frame-
work, we show how several types of Al-based design assis-
tance can be used across multiple games.

INTRODUCTION

In the past few years, numerous game design tools have
been released. They offer several features that facilitate the
tasks of independent and professional developers (Craig-
head, Burke, and Murphy 2007).

Among their features, we can easily find many of them
associated with graphics, physics, network and social me-
dia. Although Al is also included, they are often focusing on
content creation that is related to pathfinding and non-player
characters behaviors. (Pattrasitidecha 2014).

However, what is absent in many of these tools, commer-
cial or otherwise, is the use of Al to assist the developers
themselves. An Al assistant, among other things, has the
potential to make game development more accessible for
non-experts, and allow experts to focus on high-level design
tasks.

Concurrently, we have seen some projects developed by
researchers that have been developing Al-assisted Game
Design tools. These systems, many of them based on
search techniques, help designers by creating and evalu-
ating game contents like levels and maps (Smith, White-
head, and Mateas 2010; Shaker, Shaker, and Togelius 2013;
Liapis, Yannakakis, and Togelius 2013a; Ferreira 2015;
Horn et al. 2014). What, essentially, could be interpreted as
the main function of AI-Game design assistants: a machine

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Andy Nealen
New York University
nealen @nyu.edu

Julian Togelius
New York University
julian.togelius @nyu.edu

working in collaboration with humans. (Yannakakis, Liapis,
and Alexopoulos 2014).

Another feature is the use of visualization techniques.
In the work of Bowman et al. (Bowman, Elmqvist, and
Jankun-Kelly 2012) and El-Nasr et al. (El-Nasr, Drachen,
and Canossa 2013). It is clear that visualization has become
a popular tool among developers for game data telemetry
analysis, debugging, balancing, and playtesting. An exam-
ple of a commercial tool is Bioware‘s Skynet. It performs
telemetry among several servers and game sessions. Unity
Analytics, developed by the Unity Game Engine team, also
provides data that developers can use to understand what
players are doing and tune the game. It also offers other
metrics that help developers devise strategies to retain and
attract new players.

All these techniques together can serve developers as if
another team member was performing specifics tasks, hard
for humans but easy for computers. They can foster less tan-
gible skills like creativity and increase quality and produc-
tivity. Ben Schneiderman, in his paper about creativity sup-
port tools (Shneiderman 2007), discusses how researchers
and designers can create tools that allow people to be more
creative more often. Basically, three creativity schools are
presented: Structuralist, where creativity is achieved by fol-
lowing structured methods; Inspirationalist, in which cre-
ativity arises from unusual and unexpected experiences; Sit-
uationalist, indicates that social work is creativity. Although,
many of the existing tools introduce some of the ideas dis-
cussed by Schneiderman, the development of AI Game De-
sign Assistants that can increase the capacities and qualities
of a team is still in its infancy.

Many of these works are focused on a single game. De-
spite interesting results, their methods cannot, easily, be
adapted to other projects without rewriting the software.
Even Sentient Sketchbook is limited, though to a small range
of StarCraft-like games (Liapis, Yannakakis, and Togelius
2013b). Furthermore, there are many open design questions
about which elements and features to include in AI Game
Assistants that make sense in the daily activities of a de-
signer.

In this paper, we discuss the design of an AI Game Design
Assistant Tool based on the General Video Game Frame-
work (GVGAI). GVGAL is a framework for creating Al con-
trollers that are able to play different games and fits our gen-

erality principle in the design of this system.

Related Works

In this section, we described work that is closely related to
the development of AI Game Design assistants. We also, dis-
cuss some work that offers support for designers by gather-
ing and evaluating data from game playing sessions.

Al Game Design Assistant Tools

Tanagra (Smith, Whitehead, and Mateas 2010) is a system
that assists humans in the design of levels for 2D platform
games. The system’s Ul allows user edits in real time. It gen-
erates several possibilities for a level, and guarantees that all
of them are playable, which eliminates the necessity of play
testing to find salient and game-breaking level design flaws.

Ropossum (Shaker, Shaker, and Togelius 2013), is a sys-
tem which generates and simulates levels for the game Cut
The Rope. It helps users in the creation and evaluation of
their own levels. One of these modules is an evolutionary
framework for procedural content generation, the second
evolves playable content and tests levels designed by hu-
mans. Both modules are optimized to allow real-time feed-
back after user inputs. The system, from a given state, gen-
erates the next possible actions of the player and explores it
using a depth-first-tree until it finds a solution, if available,
at the given level.

Sentient Sketchbook (Liapis, Yannakakis, and Togelius
2013a) is also an assistant for generating game levels, in this
case focusing on strategy games, or dungeons for roguelike
games. The novelty of the system lies in its real time design
suggestions. The users interacts by editing their levels while
the system works in the background generating recommen-
dations based on the user’s design. It is based on evolution-
ary techniques seeded by the user’s inputs that guarantee that
all the suggestions are playable.

StreamLevels Ul allows users to draw strokes on a can-
vas or upload it from real data (Ferreira 2015). The strokes
represent a player trace, and the system uses it to create the
levels. StreamLevels does not formally generate the levels,
it is only used for defining the overall shape of the level. The
idea is to have a general level editor, so one can use it for
different game mechanics.

In (Butler et al. 2013) the authors define a system that
assists with level and progression edits. By progression, we
can understand a sequence of different elements that a player
encounters in a specific level. For example, in a puzzle game,
the puzzles are the elements in a level. The sequence of all
puzzles that lead to the end of the level, incorporating all
skills in the game is called a progression. The user can inter-
act with the system by editing a level and its progressions.
Procedural techniques are used to check if changes, in the
progressions or levels, create conflicts that can harm the de-
sign. The authors state that many of the system features are
game independent, despite the fact that it was developed to
attend in-house products.

The work of (Nelson and Mateas 2009) is not an imple-
mentation of an assistant tool like the previous ones, but it is
an effort to understand the requirements on this type of sys-
tem from the perspective of designers and developers. The

authors interviewed three development teams and used some
prototypes to guide the process. As a result, there is a split
about tools which assist in checking if a game has the goals
proposed by its design, and tools that check if the goals are
reachable by the players. Another suggestion is the use of
queries to identify design flaws or particular questions like
“what is the most recurrent path adopted by players?”.

Game Telemetry Tools

Game Telemetry has emerged as a source of Business Intelli-
gence in the game industry. In this section, we discuss some
work that shows benefits of using such resources combined
with data mining, statistics and other common Al methods
to provide useful information for game designers.

The work of (Bowman, Elmqvist, and Jankun-Kelly 2012)
presents an overview about visualization design patterns and
how to use them in order to provide information to both users
and developers. The paper highlights some benefits of vi-
sualization techniques to designers such as bug detection,
game balance issues, and draws inspiration from player be-
havior.

In (Bauckhage et al. 2012) the authors analyze data about
five different action-adventure or shooter games, such as
Tomb Raider: Underworld and Medal of Honor, in order
to identify how long a game can keep the player’s engage-
ment. The authors present statistic measures that may in-
dicate when a player will lose interest in a game and stop
playing.

Trying to mitigate visualization problems in large data
sets of gameplay sessions, the work of (Feltwell et al. 2015)
uses a Dendrogram, a common visualization tool in the field
of computational biology, designed to display results of hi-
erarchical clustering of genomes. The authors collected data
from 32 volunteers that played the game Red Orchestra: Ost-
front 41-45. The gathered data was analyzed by professional
designers. They argued in favor of the technique stating that
it is very useful to help to understand a large heat map. More
importantly, it helps in finding small, but important, details
that are hard to notice in large data sets.

G-Player (Canossa, Nguyen, and El-Nasr 2016) is a vi-
sualization tool designed for exploratory analysis of multi-
modal data, utilizing a case study data from a role-playing
game. Using the VPAL game, a mod based on Fallout:
New Vegas, the authors demonstrate how this tool leads to
improved understanding of player behavior data. The user
can choose many player features to track, such as interac-
tions with NPCs, items and visited locations. Equipped with
visualization querying techniques such as spatial-temporal
constraint modifiers and Boolean operators on events, the
system allows comparison between individual players or
groups. Professional developers from Unity and Ubisoft pro-
vided positive feedback about the tool. The authors are
working to expand the tool to attend other popular game gen-
res, like multiplayer online battle arenas (MOBAs) which
have properties that fit well with the system purposes.

By analyzing the literature about Al game design assis-
tants, we can observe some patterns.

For example, many of the tools seem to be tailored to one
game or to a game genre in the best hypothesis (Shaker,

Shaker, and Togelius 2013; Smith, Whitehead, and Mateas
2010). Some works started to address the problem of provid-
ing assistance to a broad genre of games like (Ferreira 2015)
and (Butler et al. 2013), although their examples are still
related to a particular game.

Telemetry tools seem to provide a more general use,
especially on commercial platforms. However, Canossa et
al. (Canossa, Nguyen, and El-Nasr 2016) state that the next
step is expanding the tool to cover a broader area of games
in particular genres. Even though features like visualization
seem commonplace, there are issues and design opportuni-
ties to further explore this (Feltwell et al. 2015).

Finally, we also believe that some work (Nelson and
Mateas 2009) is in need of an update, as the interviews were
conducted in a pre “free game engine” era.

Many tools have been released since these publications and
the design community is more willing to contribute to re-
quirements for what they need from an Al assistant.

Cicero - A VGDL AI Game Design Assistant

CICERO is an Al-based game design tool which is intended
to be significantly more general than previous tools while
incorporating several types of Al-based design support. The
system allows the design of games and levels in a wide range
of genres. It can run simulations to provide data about the
users’ designs, foster insights, and assistance about correc-
tions, and suggest what to do to improve their work.

Based on our literature review, we believe that CICERO is
the first effort in creating a general Al game design assistant
and this is the main contribution of this work '.

Generality

CICERO allows developers to prototype games and its lev-
els. In order to allow designers to prototype a wide range of
games, we use the General Video Game Framework - GV-
GAI (Perez et al. 2015), which is a framework built upon
the Video Game Description Language - VGDL (Ebner et
al. 2013; Schaul 2013) that offers the possibility of writing
games with just a few lines of code. Together, they provide
a set of tools for developers to create Al controllers that
are able to play the games they have created. Our tool uses
various Al controllers available in GVGAI. Some are based
on algorithms like Monte Carlo Tree Search (MCTS), oth-
ers are the champions of previous editions of the GVGAI
competition—an annual challenge that awards the Al con-
troller which performs best in as many games as possible.
The users can select these controllers to play their games,
or a manual controller to play the game by themselves. The
main UI of our system is an editor for the VGDL language
(see Figure 1). It allows the user to define behaviors for game
elements such as NPCs and Power Ups, specify what hap-
pens when two game elements collide and determine the win
and loss conditions. There is also a code area for those who
like to inspect how the code is generated by their actions
within the UL

'Link to see the system video demonstration:

https://goo.gl/hN6Nmz

Features

Besides the game editing mechanisms, CICERO offers the
following features: a recommender system for game me-
chanics, statistics about the game rules, and a level visual-
ization system.

Recommender Mechanics

The recommender system for game mechanics takes the
current game content, compares it with other games in the
VGDL library, and suggests new content from games that
match with the one the user is editing.

In order to compare content in different games, our sys-
tem calculates a Euclidean vector distance of the types and
parameters that represent game elements in the VGDL. Con-
tent that reach the top score in a ranking is recommended
(see our earlier work on the recommender system (Machado
et al. 2016)).

Game Rule Statistics

The game rule statistics module offers a diagnostic about
how the rules of a game are explored by a controller. It shows
a list with every rule of the game, sorted by most to the least
fired by an agent. With this diagnostic, a designer can see if
some rules are never used, and identify if this is due to a de-
sign flaw. The designers can use this information to optimize
their game by removing unused design elements, or change
the parameters and/or rules to force the agents to explore
more or less of the game design space.

Level Visualization - Heat Maps

The heat maps provided by the visualization system are
available for each level of each game and can be used with
any controller. The editor is context sensitive with respect
to the game definition, so every time a game is loaded or
has some changes, the editor adapts and allows the users to
customize what they want to see.

Figure 1: The system Ul On the left, the users can edit levels
and play game simulations. On the right, they can specify the
game’s rules and game element behaviors

Technical Details

CICERO was developed as a pure Java desktop application.
All of its functions only uses native Java support available
in the 8th distribution of the language. We made this choice
because as stated before, CICERO is developed on top of the
GVG-AI Framework, which is entirely based on Java.

Game Description in VGDL

Every game written in VGDL has two text files. The first is
the description of the game. The description is a tree with
four nodes, each one with a specific function in describing
the game:

Sprite Set This node contains every sprite in the game. We
need to stress that a VGDL sprite does not refer just to an
image. It actually contains a list of parameters that defines
its behavior in the game. The node is the root of a Depth
First Search Tree, which means that every sprite can have
as many children as a designer wishes. Consequently, the
children inherit parents’ properties.

Level Mapping This node creates a char symbol for each
sprite defined in the section above. It is useful to represent
the sprites in the levels of the game.

Interaction Set This node specifies what happens every
time a sprite A collides with a sprite B.

Termination Set This node verifies if certain conditions to
end a game are satisfied.

All those nodes have height 1 (except the Sprite Set node)
and can have as many children as the designer wants.

The second file is used to design the game level. At this
point, the Level Mapping section of the first file does the
binding between the two files.

Creating and Editing Functions

If the user is developing a game from scratch or edit-
ing an existed one, there are four main classes that take
care of these process: Node, ControlVGDL, GameTree,
GamelLevel.

Node The class Node is already implemented in the GVG-
Al Framework. It contains the main functions that de-
scribe a game in VGDL. This means that the tree structure
of the nodes explained in the section above is handled by
this class. It was extended to become a Java Button. By
doing this, we could create a visual representation of ev-
ery node in the tree with all the interactions allowed by
the Java Swing package.

ControlVGDL The ControlVGDL class controls every ac-
tion of the user when dealing with creation and edition in
game structure. For example, if a sprite is added, the Con-
trolVGDL will gather all the data from the user interface,
do a parse to organize them properly and create a node to
add in the sprite set tree.

GameTree and GameMap The GameTree and the
GameMap classes keep all the game and level structures
that the user is working, on the fly. Then when the
user is done and wants to play the game, everything is

automatically saved in two different files. Finally, the
GVG-AI Framework, access these new files and run the
user’s game.

Game Rule Statistics Implementation

The GVG-AI has a class to play the game, properly called
by Game. So every rule of the game is played by this class
when some event triggers it. Therefore, the Statistics tool
works within the Game class. Basically, every time a rule is
played, a stat is created. It stores the rule and the two sprites
that activated it. Every stat has a counter, it increases when
a rule already stored is played again. The statistics tool cre-
ates a ranking of the most used rules in real-time. It uses the
counter of every rule to sort the ranking based on the per-
centage use of the rule, normalized over all rules.

Visualization Implementation

The visualization prints a heat map of the game object be-
havior over the level. It extends every Agent class available
in the GVG-AI Framework. Therefore, every Agent contains
a TrackControl object. This object stores every position of
the agent during game play. It also stores a count value of
how many times the same position was visited. So, in ev-
ery game update, the TrackControl defines the alpha channel
of every position. It normalize by the most observed count
value (the most visited one). Then the alpha channel of every
position is defined by the count value of the position divided
by the count value of the most visited one. The same prin-
ciple is applied to all other game objects in the game (i.e
enemies, items, etc.).

Mechanics Recommender Implementation

The Mechanics Recommender is based on similarities be-
tween the game a user is developing and the games in
the VGDL library. VGDL defines mechanics based on the
sprite behaviors and on the interactions among them. Sprites
and Interactions are defined separately in the language and
they have specific types and parameters. Therefore, in order
to provide suggestions there are two main comparisons in
course: Sprite similarity and Interaction similarity.

Sprite Similarity Its function is to compute the normalized
vector distance between the parameters vectors and sub-
tracts the result from a maximum pre-defined value when
the sprite types are equals. It returns a minimum pre-
defined value when the sprites types differ.

Interaction Similarity It checks when two sprite types in-
volved in two interactions are similar. If so, the normal-
ized vector distance between the parameters vectors is
subtracted from the maximum predefined value. Other-
wise, it returns the minimum pre-defined value. The dis-
tance is computed similarly to the sprite similarity case.

The comparisons take into account every game available
in the VGDL library. So every comparison results in a value
that is used to generate a rank. From this rank, the system
picks the most and the least common sprites. The former in
order to provide the sprite that is most suitable to the game
in development. The latter, to influence the users to expand

their mechanics to a not so common situation, at least based
on what is stored in the VGDL library. For an explanation
of how the comparisons are made see Figure 2. The whole
system and all of its algorithms are presented in (Machado
et al. 2016).

ﬁ ID: Hero “ ID: Monster &
Type: Avatar Type: NPC

ParamA | value =0.1 | ParamC | Value =0.3 | ParamC | Value =0.9

ID: Enemy
Type: NPC

ParamB | value =0.5 | ParamD | Value =0.5 | ParamD | Value =0.1

ParamN | value =0.1 | ParamN | Value =0.2 | ParamN | Value =0.4

H imi H ID: Hero ID: Monster
Sp"teSImlla"ty(ﬁ Type: Avatar 5 Type: NPC

Type: Avatar # Type: NPC
return = minimum default value

SpriteSimilarity (£ Rpﬁ“;‘;‘g

ID: Monster
Type: NPC

Type:NPC V' Type: NPC
compute similarity score

ParamC ParamD ParamN
0.3 0.5 0.2
0.9 0.1 0.4

Total = 1.1 Total = 0.6 Total = 0.6

return =1 - [(1.1 + 0.6 + 0.6)/3]

Figure 2: The table on the top shows sprites examples of
different types. In the middle, the SpriteSimilarity method
returns a minimum default value. In the bottom, the same
method computes the similarity score for sprites of the same

type.

Cicero In Action

This section shows some cases that present uses for the rec-
ommender mechanics, the statistics tool and the level visu-
alizations.

Example of Mechanics Recommender

We developed a simple game whose main goal is to escape
from a monster. See Figure 5.

We then asked the system to recommend new mechan-
ics for this simple game. After comparing this simple game
definition with all others in the library, the system prepares
a ranked list and provides two suggestions—the most and
the least common mechanic in similar games—to allow the
users to explore between popular and unusual choices for
the game they are developing.

In this case, both of the recommendations were weapons:
a sword and a shooter. The suggestions bring the two ele-
ments necessary to create a new rule for our game: a spec-
ification of a sprite behavior and what happens when this
sprite hits another one. The UI provides all the details of
these specifications, such that the user can decide which one
they want (See Figure 3). The users can accept the default

SPRITE RECOMMENDATIONS

sword weapon

S &

INTERACTION RECOMMENDATIONS

sprites1 sprite2 interactions

scoreChange - m

Figure 3: The system presents two recommendations. The
users can inspect and pick one to add in their game

shrinkfactor [l limit
speed |]
cooldown [l
invisible
rotatelnPlace
orientation
singleton True

Accept Sprite

type Flcker

arent
Name o
children

Figure 4: Each recommendation brings sprite behaviors and
interaction definitions that the user can inspect and modify

suggestion(s), perform adaptations before they accepts, or
ignore it(Figure 4).

Figure 5: In this simple game the player avoids being caught
by a monster

Example of Game Rule Statistics

As stated before, the game rule statistics shows a diagnosis
of a game played by a controller. We chose the “adrienctx”
algorithm, a winner of the GVGAI Single-Player competi-
tion in 2014, based on Open Loop Expectimax Tree Search.
Using this agent, we ran simulations of the game “Zelda,” a
VGDL clone from cave levels of the Nintendo Entertainment
System’s “The Legend of Zelda.” We chose “adrienctx” be-
cause it is a controller that explores the physical space very
well for most of the VGDL games available. A useful char-
acteristic when performing a diagnostic of the game rules in
use.

In the game ‘“Zelda,” we noticed that two rules are never
used. One of them prohibits the player from reaching the
goal without a key. The other one would trigger if the player
is killed by an enemy.

enemy sword killSprite 0.1578...
goal withkey killSprite 0.0526...
key avatar killSprite 0.0526...
nokey key transformTo 0.0526...
nokey goal stepBack 0.0
avatar enemy killSprite 0.0

Figure 6: The game rules diagnostic shows that the two last
rules are never used (the more red the rule, the more often it
is used). The first two columns show the name of the game
elements which activate a rule (third column). The fourth
column contains the percentage use of the rule, normalized
over all rules.

This allows us to inspect the level design and rules of the
game more accurately, and design specific test cases. For ex-
ample, to see if the rule that makes an enemy kill the player
is in use, we simply need to run the simulation again with-
out allowing the player to use his weapon, or place enemies
surrounding the player’s spawn point.

The other rule, the one that prohibits the player from
reaching the goal without a key, allows us draw some con-
clusions about the original level design. First off, the rule
doesn’t trigger because the controller always retrieves the
key. In the original level design, the key is near the player
spawn point, so there is no challenge in accomplishing this
objective. In order to correct it, if the designer wishes to do
S0, to increase the challenge and fully test all the rules, they
just need to change the position of the key or player’s spawn
point (See Figure 7) in the Ul level editor (See Figure 6 for
a sample of the statistics report).

Example of the level visualization system

The heat maps provided by the visualization system are
available for each level of each game and can be used with
any controller. The editor is context sensitive with respect
to the game definition, so every time a game is loaded or
has some changes, the editor adapts and allows the users to
customize what they want to see.

In Figures 8 and 9 we can see a heat map of the con-
troller playing level 3 of the game ‘“Zelda” and the level 0 of
a “Space Invaders” clone, respectively.

Discussion

In the previous sections, we presented the development of
CICERO, a game design editor that is designed with the pur-
pose of being a general Al assistant across a myriad of dif-
ferent game genres. Currently, besides the common tasks of
defining rules and levels, the system has three main features.

The first of these is the Game Mechanics Recommender.
It is an attempt to provide assistance to designers in order

Figure 7: The key place (red square) is too close to the player
spawn point (blue square). It makes the level less challeng-
ing and means that one of the rules is never tested.

ENEEEEEEEEN
]] rn

]

Figure 8: The user chooses to see the controller’s path
through the level: the more blue a spot is, more time the
controller spends in that area. The same applies to the red
color, that shows the places where the controller dies often.

®)

ool \ olo/ojoole
Poeveocoereoeevssevee
0 © olo lole
® A e®

Figure 9: In this clone of Space Invaders, the user tracks the
enemies’ movements (green ellipses) and their most proba-
ble places of death (red ellipses). The death spots becomes
more common when the enemies are near the player, which
leads to a decrease of the number of enemies as well.

to facilitate their work by providing mechanics that were
tested in previous games, similar to the recommender sys-
tems in online shopping, and echoing the principles of soft-
ware reusability. This feature is meant to foster users’ cre-
ativity in an inspirationalist way (Shneiderman 2007).

The Game Rule Statistics tool helps the user diagnose the
usage of game rules at a specific level. It helps the designer
to identify flaws in their rule definitions as well as to draw
conclusions about how to improve the levels and the game
as a whole.

Finally, the visualization system is a tool that looks to the
users’ current design and offers an interface where they can
select what to inspect. By printing heat maps, it allows the
users to see the behavior of the game elements through sev-
eral game simulations.

Conclusion and Future Work

This paper presents the design of an Al Assisted Game De-
sign Tool called CICERO. Many Al game assistants nowa-
days have offered several contributions to the field, however
many of them can be used in limited context like a single
game or a game genre in the best hypothesis.

With this in mind, CICERO follows the principle to be as
general as possible. It allows the design of many games and
levels, and provides three main features currently: a recom-
mender system for game mechanics, a game rule statistics
diagnosis and a visualization system.

We are now working on improving the Mechanics Rec-
ommender in order to provide accurate ways of comparing
content in different games and provide better suggestions
to what the users can do with their game, like suggestions
based on playthrough or procedural content generation tech-
niques.

References

Bauckhage, C.; Kersting, K.; Sifa, R.; Thurau, C.; Drachen,
A.; and Canossa, A. 2012. How players lose interest in
playing a game: An empirical study based on distributions

of total playing times. In 2012 IEEE Conference on Compu-
tational Intelligence and Games (CIG), 139-146. 1EEE.

Bowman, B.; Elmqvist, N.; and Jankun-Kelly, T. 2012.
Toward visualization for games: Theory, design space, and
patterns. IEEE transactions on visualization and computer
graphics 18(11):1956—-1968.

Butler, E.; Smith, A. M.; Liu, Y.-E.; and Popovic, Z. 2013.
A mixed-initiative tool for designing level progressions in
games. In Proceedings of the 26th annual ACM symposium
on User interface software and technology, 377-386. ACM.

Canossa, A.; Nguyen, T.-H. D.; and El-Nasr, M. S. 2016.
G-player: Exploratory visual analytics for accessible knowl-
edge discovery.

Craighead, J.; Burke, J.; and Murphy, R. 2007. Using the
unity game engine to develop sarge: a case study. Computer
4552:366-372.

Ebner, M.; Levine, J.; Lucas, S. M.; Schaul, T.; Thompson,
T.; and Togelius, J. 2013. Towards a video game description
language.

El-Nasr, M. S.; Drachen, A.; and Canossa, A. 2013. Game
analytics: Maximizing the value of player data. Springer
Science & Business Media.

Feltwell, T.; Cielniak, G.; Dickinson, P.; Kirman, B. J.; and
Lawson, S. 2015. Dendrogram visualization as a game de-
sign tool. In Proceedings of the 2015 Annual Symposium
on Computer-Human Interaction in Play, CHI PLAY ’15,
505-510. New York, NY, USA: ACM.

Ferreira, L. N. 2015. Streamlevels: Using visualization to
generate platform levels.

Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius,
J. 2014. A comparative evaluation of procedural level gen-
erators in the mario ai framework.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013a. Sen-
tient sketchbook: Computer-aided game level authoring. In
FDG, 213-220.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013b. To-
wards a generic method of evaluating game levels. In AIIDE.

Machado, T.; Bravi, I.; Wang, Z.; Nealen, A.; and Togelius,
J. 2016. Shopping for game mechanics.

Nelson, M. J., and Mateas, M. 2009. A requirements anal-
ysis for videogame design support tools. In Proceedings of

the 4th International Conference on Foundations of Digital
Games, FDG 09, 137-144. New York, NY, USA: ACM.

Pattrasitidecha, A. 2014. Comparison and evaluation of 3d
mobile game engines. Chalmers University of Technology,
University of Gothenburg, Goteborg, Sweden, Master The-
sis, févr.

Perez, D.; Samothrakis, S.; Togelius, J.; Schaul, T.; Lucas,
S.; Couétoux, A.; Lee, J.; Lim, C.-U.; and Thompson, T.
2015. The 2014 general video game playing competition.

Schaul, T. 2013. A video game description language for
model-based or interactive learning. In Computational In-
telligence in Games (CIG), 2013 IEEE Conference on, 1-8.
IEEE.

Shaker, N.; Shaker, M.; and Togelius, J. 2013. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In AIIDE.

Shneiderman, B. 2007. Creativity support tools: Accelerat-
ing discovery and innovation. Communications of the ACM
50(12):20-32.

Smith, G.; Whitehead, J.; and Mateas, M. 2010. Tanagra:
A mixed-initiative level design tool. In Proceedings of the
Fifth International Conference on the Foundations of Digital
Games, 209-216. ACM.

Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Proceedings of the 9th
Conference on the Foundations of Digital Games.

