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Abstract— This paper describes the simulated car racing
competition held in association with the IEEE WCCI 2008
conference. The organization of the competition is described,
along with the rules, the software used, and the submitted car
racing controllers. The results of the competition are presented,
followed by a discussion about what can be learned from this
competition, both about learning controllers with evolutionary
methods and about competition organization. The paper is co-
authored by the organizers and participants of the competition.

Keywords: benchmarking, competitions, reinforcement
learning, evolution

I. INTRODUCTION

In conjunction with the IEEE World Congress on Compu-
tational Intelligence (WCCI) 2008 we organized a simulated
car racing competition, where the goal was to learn, or
otherwise develop, a controller for a car in the TORCS open-
source racing game. This paper describes the motivations for
holding the competition, the software developed, the rules
applied, the entries submitted and the competition results.

There are several reasons for holding competitions as part
of the regular events organized by the computational intelli-
gence community. A main motivation is to improve bench-
marking of learning algorithms. Benchmarking is frequently
done using very simple testbed problems, that might or might
not capture the complexity of real-world problems. When
researchers report results on more complex problems, the
technical complexities of accessing, running and interfacing
to the benchmarking software might prevent independent val-
idation of and comparison with the published results. Here,
competitions have the role of providing software, interfaces
and scoring procedures to fairly and independently evaluate
competing algorithms and development methodologies.

Another strong incentive for running these competitions is
that it motivates researchers. Existing algorithms get applied
to new areas, and the effort needed to participate in a
competition is (or at least, should be) less than it takes to
come up with the results for and write a completely new
paper. Competitions might even bring new researchers into
the computational intelligence fields, both academics and
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non-academics. One of the reasons for this, especially for
games-related competitions, is that it simply looks cool.

In 2007, simulated car racing competitions were organized
as part of the IEEE Congress on Evolutionary Computation
(CEC) and Computational Intelligence and Games Sym-
posium (CIG). These competitions used a graphically and
mechanically simpler game. Partly because of the simplicity
of the software, these competitions enjoyed a good degree of
participation. The organization, submitted entries and results
of these competitions were recently published in [1].

This competition was similar to the 2007 competitions in
its overall idea and execution, but there are several important
differences. The main difference is that we decided to build
the event around a much more complex car racing game, the
open-source racing game TORCS. While the main reason for
using this game was that the more complex car simulations
(especially the possibility for having many cars at the track
at the same time with believable collision handling) poses
new challenges for the controllers to overcome, other reasons
included the possibility of convincing e.g. the game industry
that computational intelligence algorithms can handle “real”
games and not only academically conceived benchmarks, and
the increased attention that a more sophisticated graphical
depiction of the competition generates (see figure 1).

Fig. 1. The TORCS game.

II. COMPETITION SETUP

In what follows, we will describe the TORCS game, the
modifications we did to allow communication with the game
clients, the clients and their interfaces, example controllers
and training software, and the rules of the competition.

A. The TORCS game
The Open Racing Car Simulator (TORCS) [2] is a state-of-

the-art open source car racing simulator. It falls somewhere



Fig. 2. The architecture of the API developed for the competition.

between being an advanced simulator, like recent commercial
car racing games, and a fully customizable environment,
like the ones typically used by computational intelligence
researchers for benchmark purposes. On the one hand,
TORCS features a sophisticated physics engine, that takes
into account many aspects of the racing car (e.g. collisions,
traction, aerodynamics, fuel consumption, etc.) as well as
a 3D graphics engine for the visualization of the races.
On the other hand, TORCS was not been only conceived
as a free alternative to commercial racing games, but it
was specifically devised to make it as easy as possible to
develop your own car controller. In fact, the controllers are
implemented as separated software modules so that it is easy
to develop a new controller and to plug it into the game.
In addition, TORCS does not only provide a complete and
complex game environment, but it also provides a lot of game
content (i.e., several tracks, car models and controllers, etc.),
resulting in a countless number of possible game situations.

B. Competition-specific software modifications

In order to develop their car controllers, the competitors
have been provided with a specific software interface devel-
oped on a client/server basis. Figure 2 shows the architecture
of such interface. The controllers run as external programs
and communicate with a customized version of TORCS
through UDP connections. Each controller perceives the
racing environment through a number of sensor readings
which would reflect both the surrounding environment (the
tracks and the opponents) and the current game state and
they could invoke basic driving commands to control the
car. The complete list of sensors is reported in Table I and
includes rangefinders to perceive the nearby track limits as
well as the distance of nearby opponents, the current speed,
the engines RPM, the current gear, the fuel level, etc (we
refer the interested reader to the software manual of the
competition [3] for additional details). Table II reports all
the driving commands: besides the rather typical driving
commands (i.e., the steering wheel, the gas pedal, the brake
pedal, and the gear change) a meta-command is available to

reset the state of the race from the client-side. Controllers
had to act quickly on the basis of the most recent sensory
information to properly control the car; a slow controller
would be inherently penalized since it would be working on
lagged information. To make it easy to enter the competition,

Name Description

angle Angle between the car direction and the direction of the track
axis.

curLapTime Time elapsed during current lap.

damage Current damage of the car (the higher is the value the higher
is the damage).

distFromStartLine Distance of the car from the start line along the track line.
distRaced Distance covered by the car from the beginning of the race

fuel Current fuel level.

gear Current gear: -1 is reverse, 0 is neutral and the gear from 1 to
6.

lastLapTime Time to complete the last lap

opponents

Vector of 18 sensors that detects the opponent distance in
meters (range is [0,100]) within a specific 10 degrees sector:
each sensor covers 10 degrees, from -π/2 to +π/2 in front of
the car.

racePos Position in the race with to respect to other cars.

rpm Rumber of rotation per minute of the car engine.

speedX Speed of the car along the longitudinal axis of the car.

speedY Speed of the car along the transverse axis of the car.

track

Vector of 19 range finder sensors: each sensors represents
the distance between the track edge and the car. Sensors are
oriented every 10 degrees from -π/2 and +π/2 in front of the
car. Distance are in meters within a range of 100 meters. When
the car is outside of the track (i.e., pos is less than -1 or greater
than 1), these values are not reliable!

trackPos

Distance between the car and the track axis. The value is
normalized w.r.t to the track width: it is 0 when car is on
the axis, -1 when the car is on the left edge of the track and
+1 when it is on the right edge of the car. Values greater than
1 or smaller than -1 means that the car is outside of the track.

wheelSpinVel Vector of 4 sensors representing the rotation speed of the
wheels.

TABLE I
DESCRIPTION OF AVAILABLE SENSORS.

a client with simple APIs as well as a sample programmed
controller were provided for C++ and Java languages and for
Windows, Mac, and Linux operative systems.

C. Rules and organization

In brief, the goal of the competition was to learn, or
otherwise design, a controller which could be able to race
for a certain number of laps on a set of three unknown
tracks, alone or against other controllers. Altough the aim
of the competition was to encourage the application of
computational intelligence techniques to the design of car
controllers in TORCS, also human programmed controllers
were allowed as entries. Thus, the competitors were free
either to use the APIs and the sample controller provided
to develop their controllers or they could develop their own
solution from scratch. The only constraint was to submit a
final controller that follows the same communication protocol



Name Description
accel Virtual gas pedal (0 means no gas, 1 full gas).

brake Virtual brake pedal (0 means no brake, 1 full brake).

gear Gear value.

steering
Steering value: -1 and +1 means respectively full left
and right, that corresponds to an angle of 0.785398
rad.

meta This is meta-control command: 0 do nothing, 1 ask
competition server to restart the race.

TABLE II
DESCRIPTION OF AVAILABLE EFFECTORS.

defined in the client provided. To evaluate the performance
of the submitted controllers we measured the distance raced
by each controller within 10000 game tics, corresponding to
200s of simulated time. Then, a tournament of competitive
races among the best performing controllers was set to
elect the winner of the competition and to validate that
controllers perform well also in the presence of other cars.
The evaluation of the submitted controllers was run by the
organizers just before the 2008 IEEE World Congress on
Computational Intelligence (more details on the evaluation
process are provided in a later section). The set of TORCS
tracks used for the final evaluation was not known in advance
by the competitors to promote the submission of controllers
with a reliable performance on a large range of tracks in spite
of controllers tuned on a small set of tracks.

III. SUBMITTED CONTROLLERS

A. Leonard Kinnaird-Heether and Robert Reynolds

The controller was designed from scratch using Java. The
initial phase of the development of the controller focused
on creating a simple, untrained, system that could navigate
the track without getting stuck or crashing too often. This
initial stage provided a basic framework for the controller
that governed three basic behaviors; acceleration, steering,
shifting, and error correction.

Acceleration is based on setting target speeds. These target
speeds are governed by a set of speed limit variables that will
be discussed in depth later in this section. Simply put, the
controller will tell the car to accelerate if its current speed
is less than the target speed, not accelerate if the current
is less than or equal to 10 mph over the target speed, and
brake if the current speed is greater than 10 mph over the
target speed. These instructions are in the form of rules. The
Cultural Algorithm is used in the second phase to learn these
rules for given tracks.

Steering is performed by finding the furthest distance
to the edge of the track by using the distance readings
gained from communication with the server. The angle that
corresponds to the furthest distance is then used as the current
steering angle (normalized to fit with a range of [-1, 1].) This
calculation is made in every game turn, thus reducing the
chance of oversteering. The controller will modify the turning

angle as the car passes through a turn,. This is due to the fact
that the angle corresponding to the furthest distance to the
edge of the track will tend to move toward 0 degrees(straight)
as the turn progresses. In this way, the controller finds an
adequate, if not the best, method of navigating a turn. In
addition to this, there is also a function that attempts to
return the car to the center of the track when it is driving in a
straight line. This function helped smooth out some problems
that occurred during turning, but caused a small problem later
in the training of the controller.

Shifting is done based on readings retrieved from the
server for the current Revolutions Per Minute(RPM) reading
for the car. When the RPM reading reaches a certain point,
the controller will send a signal to either shift up or down.
In the implementation the controller was required to wait a
short period of time after shifting before deciding whether
or not to shift again in order to avoid oscillation.

Error correction in the controller falls into three categories;
whether or not the car is stuck, whether or not the car is off
the track, and whether or not the car is going in the wrong
direction. If the car does not move farther than a specified
distance over one game turn, the controller increments a
counter to indicate that the car may be stuck. When this
counter reaches a certain level, the controller directs the car
to drive in reverse for a number of game turns. By doing
this, the car should have backed up far enough to be able
to turn out of the situation that led it to get stuck. If the
car is detected to be beyond the boundary of the track,
the controller will direct it to slow down, and turn in the
direction that corresponds to the opposite side of the track.
If the controller detects that the car is traveling at an angle
that is greater than +/-90 degrees from the track normal (0
degrees) the controller indicates that the car is traveling in the
wrong direction. The controller then directs the car to reduce
speed and turn in the direction that will provide it the fastest
way of returning to the correct direction. The reduction in
speed is necessary to ensure that the car has enough room to
successfully turn around. If multiple error states are detected
at the same time, the controller handles them hierarchically.
The stuck state commands the highest priority, followed by
the wrong direction state, and then the off the track state.

1) Learning phase: In our view race car driving is a
social activity, and the drivers behavior, in terms of using the
kinematic functions discussed above, needed to reflect that
activity. In particular, we viewed the race cars as forming
a pack or swarm. Thus, the rules for acceleration that we
used need to learn within a social context. This was an ideal
context for the use of Cultural Algorithms [4]. The Java-
based Cultural Algorithm Toolkit (CAT) that uses an agent-
based simulation environment (REPAST) was the framework
in which the learning task was expressed [5]. The goal of the
learning was to learn driving rules that are consistent with the
two basic kinematic activities of agents moving in a swarm:
orientation relative to the swarm’s direction, and spacing
between agents so that collisions are less likely. These were
implicit factors in the fitness function used to train the driver.



Once the initial controller was completed, the system had
to be tailored so that it could interface with the cultural
algorithms toolkit. Though several methods were considered,
the decision was made to train the controller to optimize the
speed during turns. To accomplish this, the concept of a speed
limit, as mentioned previously in this paper, was introduced.
Essentially, this concept provides that the controller will
direct the car not to travel faster than a certain speed, when
navigating a turn with a specific angle, by setting its target
speed equal to the current speed limit. To accomplish this, ten
variables were introduced to the controller to hold the speed
limit values. These variables correspond to straight ahead,
turning 10 degrees, 20 degrees, and so on, up to 90 degrees.

CAT requires that a testing program specify four things,
the dimensions of the problem, the range of values that are
acceptable for each dimension, what type of numeric value
each dimension uses, and a fitness function. In this case, the
testing program defines the dimension number as 10, corre-
sponding to the number of speed limit variables. The range
of each dimension was determined to be [0,300] because 300
mph is roughly the fastest that the specified car can safely
travel on any track. Since the controller communicates speed
to TORCS as a floating point number, the testing program
was set to treat all values generated for each dimension as
real numbers, rather than as integers. In a typical application
of the CAT, the fitness function is an equation that can be
quickly calculated. In this case, it was concluded that the
best fitness function for training the controller would be to
use the distance traveled over a set number of game turns. To
get the fitness function, the TORCS system had to be used
with the controller and the generated speed limit values. To
improve efficiency, whenever a new set of dimension values
was tested, the fitness was stored in a list. This way, if the
fitness value for that specific set of dimension values was
ever needed again, the testing program would not have to
spend the time waiting for it to be calculated again. Thus,
when all input values given to the controller were the same,
it would always return the same result.

2) Race results: In examining the videos of the race final,
the social aspect of the learned behavior is clear. Our driver
tended to find gaps in the pack and slip into them in order to
maintain speed and direction. Thus, it used pack information
implicitly in its driving rules. The main weakness with the
approach is that when it took the lead and extricated itself
from the pack it no longer had the pack information to rely
on to regulate its speed. So, it tended to over accelerate and
spin out. It was clear, that when the driver had extricated
itself from the pack that we needed to augment the driving
rules and variables to compensate for this.

B. Simon M. Lucas: Hacked controller

The entry HackedController was based on a modification
of the supplied SimpleSoloController. SimpleSoloController
(referred to as the original controller for the rest of this
section) is able to drive around most tracks without crashing.
It does this by keeping close to the center of the track, by not
driving too quickly, and by limiting the maximum steering

angle to avoid excessive skidding. On one of the Oval tracks,
it was possible to greatly improve its performance simply by
increasing its target speed. However, if this was done without
taking other compensating measures, then there was too great
a likelihood of crashing on more complicated tracks. I did
most of the testing on E-Track 3, as this has a good mix of
shallow curves, tight curves, and straight sections. On three
runs, the original controller scored an average fitness of 4959
metres. Two of the runs had a fitness of over 5500, but on
one run it crashed on a tight bend, and scored only 3733.
When SimpleSoloController crashes, it often fails to recover,
and may waste the rest of a fitness evaluation stuck against
a barrier, when simple reversing manoeuvre would free it.

The main approach I took to optimising a controller based
on this was to increase the default top speed, while adding
in some measures to try to reduce the risk of crashing.
SimpleSoloController had a target speed of 100 km/h, but
increasing this without some compensating measures could
be counter-productive.

The competition API provides an array of range-finder
style sensors. A simple approach was taken to summarise
the information from these. If any of the range-finders fell
below their maximum value, then the car went into a type
of safety mode, and set the target speed to 50. Furthermore,
if the current speed was greater than the breakSpeedLimit (a
newly created variable, optimised to be 105) then the cars
brakes were applied (and acceleration set to false). However,
if the range finders were all at maximum, then this indicated a
straight section immediately ahead, and also that the car was
heading close to straight along it. Under these conditions,
the target speed was set to 250.

Other changes were as follows. If the car position deviates
from the center of the track by more than trackPositionLimit,
then steering mode is engaged. Under steering mode, the
target speed is reduced by a factor of two in the original con-
troller (from 100 to 50), and by a factor of 1.5 in the hacked
controller (from 250 to 167). The variable trackPositionLimit
was set to 0.3 in the original, and 0.15 in the hacked version,
with the effect that the car makes more effort to stay close
to the centreline of the track. In the original controller, the
target angle to the track is made equal to the track position.
In the hacked version, this value is multiplied by a variable,
trackFac. After optimisation, this had value of 0.38. This
means that smaller adjustments are made to the steering, in
order to reduce the risk of skidding. If the selected steering
angle is small ( 0.01) then it is set to zero in the original
controller. In the hacked version, this was changed to 0.005.
Its not clear whether this logic makes much difference for
either controller, but the thinking behind it is to prevent the
car from constantly making tiny adjustments to the steering.

The final significant change was to make the steering
adjustment speed dependent. In the original controller a
steering adjustment was made that depended only on the
distance from the center line of the track, and the angle
to that center line. In the hacked controller the maximum
steering angle reduced as the speed increased, since setting



a large steering angle at a high speed will most likely induce
a skid, and the hacked controller is not sophisticated enough
to maintain control in a skid. The variable steeringFac, was
introduced to adjust the slope of the line controlling the
dependence of the steering on the speed.

The original intention with hacked controller was to extract
the main variables into a vector, and then use an evolutionary
strategy to evolve the values of those. However, in order to
meet the competition deadline there was insufficient time for
this, and instead the values of the variables were optimised
by hand. The first approach was to observe the behaviour of
the car as it was being driven by the hacked controller, and
then to make adjustments to the variables to correct problems
that were observed. Due to the non-linear interactions of the
variables, and the excessive time spent watching the car in
visual mode, this approach proved to be ineffective.

Best results were obtained by running the simulation in
results only mode, which allows evaluations to be done much
faster than real-time, and therefore many more settings of
the variables can be tried. The approach taken was a kind of
direct policy optimisation, where variables were initially set
based on intuition, or taken from the SimpleSoloController.
Trials were made with each one adjusted by around +/- 10%
or 20% of its current value. The fitness of each setting was
noted, and I looked for patterns in values of variables, or
combinations of variables that worked well. In total, around
50 trials were made.

The variables adjusted in this way (together with their
final values in parentheses) were: steeringFac(0.35), track-
Fac(0.38), breakSpeedLimit(105), trackPositionLimit (0.15).
On three trials (on E-Track 3) this hacked controller scored
7815, 7776, and 7811, giving an average of 7801: a signifi-
cant improvement over the original controller.

In summary, hacked controller represents a somewhat
hastily designed effort to use the available sensor data to
improve on the supplied SimpleSoloController. The supplied
controller was extended in the ways described above, and
a kind of manually operated evolutionary process was used
to tune the parameters. This was found to me more effective
than tuning the parameters by trying to directly observe their
effects on specific aspects of the driving behaviour. It would
be interesting to try evolving these values using an evolution
strategy, to see whether the manually chosen parameters can
be significantly improved on: they probably can.

C. Matt Simmerson: NEAT controller

The idea behind this controller was to evolve a neural
network that controlled a racing car around many tracks,
equally well, based on a set of input data provided by
the racing environment. The added complication for my
controller was to evolve the network topology given no
domain knowledge a priori.

1) Defining the controllers: The controller was trained
using the NEAT [6] algorithm that evolved populations of
neural networks, and was created using the NEAT4j [7]
software, an implementation of the NEAT algorithm. The

NEAT4j implementation allows for the initial selection of a
sub set of 3 inputs of the available 29 sources of input data.

The 3 outputs controlled the power in the range [0,1], the
gear change in the range [0,1] and the steering in the range
[-1,1]. The throttle and brake actions were Boolean so the
power output node was used to apply throttle for ¿= 0.6 or
apply the brake for ¡= 0.4. For the middle values then the
neither the throttle or brake would be applied and hence the
controller would coast. The gear change would attempt to
change up if the output node was ¿= 0.5 and change down
otherwise. The gears selected were limited to [R, N, 1, 2, 3,
4, 5, 6]. As all the output nodes used a sigmoid activation
function, the actual values created as the controller actions
were scaled from [0,1] to the appropriate range.

The subset of inputs, from the table defined above, avail-
able for this controller were:

1) Current speed
2) Angle to track axis
3) The 19 track sensors
4) Track position (with respect to left and right edges
5) Current gear selection
6) The 4 wheel spin sensors
7) Current RPM
All the inputs were scaled to be in the range [-1,1] or [0,1]

depending on the sign of the input This prevents large input
values completely swamping other, smaller, input signals.

The initial controllers were very simple with 3 randomly
selected input nodes connected to one of the output nodes,
such that all output nodes were connected to exactly one
input node, but an input node could be connected to more
than one output node.

2) Controller evolution: The NEAT algorithm, in essence,
uses a genetic algorithm to create a neural network topology
from a given genome. Each genome consists of a set of
node genes that describe an individual neuron and connection
genes, which describe a nodes connections.

The population size was just 100 as this was a reasonable
compromise between evolution and the time it took for each
epoch. The mutation and crossover operators were those
defined by the NEAT algorithm. The parent selector function
was a tournament round where the allowed parents were
pitted against each other with the winner taking the spoils
(i.e. the fittest). Recurrency was allowed in this experiment.

3) Training the controllers: The car was trained on just
one track, G3, which was not one selected for the initial
valuation. This track was selected as it had some varying
turns i.e. left, right, curve and also straights of varying
lengths into the various corners. Ideally, for the sake of
generalisation, I would have liked to train the cars over
several tracks; however, the current version of the TORCS
environment prevented this.

4) Controller evaluation: The car was tested on the track
for a maximum of 4000 steps, equivalent to around 80
seconds real time. If the car sustained more than 100 points
of damage (out of a maximum of 10000), the evaluation for
that car was aborted.



The overall fitness of the car was calculated thus:

Fc = (2 ∗Dr)do + speedmax + C (1)

1) Dr was the distance raced value reported by TORCS
engine and could be both positive and negative.

2) d was the value reported by the TORCS engine and
has a maximum value of 10000.

3) o is a measure of how much the car stayed on the
track. This was necessary to prevent the car using the
barriers as a guide with no damage penalty. Until this
variable was added, it prevented any really successful
controllers. The edge of the track was represented by -1
(left) and +1 (right). The outside value was calculated
as 0 if the car was in these limits, and (Abs(track
position) - 1) for values outside these edges.

4) Max speed was calculated throughout the cars trial
based on the speeds reported by the TORCS engine.
This was to try and reward fast cars early on that
crashed, as the name of the game is speed.

5) C was used to ensure the fitness value was always
positive and was set to 10000. Negative values were
created when cars went the wrong way round the track
or had high-speed crashes near the start, resulting in
large damage.

Whilst the 4000 time steps, used for evaluation, repre-
sented 80 seconds real time, the TORCS engine allowed a
non-GUI version, which was evaluated in around 3-4 sec-
onds. With the population was set to 100, each evolutionary
epoch lasted 400 seconds. The entry, for Neat4J, was selected
from the winning phenotype from the 170th generation i.e.
nearly 19 hours on my dual core laptop. This had a good
level of performance over a number of different track types
e.g. oval, twisty etc.

D. Diego Perez and Yago Saez: Rule-based controller

The idea of this controller is to evolve a set or rules that
drives a vehicle, using sensors as input data. The usage of
sensors to obtain autonomous driving has been addressed by
numerous researchers ([8], [9], [10], [11]), as well as the use
of evolutionary algorithms in this field ([12], [13], [14]).

1) Input data, effectors and rules: The input data is
discretized from the values of four sensors: angle, discretized
to [0,4], where 0 means the smaller angles; trackPos, with
a discretization performed in a range [0,1], where 0 means
centered on the track and 1 the car near the edges; speedX, in
a range [0,3] where 0 means lower speed than higher values;
and track, where only three of these sensors have been used
(front and inmediate sensors on right and left) and discretized
to a unique range [0,2], where 0 means that a track edge has
been detected beyond 20 meters, 1 when the track edge is
up to 20 meters and 2 in case no track edge is detected.

A key part of the design is the usage of symmetry for the
first two sensors. This concept works using the absolute value
of the sensor to match to the proper discretized value. The
objective of this approach is to avoid duplication of efforts
by reducing the search space.

The effectors of the controller have been designed as
follows: throttle and brake, where both pedals have been
codified in a common output to avoid non-sense values (as
full gas in both pedals simultaneously). Hence, a unique
value is applied and both gas pressures are extracted from
it; steer, codified as a real number, from -1 to 1, and
discretized with a precision of 0,1; gear, which changing
process consists on increasing the current gear when the rpm
value is higher than 6000 and decreasing it if it is below
3000. The discretization and codification applied over the
input data and effectors allows us to create a set of 120
rules, where conditional part is composed by the sensors, and
the actions are formed by acceleration, braking and steering.
These rules compose the base individual.

2) Application of an evolutionary rule system: Traditional
random initialization of individuals used in evolutionary
techniques do not work properly in this field, because it is
almost impossible to obtain a configuration that drives the
vehicle correctly by chance. This is the reason of getting a
base individual before evolve it to obtain better results. The
algorithm used to get this base individual is a generation
of a subset of rules that allows the vehicle to end a lap,
minimizing the angle of the car with the track axis. Each
one of this rules is created by testing how each allowed
combination of acceleration and steering behaves when the
condition of the rule is triggered.

Once we get the base rule set, the evolving individual is
extracted from it, taking all its rules. Therefore, the individual
is composed by a set of rules, each one of them formed by
condition and effectors, that need to be evolved to obtain the
controller. To evolve this individual, the algorithm executes
evolutionary steps until a stopping criteria is reached.

The evaluation of the individual is performed recording
lap time and damage suffered, setting the fitness using a
linear combination of both values, with weights of 0.4 and
0.6 respectively, in order to avoid overfitting to the training
circuit. In this system, we can not decide when a rule is
better than another because the behaviour of the individual
depends on the whole set of rules used. Because of this,
selection operator has been designed as a random pick-up
from the rules pool, taking two of them to apply uniform
crossover. Finally, mutation operator is performed over the
new rule, applying an addition of ±1 unit to the left part
and ±0.3 to the effectors of the rule (obeying limits and
codification precision).

The next step in this algorithm consists of searching for
a rule from the individual where its conditional part is most
similar to the new rule. This rule is extracted from the pool
and the new one substitutes it. The new set of rules is then
evaluated and its fitness is compared with the one calculated
before inserting that new rule. Only if the new rule set is
worse, the substituted one is retrieved and the new rule is
eliminated.

Results have proved this algorithm to be effective, re-
ducing lap times of the base individual in few generations,
keeping the car damage almost nonexistent. The usage of



symmetry, however, brought a side effect that was not
expected: the car drives in a smoothly zig-zag trajectory
centered on the circuit. This is because a small steering
value can center the vehicle on the track, but not necessarily
drive it parallel to the track axis. Nevertheless, the controller
behaved in a reasonable way, only with the exception of
some specific circuits: the oval ones. These circuits, similar
to Nascar tracks, have banked curves which make the zig-zag
movement completely uncontrollable.

E. Chin Hiong Tan and Kay Chen Tan

The entry submitted by Chin Hiong Tan and Kay Chen
Tan was developed in a three-step process. First, the sensory
information was aggregated and preprocessed; second, a
parametrized controller based on simple rules was designed;
finally, the parameters of controller were optimized using
evolution strategies. The resulting controller drives in the
direction where the rangefinder sensors indicate the largest
free distance, with a speed dependent on that distance.

IV. RESULTS

The entries were scored through a two stages process
which involved three tracks available in TORCS: the Ruud-
skogen, the Street-1 and the D-Speedway. The first (warm up)
stage was aimed at eliminating particularly bad performing
controllers. Each controller raced alone in each of the three
tracks and its performance was measured as the distance
covered in 10000 game tics (approximately, 200 seconds of
actual game time). For each of the three selected tracks, we
run each controller ten times. The performance has been
computed as the median (the 50th percentile) over the ten
runs to avoid any issue about skewness. Table III compares
the performance of the five controllers submitted to the
one of the two sample programmed controllers provided
by the organizers. The results show that the controller sub-
mitted by Leonard Kinnaird-Heether and Robert Reynolds
outperformed the other controllers in all the tracks but the
Street-1 track. As can be noted, the performances of the
controllers are highly different among the three tracks but
they generally compare well to the performances of the sam-
ple controllers provided by the organizers. In particular, the
entries submitted respectively by Leonard Kinnaird-Heether
et al., by Simon Lucas and by Matt Simmerson (the first three
controllers reported in Table III) performs consistently better
than the sample controllers almost in all the three tracks. As
all the five submitted controllers performed well on the first
stage, none of them was eliminated from the second stage,
in which the controllers competed together in each of the
three tracks. In this stage, the task consisted of completing
three laps and each controller was scored based on its arrival
order using the same point system used in F1: 10 points to
the first controller that completed the three laps, 8 points to
the second one, 6 to the third one, 5 to the fourth, and 4 to
the fifth one. Ten runs for each track were performed using
as start grid a random permutation of the competitors, in
order to test the reliability of the controllers’ performance.
Then, the score of a controller on one track was computed as

Entry Ruudskogen Street-1 Speedway
Kinnaird-Heether et al. 6716.7 3692.9 14406.9

Lucas 4134.2 5502.8 12664.5
Simmerson 5934.0 6477.8 12523.3
Perez et al. 3786.9 2984.8 -317.3
Tan et al. 3443.5 2998-5 10648.2

C++ Sample Controller 4465.1 4928.8 7464.5
Java Sample Controller 5593.8 2963.2 5689.9

TABLE III
RESULTS OF THE FIRST STAGE OF THE EVALUATION PROCESS. THE

REPORTED ARE THE MEDIAN OVER 10 RUNS.

Entry Ruudskogen Street-1 Speedway Total
Simmerson 10 10 6 26

Kinnaird-Heether et al. 4 8 10 22
Lucas 6 6 8 20

Tan et al. 5 5 5 15
Perez et al. 5.5 4.5 5 14

TABLE IV
RESULTS OF THE SECOND STAGE OF THE EVALUATION PROCESS. THE

SCORES REPORTED ARE THE MEDIAN OVER 10 RUNS.

the median of the scores obtained during the ten runs. The
final score for each controller was finally computed as the
sum of the points collected on each track. Table IV shows
the final scoreboard: Matt Simmerson won the competition
with 26 points, followed by Leonard Kinnaird-Heether et al.
with 22 points, by Simon Lucas with 20 points, by Tan Chin
Hiong with 15 points, and finally by Diego Pérez 14 points.
These results suggest that although the controller submitted
by Kinnaird-Heether and Reynolds is fast, the one submitted
by Simmerson is more reliable, especially in the presence
of other controllers. Finally, it is worthwhile to underline
that the second stage of the evaluation process suggested
that all the submitted controllers have poor overtaking and
obstacle-avoidance capabilities, whereas these features are
very important to succeed in a racing competition. Additional
results and a video with the highlights of the competition are
available on the webpage of the competition [15].

The reason Simmerson’s controller won over Kinnaird-
Heether and Reynold’s was probably that the latter had been
optimized for racing on tracks with smooth curves, in the
presence of other cars. Simmerson’s controller had been
trained on the “G3” track that included sharp turns, like
Ruudskogen, but on its own. Both of these controllers were
optimized with stochastic algorithms, and it stands to reason
that such approaches outperform the hand-tuning used by
Lucas.

V. THE FUTURE OF THE CAR RACING COMPETITION

While this competition differed greatly from the com-
petitions organized during 2007, in that a more sophisti-
cated racing game was used, there was also a great deal
of continuity. Not only in that some of the participants
of the 2007 competitions also participated in the current
competition, but also in the similarity of rules and arrange-
ments. The organizers believe that this continuity is very



important for the competition to be successful. We need
a high participation level to ensure that a broad spectrum
of approaches are represented, and regular repetitions of
the competition to ensure that the participants have time
to perfect their approaches. Our aim is to ensure further
continuity through holding a series of future competitions
using gradual refinements of the rules and software used in
the current competition.

The following improvement will be made to the software
in time for the CIG competition:

• The installation process will be streamlined
• Reliability will be improved
• Support for multi-car and multi-track training will be

added (making it easier to apply co-evolution and in-
cremental evolution)

• More sample controllers and trainers, e.g. temporal
difference learning trainers, will be supplied

An amusing illustration of the need to improve reliability
is that in an early version of the software it was possible to
achieve the fitness value of driving a whole lap, simply by
slowly driving up to and passing the start line (the car starts
100 meters before that line), then turning and passing the line
again. This flaw is inherent in TORCS, presumably because
its developers never thought of anyone doing something
so bizarre. Evolutionary algorithms, however, are good at
coming up with bizarre solutions, and Matt Simmerson’s
algorithm quickly evolved a controller that exploited this bug.
A patch for this bug is now part of the software package.

A reviewer of the paper summarizing the previous car
racing competitions [1] pointed out that in its current form,
the competition is not only about learning algorithms. It
is certainly possible to hand-code a non-learning controller
that outperforms the best CI-based controllers. Indeed, the
best controllers that come with the TORCS game (developed
by the TORCS developers) are non-learning and by far
outperform all the controllers submitted to this competition
so far, though they often access information state information
that is not directly available through the competition API.

Of course, we hope that future editions of this competition
will see CI-based contributions that perform better than the
best hand-coded ones, and there are no reasons why this
should not happen. Still, it would be interesting to run a
version of the competition that compared only the quality
of the learning algorithm. One way could be to define a
standard (e.g. neural network-based) controller architecture,
and then provide an interface for a learning algorithm to set
the parameters for this controller optimally given a certain
numbers of laps around an unknown track. The participants
would then submit an algorithm rather than a controller, to
be run and evaluated by the organizers of the competition.

Another interesting version of the competition would be
one where the controllers where presented with a richer but
more primitive state description, in particular visual data.
This could come in the form of the full rendered 3D view
through the controlled car’s windscreen, or a part of it. Such
a state description would ultimately give the controllers more

information and thus allow for better driving, but would also
require more complex controllers.

Given the various interesting variations on the car racing
concept that are possible, our plan is to organize editions
of the car racing competition in conjunction with several
international conferences, and at each conference hold both
the competition in its original form, and some variation on
the concept like the ones suggested above.

VI. CONCLUSION

We have described the organization, rules and software of
the car racing competition in the form it was organized in
conjunction with IEEE WCCI 2008. Four out of five partic-
ipating teams described the architecture and training of their
controllers. We have also reported the scoring procedure and
results of the competition, and plans for future competitions.
We hope that this paper, in addition to serving as a record of
the competition, will provide organizers of similar competi-
tions with inspiration and insights, and that the descriptions
of the controllers will be useful for researchers working on
learning vehicle control in general, and for participants in
future car racing competitions in particular.
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