
Point-to-Point Car Racing: an Initial Study of

Evolution Versus Temporal Difference Learning

Simon M. Lucas and Julian Togelius
Department of Computer Science

University of Essex, Colchester, UK
{sml, jtogel}@essex.ac.uk

Abstract— This paper considers variations on an extremely
simple form of car racing, the challenge being to visit as many
way-points as possible in a fixed amount of time. The simplicity
of the models enables a very thorough evaluation of various
learning algorithms and control architectures, and enables other
researchers to work on the same models with relative ease.

The models are used to compare the performance of various
hand-programmed controllers, and neural networks trained
using evolution, and using temporal difference learning. Com-
parisons are also made between state-based and action-based
controller architectures. The best controllers were obtained
using evolution to learn the weights of state-evaluation neural
networks, and these were greatly superior to human drivers.

Keywords: Car racing, reinforcement learning, evolving
neural networks.

I. INTRODUCTION

This paper introduces a class of point-to-point car racing
games, where the racing can take place in a variable number
of dimensions, and with alternative car models. The aim is
to create a set of benchmark controller learning problems on
which to test various machine learning algorithms.

In particular, we are interested in comparing evolution (and
co-evolution for multi-car races) with temporal difference
learning, but we have made the simulation code freely
available on the web to encourage other researchers to try
other methods.

In a recent paper [5] Runarsson and Lucas investigated
temporal difference learning (TDL) versus co-evolutionary
learning (CEL) for small-board Go strategies. There it was
found that TDL learned faster, but that with careful tuning,
CEL eventually learned better strategies. In particular, with
CEL it was necessary to use parent-offspring weighted
averaging in order to cope with the effects of noise. This
effect was found to be even more pronounced in a follow-
up paper by Lucas and Runarsson [4], comparing the two
methods for learning an Othello position value function. In
this paper we conduct a similar kind of investigation, but
for a very different problem: a simplified kind of car racing
game. In this paper we consider only a single-player game,
and therefore use evolution rather than co-evolution to learn
controllers, but the comparison is in a similar vein.

A. Car Racing

Competitive car driving is a problem of great practical
importance, and has received some attention from the compu-
tational intelligence community. Most often researchers have

used various learning methods for developing controllers for
car racing simulations or games [3][2]. But computational
intelligence techniques have also been applied to physical car
racing, famously by Thrun in the DARPA Grand Challenge
[8], but also by e.g. Tanev et al. who evolved controllers for
radio-controlled toy cars [7]. The radio-controlled toy racing
challenge was run as a competition for IEEE Congress on
Evolutionary Computation (CEC) for 2003, 2004, and 2005.
The challenge was for a computer to drive the car around
a simple flat track with walls, the track being around the
size of a table-tennis table. The input to the system was
from an overhead web-cam. The challenge has yet to see
a really high-performance entry (e.g. one competitive with
a competent human racer). Footage of the 2003 competition
can be viewed here1. There are many challenges with the real
cars, including problems with computer vision, variable time-
delays in image capture and processing, and difficulties in
precisely modelling the physics of the car and its interaction
with the track, the walls, and the other car in the case of
multi-car racing.

On the other hand, there is much to be learned from
studying simulations of the racing challenge. While we hope
to transfer what we learn from the simulations back to the
real-world problem, they are also interesting in their own
right (see Togelius and Lucas [9] [11][10]; Togelius et al
[12]). It was found that controllers based on first-person
sensory inputs and neural networks could be evolved to
achieve robust driving behaviour over a number of racetracks,
perform better than humans when specialised on a particular
track, and display interesting competitive behaviour when co-
evolved with another car on the same track. The authors have
since tried developing controllers for that car simulation us-
ing temporal difference learning, but have had little success.
It is hoped that the investigations in the present paper throw
some light on this, even though the car simulation in the
earlier experiments differ from the point-to-point model in
some respects, most importantly the presence of impenetrable
walls in the former model.

Abbeel and Ng [1], who trained a system to imitate human
drivers on a simulation. They argued that specifying a reward
function would be hard, hence it was easier to train the
system by observation. In our study evolution of state value
functions works well, and easily outperforms human drivers

1http://www.youtube.com/watch?v=-KvL7zOZNAc

(though our controllers have simpler objectives, in that they
have no road rules to obey).

II. BENCHMARK REQUIREMENTS

To enable the effective study of machine learning algo-
rithms within a car-racing domain, we began with a set of
requirements:

• The capability of generating a large number of random
tracks with very little effort.

• The model must be fast to compute. Evolutionary algo-
rithms may require millions of simulated time steps in
order to converge.

• The sensor inputs for a controller should be reasonably
simple; this encourages more members of the research
community to participate.

• The setup should present sufficient challenge to rec-
ognize skill. Furthermore, this should be related to
driving skill, rather than just traveling-salesman style
route optimization.

The first point regarding random tracks is important to
allow testing of the controllers on large numbers of tracks
that were unseen during training. This ensures that we are
testing general driving behaviour, rather than the specialised
ability to race a small number of tracks.

To get an idea of the difficulty of the problem, a keyboard
controller was implemented and used by the authors to drive
cars as quickly as they possibly could using the normal
and holonomic cars in two dimensions. Best performances
obtained in each case were between 12 and 16 waypoints.
The evolved neural networks easily surpassed this, achieving
best performances of over 40 waypoints.

III. THE MODELS

A simple class of model that meets the above requirements
is point-to-point racing. This can work in n-dimensional
space in general, but in this paper we restrict it to one or two
dimensional racing. In each case, the challenge is to touch as
many waypoints as possible within a fixed number of time
steps. The waypoints must be touched in order, with only p

visible at any one time. For this paper we fix p = 3, which
rewards some planning ability while forcing the controller to
cope with some uncertainty.

In this paper three models are considered: one dimen-
sional, two dimensional holonomic, and two dimensional car.

A. Random Track Creation

Each waypoint is drawn randomly from a uniform distribu-
tion on the unit hypercube. This is done using an instance r
of Java’s java.util.Random class as a pseudo-random
number generator, and taking the value of each dimension
in turn from call to r.nextDouble(). If a no-argument
constructor is used to create r, then a different random track
is created each time (up to the number of possible random
seeds), but passing an int (e.g. r = new Random(10)
enables a simple way to specify a pre-defined track (in this
case, it would be referred to as Track 10)).

Fig. 1. The five possible actions (force vectors) available to a Holonomic
controller.

B. One Dimensional

For the one-dimensional case, the car is represented as a
point on a line with unit mass, displacement s and velocity
v. Time t is discretized, and at each time t the controller
selects one of three possible accelerations at ∈ {−a, 0, a}.
To visit a waypoint during a move at time t, the requirement
is that the waypoint at position x lies between st and st+1.

C. Two Dimensional Holonomic

To illustrate the two-dimensional case, imagine racing a
vehicle around a large flat airfield, where an ordered set of
random waypoints pop up. In the holonomic case, the vehicle
has no heading. At each time-step the controller chooses
either to apply no force, or a force vector of magnitude
||a|| in one of the four orthogonal directions, making for
five possible actions in total (figure 1). At each time step,
the displacement and velocity are updated using Newtonian
mechanics for a point-mass.

For waypoint touching calculations (and for car collisions,
in the case of multi-car races), both the waypoints and
the vehicles are modelled as discs with radius rw and rc

respectively. A waypoint w is touched at time t if the
following condition is satisfied:

||s− w|| ≤ rw + rc

A slightly more complex but conceptually more accurate
test would be whether the rectangle swept out by the width of
the car in moving from st to st+1 overlapped the waypoint w,
but the simpler test was deemed adequate for our purposes,
provided that the radii were made sufficiently large. In all
our simulations, both rx and rc were set equal to twice the
magnitude of the acceleration ||a||, where ||a|| = 0.01

D. Two Dimensional Car

This is similar to the above two dimensional holonomic
case, except that the car now has a heading which is distinct
from its velocity (allowing for some skidding), and that all
forces are now applied in relation to the heading of the car.
Just as in a real car, accelerating forward means accelerating
along its heading vector.

IV. SOFTWARE IMPLEMENTATION

All software has been implemented in Java. All car con-
trollers implement the Controller interface (figure 2). A
controller is given the immediate set of next n waypoints,
passed in an array called track such that the next one
is always in track[0], the one after next in track[1]
and so on. Each time that a car passes a waypoint, the

public interface Controller {
public int action(WayPoint[] track, ICar c);

}

Fig. 2. The interface for a Car Controller. It takes an array of waypoints,
and the current state of the car as inputs, and returns an action choice as
its output.

public interface ICar {
public Vector2d s();
public Vector2d v();
public Vector2d heading();
public double rad();
public ICar update(int action);
public ICar copyAndUpdate(int action);

}

Fig. 3. The interface for a Car in two dimensions. The current implemen-
tations of this are HoloCar, and Car.

track array is shifted along, and a new random waypoint
is inserted into track[n-1]. Waypoint positions are sam-
pled from a uniform distribution in the range 0 to 1,
using the instance method r.nextDouble() from Java’s
java.util.Random class.

To allow state-based control methods, all the software
car-models implement a copyAndUpdate() method. This
method takes a proposed action as an update, and returns an
updated copy of the state of the simulation having taken that
action. This enables what if style forward planning, and in
particular, makes it straightforward to implement value based
controllers either for reinforcement learning or evolution. The
method is also used by the Fixed Controllers (see Section V).

The behaviour of a car is abstracted through the interface
(pure virtual class) ICar, shown in figure 3. This enables
exactly the same controller to be used to drive either a
holonomic (figure 4) or a normal car (figure 5). In this
code, s and v are instances of Vector2d, a class for two-
dimensional vectors, and t is the time interval. The add
method performs weighted addition. The normal car also
includes a heading vector h and a steering constant: the angle
turned through per unit of forward movement. This was set
to 8.7 radians to give a reasonable turning circle for the car
(this value may sound very high, but the car typically has a
speed of less than 0.05 units per time step).

V. FIXED CONTROLLERS

For each problem setup, we implemented two hand-coded
controllers: Greedy and Heuristic.

public HoloCar update(int action) {
s.add(v, t);
s.add(a[action], 0.5*ac*t*t);
v.add(a[action], ac*t);
return this;

}

Fig. 4. The vector arithmetic to update the position and velocity of a
holonomic car.

public Car update(int action) {
return update(acc[action], steer[action]);

}

public Car update(double acc, double steer) {
s.add(v, t *0.5);
v.add(h, acc * t);
h.rotate(steer * h.scalarProduct(v));
double mag = h.scalarProduct(v);
v.set(h);
v.setMag(mag);
s.add(v, t *0.5);
return this;

}

Fig. 5. The vector arithmetic to update the position and velocity of a
normal car.

The algorithm for each of these controllers is simple:
consider the state of the system after each possible action (i.e.
the set of afterstates in reinforcement learning terminology
[6]), and select the action that leads to the best score. In this
case, the scores are penalty values, so this means the action
with the lowest score will be selected.

The score function used for the greedy controller is
simply the Euclidean distance between the car and the next
waypoint. The heuristic controller improves on this by adding
in a penalty term proportional to the square of the car’s speed.
The square of the speed is used on the basis that stopping
distance is proportional to this.

The greedy algorithm performs poorly; its failure to
consider the velocity of the car leads to a tendency to
significantly overshoot each waypoint. This is because given
the current state of the system, the action that takes the car
closest to the next waypoint usually involves accelerating
toward the waypoint.

The addition of the velocity penalty in the heuristic
controller leads to much better performance. It is instructive
to consider the code for this controller, which is shown in
Figure 6. Note that setting the velocity penalty to zero gives
the Greedy Controller.

One of the great strengths of state-based controllers is
that they can work with little modification across a range
of problems. For example, the code in Figure 6 was used
unchanged to control a holonomic car, and a non-holonomic
car (both in two dimensions), each one achieving reasonable
performance. It may seem surprising that the same heuristic
works quite well for either type of car. This can be under-
stood by the nature of the heuristic: reward being close to
the next waypoint, but penalise driving too fast. In this way,
driving style is highly abstracted from the details of any
particular car.

The heuristic controller was applied to a normal car on
Track 29 (recall naming convention from Section III-A) with
the velocity penalty set to 4.0. After the seventh waypoint it
gets stuck, oscillating in small orbital steps around the eighth
waypoint. Hence, after 500 time steps it only achieves a
score of 7. Changing the velocity penalty alters the behaviour
sufficiently to avoid this, and increasing the penalty to 4.8

package games.twod;

public class HeuristicController implements
Controller, Constants {
// set to zero for a ’Greedy’ Controller
static double velocityPenalty = 4.75;

public int action(WayPoint[] track, ICar hc) {
// step over each possible action
// and take the one that leads to
// the lowest score
int action = -1;
double best = Double.MAX_VALUE;
for (int i = 0; i < nActions; i++) {

ICar next = hc.copyAndUpdate(i);
double score = score(track, next);
if (score < best) {

best = score;
action = i;

}
}
return action;

}

public double score(WayPoint[] trk, ICar hc) {
double dist = trk[0].p.dist(hc.s());
return dist + velocityPenalty *

hc.v().mag() * hc.v().mag();
}

}

Fig. 6. The Java code for a Heuristic State-Based Controller (complete
implementation)

leads to a much improved score of 29. This is achieved
through impressive driving behaviour, with appropriate use
of forward and reverse driving. The exact same heuristic
controller (with velocity penalty set to 4.0) on the same
track, but controlling a holonomic car, achieves a score of
25, compared to a score of 26 when the velocity penalty is
set to 4.8. In this case, more careful driving leads to less
overshoot and a slightly higher score. This class of heuristic
controller never gets stuck in a stable or oscillating orbit
around a waypoint when applied to a holonomic car, but this
is a significant danger when applied to a normal car.

Importantly, this illustrates that even with this simple
setup, simulated with a few straightforward Java classes,
complex behaviour patterns can emerge, and interesting
control problems arise, providing a good test for machine
learning algorithms.

VI. LEARNING STATE VALUE FUNCTIONS

In this section we report on some initial work comparing
evolutionary algorithms with reinforcement learning to learn
state value functions that lead to high performance behaviour.

We apply the same techniques to the three classes of
problem: one-dimensional, two-dimensional holonomic, and
two-dimensional normal car.

Experiments were made with various setups, but it was
found that in general much better results could be obtained
by using prior knowledge of the problem domain to construct

Fig. 7. Trace of the heuristic controller applied to a normal car with
velocity penalty set to 4.8. The controller does not get stuck, and performs
well with a score of 29 waypoints.

a meaningful feature vector, rather than just feeding it the
state of the car i.e. its velocity, and the relative positions of
the next waypoints.

A. Evolution

In this section we report on the evolution of state value
functions. In performing these experiments, we used our
knowledge of the problem domain, together with some
experimentation, to design a feature vector. For all of these
experiments we used a (15+15) ES, running for 100 gen-
erations, and the number of waypoints visited in 500 time-
steps as the fitness function (this performance indicator was
also used on the test tracks). The randomly generated tracks
vary significantly in their difficulty, making fitness evaluation
highly noisy. In extreme cases we observed controllers with
a score of over forty on one track, only to fail miserably
with a score of zero on another track. To counteract this,
we experimented with two versions of the EA. In version
one, a single new random track was used to evaluate all
the individuals in a given generation, while in version two,
each individual was evaluated on a new random track. We
expected version one to perform better, since each controller
would be compared fairly against each other one, but the
performance of the two techniques was inseparable. Results
quoted are for version two. We used two versions of the
feature vector with two and three inputs respectively. The
two-input version consisted of the Euclidean distance to the
next waypoint, and the square of the car’s velocity. The three
input version takes these two and also adds a directional
feature: the absolute value of the sin of the angle between
the car’s heading and the direction to the next waypoint.

In each case the value function then applies the feature
vector as input to a neural network, whose single output
is taken to be the value of that state. Figure 8 shows
the fitness evolution of an MLP (1 hidden layer with 10

0 20 40 60 80 100
2

8

14

20

26

32

generation

score

Fig. 8. Evolving a state-value MLP for controlling a normal car.

units) controlling a normal car in two dimensions. Good
performance usually evolves in around forty generations.
The error bars show the range of fitnesses (pm σ) in each
generation. Overall, evolving state evaluation networks was
by far the successful of all methods studied in this paper
(see Results Summary Section). This setup was also used
to evolve state-based controllers for the one-dimensional
problem, which achieved scores at least as good as the action-
based controllers reported in the next section.

B. TDL for learning state-values

This work is still in progress. For the one dimensional
problem, TDL behaves erratically. When it does learn, it
learns very rapidly, and achieves competitive scores.

Early results on the two-dimensional track are very de-
pendent on the car type. For the normal car, TDL was
often competitive with evolution, with the very best learned
controllers having very similar performance. While evolution
also worked well for the holonomic car, TDL failed badly
for this case. For the normal car, when TDL did learn it often
achieved high performance within the first 10 epochs, and in
these cases offered much faster learning than evolution. We
are currently exploring hybrid algorithms designed to exploit
the best of each method.

VII. LEARNING ACTION VALUE FUNCTIONS

When a model of the agent is not available to the
controller, the only way to learn a policy with temporal
difference learning is to learn the value of (state, action)
pairs. Once those values are learnt, the controller works by
following a greedy policy: for a given state, look through
all possible actions and select the action that has the highest
value. The first issue to grapple with here is that of how
the function mapping from states to values should be repre-
sented.

A. Controller representations

The two main ways of representing learnable (state, action)
to value mappings are as tables and via function approxima-
tors. Table representations have the obvious drawbacks that
they are discrete, requiring the designer to choose how to
divide up a continuous multidimensional input space into a
finite (and, to keep the number of evaluations required low,

rather small) number of table cells. Function approximators,
such as neural networks trained with backpropagation (which
we use in this paper), might seem like an obvious choice,
but often perform badly in practice on this sort of problem.

1) The one-dimensional model: For the one-dimensional
model, we devised a table of 3 to the power of 4, or 81 cells.
The position in the first dimension was selected depending on
the speed of the car, and the next two depending on distances
to the current and next waypoint; the first cell in a dimension
was selected if the value was below -0.1, the third if above
0.1 and the second otherwise. The resulting row is interpreted
as the value of the three possible actions for this state.

The alternative representation is based on an MLP with
one hidden layer and tanh activation function. The inputs to
the neural network is the position of the car, the speed of
the car, the positions of the two waypoints, a bias, and the
action whose value is sought. The hidden layer has size five.
The single output is interpreted as the value of the action.

2) The two-dimensional holonomic model: The action-
value table for the holonomic agent had one more dimension
than for the one-dimensional model. The row containing the
action values is obtained through selecting positions in the
first four dimensions based on speed in the horizontal and
vertical dimensions, and the relative position of the waypoint
in the horizontal and vertical dimensions.

Another was designed around an MLP, just like in the one
dimensional case, taking as inputs the position of the car, the
velocity vector , the position of the next waypoint, and the
action. The output is interpreted as the value of that action.

3) The two-dimensional car model: In the case of the
non-holonomic two-dimensional model, we used “first per-
son” inputs, that is, inputs translated and rotated so as to
accomodate for the position and orientation of the car. (Note
that the holonomic agent does not have an orientation.) The
table-based controller had 33 ∗ 5, or 135 cells. Selection was
done on the following three dimensions: speed, angle to the
next waypoint and distance to the next waypoint. Cut-off
values for these dimensions were set to 0.08, 0.3 and 0.31
respectively after an exhaustive search.

Likewise, the MLP-based controller takes speed, angle and
distance to the next waypoint, and the action to evaluate as
input, and outputs an estimate of the value of that action.

B. Temporal difference learning

On-policy temporal difference learning of action values is
called Sarsa, and Sarsa(0) is defined by Sutton and Barto
thus: [6]

Q(st, at)← Q(st, at)+α(rt+1+γQ(st+1, at+1)−Q(st, at))

Before this equation can be put to practical use, we must
decide on values for the discount rate (γ) and the reinforce-
ment regime. Both decisions greatly affect not only how fast
learning happens but also whether anything is learnt at all.

In the experiments below, the reinforcement regime was
that each time step, a reward of 1 was delivered if the car
passed a waypoint, and 0 otherwise. The discount rate was set
to 0.002. These parameters were arrived at through extensive

experimentation, but there is no guarantee that these are the
optimal values. Initially, we tried to give a small negative
reward in the timesteps when a waypoint was not passed,
but we found the present setting to work better.

Another parameter is the exploration value, or the prob-
ability of the controller taking a random action instead of
the greedy action with regard to its action-value estimates.
This value is set to 0.1 during training, and set to 0 when
evaluating the controller.

1) The one-dimensional model: Sarsa was moderately
successful with the table-based function representation, but
highly unreliable. Only about half of all runs ended up in
a fitness above 20, and some ended at fitnesses close to 0,
but when it did learn a good policy it did so quickly, usually
within 1000 episodes (evaluations). The best controller out
of 50 runs had fitness 54.6.

With a neural network-based function representation,
Sarsa-learning fared much worse. The best controller found
scored a paltry 3.1. There seemed to be intermittent un-
learning involved during the learning process, with the fit-
ness of the controller sometimes fluctuating wildly between
episodes, occasionally peaking around score 20 only to
drop to one or two in the next episode. Contrary to our
expectations, lowering the learning rate did not resolve this
issue.

2) The two-dimensional holonomic model: All our at-
tempts at learning behaviour in the holonomic model were
unsuccessful; not a single controller with fitness of at least 1
was produced this way, neither with the table-based nor with
the MLP-based representation.

3) The two-dimensional car model: TDL with the table-
based representation was as unreliable as in the one-
dimensional model, but it did at least in some cases learn con-
trollers with performance significantly better than random.
Still, the best-performing learned controller had a fitness of
only 4.7. The training runs that succeeded did so within 1000
epochs. In contrast to the td-learned controllers for the one-
dimensional case, which performed better when occasional
random movement was turned off (epsilon set to 0) after
training, the controllers learned for the car model needed a
(small) non-negative epsilon in order to perform.

TDL with the MLP-based representation was unable to
learn any meaningful policy at all.

C. Evolution

We used a 15+15 evolution strategy to optimise the (state,
action) to value mappings. For the both the connection
weights of the neural networks and the values in the cells
of the tables, we used Gaussian mutation with standard
deviation 0.1.

1) The one-dimensional model: The table-based function
representation turned out to be eminently evolvable, with
every single run producing a good policy within a few
generations. However, little progress was made beyond the
first 50 generations, despite many runs of 500 generations
being made. The best controller found using this method
and representation scored 71.2.

The neural network-based function representation could
also be used to evolve good controllers, but not as good as
the table-based representation. The best controller produced
after 500 generations had fitness 45.5.

2) The two-dimensional holonomic model: We were un-
able to evolve good action value functions for the holonomic
agent, just like we were unable to learn them with td-
learning. The best evolved table-based controller had fitness
0.3 and the best evolved MLP-based controller scored 0.1.

3) The two-dimensional car model: Evolution reliably
produced somewhat capable action value function based
controllers for the car model. The best evolved table-based
controller (from several runs that produced similar con-
trollers) scored 14.4, and basically drives well, apart from
the occasional case of “orbiting”.

Very similar results were achieved using the MLP-based
representation, with the best evolved controller scoring 15.7.

D. Combining evolution and temporal difference learning

As we have seen, evolution and temporal difference learn-
ing can both be used to learn functional (state, action) to
value mappings, although with varying speed, reliability and
ultimate success. Another interesting question is whether
the two methods learn different solutions to the problems.
Especially, it might be suggested that while Sarsa learns
approximately correct action values, evolution will learn
values that work, regardless of whether they are correct or
not. To investigate this, we tried applying our evolutionary
algorithm to solutions that had been learned with Sarsa, and
Sarsa to solutions that had been evolved.

1) The one-dimensional model: Using the table repre-
sentation, neither further evolving a learned controller or
further learning an evolved controller made any significant
difference at all. The fitness of the best TDL-trained con-
troller was around 54, both before and after 500 generations
of evolution. Conversely, the fitness of the best evolved
controller was around 71 during thousands of epochs of
further td-learning. In other words, Sarsa performs much
better than it usually does if initialised with an evolved
controller, while evolution performs much worse if initialised
with a Sarsa-trained controller. There seems to be a sort of
lock-in effect.

In case of td-learning on top of evolution, the same
effect was found for the neural network representation: no
change. But in case of evolution on top of td-learning, fitness
increased from 3.1 to 68.8.

2) The two-dimensional holonomic model: The perfor-
mance of the action value based holonomic controllers is
abysmal whether they are learned or evolved, and no signif-
icant changes were observed when one method was applied
upon the results of another.

3) The two-dimensional car model: Seeding the Sarsa
algorithm with evolved action value based car controllers had
just the same effect as it had in the one-dimensional model:
the further td-learning made no significant change, neither
negative or positive. Or in other words, td-learning performs
better when initialised with an evolved controller. Seeding

evolution with the results of Sarsa made no significant
difference to seeding evolution with random controllers: good
controllers evolved just as quickly.

VIII. LEARNING CONTROLLERS DIRECTLY

The above approaches learn controllers that are based on
some sort of explicit representation of the values of states
or actions. These are, to our knowledge, the only types of
controllers that can be learnt using temporal difference learn-
ing. But evolutionary algorithms are also capable of solving
reinforcement learning through direct search in policy space,
creating controllers that don’t necessarily directly represent
state or action values. In case of point-to-point car racing,
such controllers would take (aspects of) the state of the car
as inputs and output the desired action to take. We chose
to represent the controllers as standard three-layer neural
networks with tanh activation function, and used the same
Evolution Strategy as above.

A. The one-dimensional model

For the one-dimensional model, the inputs to the controller
were the speed of the car, the position of the car, and the
positions of the current and next input. Four hidden neurons
were used. The single output was interpreted thus: if above
0.1, move right; below -0.1, move left; otherwise no action.
This configuration reliably produced good controllers within
100 generations. Many runs of 500 generations each were
done, and they all produced controllers of similar fitness, in
the range 77.0-77.3.

B. The two-dimensional holonomic model

In the two-dimensional model, the neural network had
seven inputs: the current velocity in the vertical dimension,
current velocity in the horizontal dimension, difference be-
tween current position and those of the current and next way-
points in both dimensions, and a bias. Ten hidden neurons
were used, and the two outputs were interpreted as movement
commands like in the one-d example, with one output
controlling horizontal and the other vertical movement.

Several modifications of the action selection mechanism
(including interpreting the outputs as desired speeds) and
the input representation (including rotation and translation
according to the position and heading of the agent) were
tried, as well as minor changes to the fitness function. Despite
all this, we were unable to evolve good controllers for the
holonomic model. The best controllers have fitnesses be-
tween 1 and 1.5, and they typically perform long trajectories
around the game area, only occasionally hitting a waypoint.

C. The two-dimensional car model

Here, we fed the neural network with the velocity in
vertical and horizontal dimensions, the magnitude of the
velocity vector, and the distance and relative angle to the next
waypoint. The output was interpreted as in the holonomic
model, but unlike the holonomic model good controllers
reliably emerge from the evolutionary process. Several runs
of 500 generations each produced controllers of similar

fitness, the best of them scoring on average 20.1. This
controller consistently keeps a high speed and only rarely
misses a waypoint, and then only “orbits” briefly.

IX. RESULTS SUMMARY

Based on our initial experiments with all of the above
methods, we then tested some of them more exhaustively.
For these tests, we ran each experiment (corresponding to a
single row of each table) twenty times. Then, for each learned
controller, we tested it on 100 tracks that were unseen during
training. This methodology was chosen since the result of any
single learning experiment can be highly variable.

A. One-D Results

Both evolution and temporal difference learning were able
to learn good controllers for this simple version of the car
racing problem. Evolution was more reliable and produced
better end results, while td-learning learned faster.

B. Car Results

Results for the normal car are shown in table I. Each
of these results used the full three-input feature vector. The
evolved perceptron significantly outperforms the hand-coded
heuristic, while the best method is the state-based MLP with
a mean score of 35.0. Both the action-perceptron and the
action-MLP achieved similar poor scores - just the action
percptron is shown here, with a mean score of 1.8.

TABLE I
MEAN OF 20 LEARNING RUNS FOR THE NORMAL CAR.

Method Mean s.e.
EVO-State-MLP 35.0 0.24

EVO-State-Perceptron 30.2 0.33
TDL-State-Perceptron 26.2 1.4
Hand-State-Heuristic 18.8 1.0

EVO-Action-Perceptron 1.8 1.3

While the reliability of a method is important, sometimes
only the best result counts, and we have therefore also
included the fitness of the best controller obtained through
all of the different methods, tested on 1000 tracks, for the
normal car in two dimensions (see table II).

TABLE II
BEST CONTROLLERS FOUND FOR THE NORMAL CAR, TESTED ON 1000

TRACKS.

Method Td-learning Evolution
State-MLP - 36.7

State-Perceptron 31.1 31.5
Action-Table 4.7 14.4
Action-MLP 0 15.7
Direct-MLP - 20.1

C. Holonomic Car Results

Here, for the learned networks, we used both the two and
three input feature vectors, as indicated by a 2 or a 3 after the
named method. The results are shown in table III, but only
show results for evolution; TDL did not work well for any of

the holonomic state controllers, rarely exceeding an average
score of 7.0. TDLs best result on a single epoch during
learning was 26.0, which occurred on the 10th epoch of a
particular run. By the end of that run, this good behaviour
had been unlearned however, and the average score of the
last twenty epochs was only 7.0 (approx). Note that the
third input of the directional difference feature makes the
problem significantly harder to learn, both for the Perceptron
and the MLP, but it makes the MLP significantly worse,
with a mean performance of 11.3. The three-input perceptron
is less affected, with a mean score of 18.5. Removing the
third input takes the Perceptron up to a mean score of
26.7, approximately equal to the heuristic controller, but both
these are surpassed by the 2-input MLP, which has a mean
performance of 32.2. The fact that these networks are so
debilitated by an extraneous input came as a surprise to us,
though given many more generations, evolution might learn
to ignore this.

TABLE III
THE RESULTS FOR THE HOLONOMIC CAR.

Method Mean s.e.
State-MLP-2 32.2 0.06

State-Perceptron-2 26.7 0.01
State-Perceptron-3 18.5 2.1

State-MLP-3 11.3 0.7
State-Heuristic-2 26.8 0.21

X. CONCLUSIONS

Experiments were made on a variety of problem setups
using different feature vectors, and different neural networks
(multi and single layer perceptrons). In each case, state-
value learning worked much better than action-value learn-
ing. Evolution worked more reliably and achieved better
final fitness than reinforcement learning, but reinforcement
learning, when successful, learned faster. Further, for learning
action value functions with TDL, table-based representations
were always superior to MLP-based representations. When
evolution was used without a model, the direct approach
was superior to learning action values. Our suspicion that
the method learns differently and not only better or worse
was supported by the “lock-in” effect when combining them.

The task is clearly very sensitive to the learning method,
the architecture, and the chosen input features, especially the
two-dimensional normal car problem. A strong distinction
can be seen between methods which work very well, such
as evolved state-based MLPs, and those that work very badly,
such as TDL-trained action-based MLPs. While it is likely
that with more work it would be possible to improve the
TDL results, a great strength of the evolutionary methods is
the ease with which they can be applied.

The state methods can only be applied when a forward
model exists, which is able to predict the next state of the
car given the current state and the selected action. This is
simple for the simulation, where we had access to the exact
forward model. However, for the real-world car racing, such
is the advantage of the state-based controller, that this makes

it a high priority to learn a forward model from observing
the controller actions, if such a model is not provided.

The results in this paper have only addressed single-player
maximum distance racing (i.e. how far can one travel given
a fixed number of time steps), but in future we shall address
multiplayer racing with car collisions.

Finally, we note that to get good performance it was
necessary to transform the raw inputs of waypoint positions
into some car-centric measures, in particular, the distance to
the next waypoint, and the square of the velocity. This is in
agreement with similar results for the full car racing problem
[9]. We suggest that there is an important role for genetic or
evolutionary programming here, to pre-process the raw input
data, and then use a combination of RL and Evolution to
evolve the value function based on the pre-processed data.

ACKNOWLEDGMENTS

We are grateful to the members of the Natural and
Evolutionary Computation Group at the University of Essex,
and to Thomas P. Runarsson for useful discussions related
to this work.

REFERENCES

[1] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the Twenty-first International
Conference on Machine Learning, 2004.

[2] B. Chaperot and C. Fyfe, “Improving artificial intelligence in a
motocross game,” in IEEE Symposium on Computational Intelligence
and Games, 2006.

[3] D. Floreano, T. Kato, D. Marocco, and E. Sauser, “Coevolution of
active vision and feature selection,” Biological Cybernetics, vol. 90,
pp. 218–228, 2004.

[4] S. M. Lucas and T. P. Runarsson, “Temporal difference learning
versus co-evolution for acquiring othello position evaluation,” in IEEE
Symposium on Computational Intelligence and Games, 2006.

[5] T. P. Runarsson and S. M. Lucas, “Co-evolution versus self-play
temporal difference learning for acquiring position evaluation in small-
board go,” IEEE Transactions on Evolutionary Computation, vol. 9,
pp. 628 – 640, 2005.

[6] R. Sutton and A. Barto, Introduction to Reinforcement Learning. MIT
Press, 1998.

[7] I. Tanev, M. Joachimczak, H. Hemmi, and K. Shimohara, “Evolution
of the driving styles of anticipatory agent remotely operating a scaled
model of racing car,” in Proceedings of the 2005 IEEE Congress on
Evolutionary Computation (CEC-2005), 2005, pp. 1891–1898.

[8] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “Winning the darpa grand
challenge,” Journal of Field Robotics, 2006, accepted for publication.

[9] J. Togelius and S. M. Lucas, “Evolving controllers for simulated car
racing,” in Proceedings of the Congress on Evolutionary Computation,
2005.

[10] ——, “Arms races and car races,” in Proceeding of Parallel Problem
Solving from Nature. Springer, 2006.

[11] ——, “Evolving robust and specialized car racing skills,” in Proceed-
ings of the IEEE Congress on Evolutionary Computation, 2006.

[12] J. Togelius, R. D. Nardi, and S. M. Lucas, “Making racing fun through
player modeling and track evolution,” in Proceedings of the SAB’06
Workshop on Adaptive Approaches for Optimizing Player Satisfaction
in Computer and Physical Games, 2006.

