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Abstract—We present the Showdown AI Competition, a game-
based AI competition built around a clone of the popular game
Pokemon. This is a game of turn-based team battle, where the
objective is to defeat an opponent team using clever combinations
of creatures and their abilities. The gameplay is reminiscent of
computer role-playing game battles and collectible card games.
The game has characteristics, such as the combination of turn-
based gameplay and partial observability, that are unusual in
current game-based AI competitions and therefore offers a fresh
challenge.

I. INTRODUCTION

Games have historically demonstrated that they are ideal
testbeds for artificial intelligence algorithms. They provide an
explicit set of rules and a clearly defined system of cause
and effect, which allows researchers to define the nature and
complexity of the problems in play. The ability to formulate
these rules and systems grants the freedom to define and tackle
a wide variety of problems, from single player platformer
games such as Super Mario Bros [1] to adversarial strategy
games [2].

In academia, research into AI for games is particularly
useful because games can be selected or configured to mirror
problems in other domains. As such, solutions and high-
performing agents in these games can be applied to overcome
challenges in other areas. For example, Monte Carlo Tree
Search, which has found a great deal of use in playing the
board game Go [3], has also been utilized to solve scheduling
problems [4]. The ability to treat games as a surrogate for
other problems has also given us an ability to test solutions to
dangerous problems in a safer way. Rosser et al. demonstrated
that video games such as Super Monkey Ball correlated with
surgical skills and presents a possible way to integrate video
games into training curricula for surgeons [5]. Similarly, games
can be used to test the efficacy of Al algorithms in high-
risk domains such as self-driving cars without endangering
property or lives.

There is also commercial incentive for the development
of game Al As artificial intelligence often finds usage in
video games as enemy units and content generators, im-
provement of these algorithms translates into a change in
gameplay experience for players. Higher performing agents
can provide more challenging opponents, and a wider variety
of agents can capture a larger number of playstyles. There
are numerous roles for Al in games, including powering
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non-player characters in various roles [6] but also for e.g.
game adaptation, procedural content generation, and design
assistance [7]. Expanding a game developer’s toolkit is likely
to increase variety in NPC behavior in games, and potentially
allow for a greater degree of personalization for player skill.

Game-based Al competitions are a useful way to promote
Al research into a specific domain while also providing a
means to evaluate agents against one another [8]. These
competitions typically involve the development of a game
framework and API, which competitors then use to develop
algorithms to play the game in question. Upon submission,
these agents are ranked based on some metric or rule. For
single player games agents can be ranked by some scoring
metric while multi player games can make use of round robin
or single elimination tournaments. Competitions are useful to
developers as this eliminates the often burdensome step of de-
veloping entire frameworks to test Al algorithms. They provide
a standardized metric against which agents can be compared,
making it possible for different groups of researchers and
developers to directly compare algorithms against one another.

A number of competitions are run every year at the IEEE
CIG conference, and also regularly at other conferences such
as IJCAI and AIIDE. A large number of papers published
at these and other venues are based on work undertaken
for these competitions or use the competitions’ various soft-
ware frameworks. A list of the competitions that have had
significant impact in this sense should include at least the
Ms Pac-Man Competition [9], the StarCraft Competition [2],
the Mario AI Competition [1], the Simulated Car Racing
Championship [10], and the General Video Game AI Com-
petition [11]; new competitions are proposed every year, with
some having more staying power and impact than others.
(Additionally, there are industry-sponsored game-based Al
environments, such Microsoft’s Project Malmo and OpenAI’s
Universe, but these are typically not configured as competi-
tions.)

When proposing a new competition, it is important that
it offers a challenge that is not found—or not found in this
form—in existing competitions. Seeing that the existing CIG
competitions are composed of mostly real-time video games
with mostly perfect or locally perfect information, it can be
argued that there is a need for competitions that explore other
parts of the game design space, while still being based on
modern video games. In particular, the type of adversarial



battles that is often found in collectible card games and
computer role-playing game combat is not represented in
existing game-based Al competitions. A good example of this
is the very popular Pokemon series of games, which are heavily
based on such of battles.

This paper outlines the rules and technical specifications of
the Showdown AI Competition, which requires competitors
to create agents that participate in the combat system of
the Pokemon series of games. First we describe the general
rules of Pokemon battling. We then outline the rules of
the Showdown AI Competition, after which we present the
Showdown AI Framework, its technical specifications, and the
resources it offers Al developers. We present the challenges
Pokemon offers as an AI benchmark, as well as strategic
considerations that Pokemon offers as a game. Finally, we
present sample controllers and their comparative performance
in Pokemon battling.

II. POKEMON

Pokemon is a game franchise that was developed by Game
Freak and published by Nintendo in 1996 [12]. It has since
spawned a number of sequels as well as a number of spin-off
games which span several genres. The main series consists
of role-playing games in which the protagonist travels across
a region, capturing creatures called Pokemon, and training
them for use in battle. We will here primarily discuss on
the battle aspect of the main games, as that is what the
competition is about. At the time of writing, there have been
seven distinct generations of Pokemon games, with a number
of changes occurring between each, but the underlying formula
remains unchanged. In battle, two teams of up to six Pokemon
battle one another until all of the Pokemon on one team are
incapacitated.

Since the original release of Pokemon Red and Blue[13],
there have been six additional generations of games, each
of which has added systems and complexity to the combat
system. Generation 2 added two additional stats for damage
calculation, generation 3 gave each Pokemon an innate passive
ability, generation 4 redefined which stats were used in move
damage calculation, and so on. Each of these generations had
a substantial impact on competitive strategy, which was inves-
tigated and codified by the game’s competitive community'.
Because new Pokemon games are released on a regular basis,
the game’s strategic landscape is highly fluid.

As much as the game has changed since 1995, the win
condition has remained unchanged. The goal of Pokemons
combat is to defeat all of the opponents Pokemon. Before
the beginning of a battle, both players construct or are given
teams of six Pokemon, each of which have up to four moves.
All Pokemon have a value known as hit points (hp), which
depletes as a Pokemon takes damage from attacks. When this
value reaches 0, the Pokemon is considered incapacitated, and
the game ends when all of a players Pokemon reach this state.

ISmogon is one of the game’s largest competitive community sites, and
can be found at www.smogon.com

Pokemon’s combat system uses an atomic turn system,
meaning that rather than alternating turns and choices between
players as in games such as chess, Pokemon receives decisions
from both players, and then resolves both decisions simultane-
ously. In a single turn, a player can choose to use one of their
active Pokemon’s moves or switch to another Pokemon. Once
both players have chosen a move, the game uses a priority
system to resolve the events of the turn. Except in very specific
cases, switching takes precedence over moves, then moves
with special priority are processed. If both players have chosen
moves without special priority, the Pokemon with the higher
Speed stat moves first, and the other Pokemon moves second.
It is worth noting that Pokemon can be incapacitated before
their move occurs, in which case the player’s turn is effectively
skipped.

III. COMPETITION RULES
A. Pokemon Rules

The Showdown AI Competition includes the Pokemon,
moves, and rules of generation 6 Pokemon games: Pokemon
X, Y, Omega Ruby, Alpha Sapphire (XY ORAS). Additionally,
the Showdown AI Competition uses a set of rules defined by
Smogon, one of Pokemon’s largest competitive communites.
These rules are[14]:

o Species Clause - No team can have two of the same Poke-
mon. Pokemon with different formes are still considered
the same Pokemon.

o Sleep Clause - A player is disallowed from inflicting sleep
on more than one of the opponent’s Pokemon at a time.

o Endless Battle Clause - Players are disallowed from
intentionally preventing a battle from ending.

o Baton Pass Clause - Only one Pokemon can have Baton
Pass. Also, no Pokemon can have Baton Pass, a speed
boosting ability, and a stat boosting move at the same
time.

« Move Bans - The following moves are banned:

— Double Team
— Minimize
— Fissure
— Guillotine
— Horn Dirill
— Sheer Cold
- Swagger
« Ability Bans - Moody and Shadow Tag are banned
o Item Bans - The following items are banned:
— Gengarite
— Kangaskhanite
— Lucarionite
— Mawilite
— Sablenite
— Salamencite
— Soul Dew
Additionally, a number of Pokemon are banned from use
in this competition. Using Smogon’s generation 6 tier list,
all Pokemon in or above the Ubers tier and in or below



the NeverUsed tier[15] are banned from this competition.
This is designed to maximize the chance of balanced battles
between agents. Additionally, the Pokemon Zoroark has been
banned from the Showdown AI Competition due to a uniquely
complex challenge it poses to Al opponents (more on this
below).

B. Showdown Al Competition Rules

One of the goals of this competition is to create a testbed
that is as faithful to the original Pokemon games as possible.
However, several changes and additional rules have been made
specifically for the competition.

e Once a move request is made to an agent, it has 20
seconds to return a valid move. Failure to do so will be
treated as a pass, and that player’s turn will be skipped
for that turn.

« If a battle lasts longer than 500 turns, the game is ended
with a result of "No Contest”.

« If an agent throws an error or exception, that is considered
a forfeit and its opponent will be considered the winner.

Battles in the Showdown AI Competition are operated as
one-on-one single battle with no team preview. Teams are ran-
domly populated with six Pokemon that conform to the rules
outlined in Section III-A. Additionally, all Pokemon movesets
are randomly generated using moves that are considered viable
in competitive play. That is, moves such as Thundershock and
Splash are guaranteed to be excluded from random selection,
as they are considered either outclassed or useless.

Once each player has been given a randomly generated
team, they battle against one another three times. The teams
are then swapped between the players and three more battles
occur. This six battle format reduces the possibility that an
agent wins games because the randomly generated teams are
unbalanced. The reasoning behind this is the assumption that
if an agent is substantially more capable than its opponent, it
should be able to win battles with both teams.

The competition consists of three rounds: a qualifying
round, a preliminary round, and a final round. The qualifying
round pits all agents against the One Turn Lookahead sample
agent described in Section VII for 15 sets of six battles each.
Those agents that win the most games against the sample agent
proceed to the preliminary round, which is operated as a round
robin tournament. (The size of this tournament will be decided
at a later date.) Each agent plays against all other agents for
five sets of six battles each. The four players with the best
win-loss ratio will participate in a double-elimination style
tournament. The agents will be randomly matched, at which
point each pair of agents will play 15 sets of six battles each.
The final ranking is determined by agent performance in the
double-elimination final round.

IV. THE SHOWDOWN FRAMEWORK

The Showdown AI Competition uses a modified version
of Pokemon Showdown[16], an open-source Pokemon battle
simulator written in Node.js and developed by Guangcong
Luo[17]. The framework operates by preserving the game

engine from Pokemon Showdown and supplying an interface
that emulates the socket-based interface of the Pokemon
Showdown server. The framework as a whole contains four
main layers: the game layer which houses the shared canon-
ical game state, the communication layer which facilitates
communication between the game engine and other objects,
the interface layer which parses information coming in from
the communication layer and updates the personal game state,
and the agent layer, which makes decisions to be sent to the
canonical game state for playing. Each player has a personal
game state, which replicates as much of the game state as
possible given the information a single player would have
access to. This is different from the canonical game state,
because a personal game state has no way of disambiguating
hidden information, and is thus treated as a default null value
until it is revealed to the player. The agent will primarily
interact with objects of the following classes:

e Battle - Represents a game state. Contains information
about field effects and references to BattleSide objects.

e BattleSide - Represents a player. Contains information
about side effects and references to BattlePokemon ob-
jects.

e BattlePokemon - Represents a single Pokemon. Contains
information about the Pokemon’s current status.

The code for each of these classes can be found in battle-
engine.js.

A. Reference API

The Showdown framework supplies agents with a set of
functions that retrieve data about various aspects of the game.
These reference functions are contained in tools.js and can be
accessed by referencing the global Tools object. The following
functions are available:

o Tools.getMove(moveid) - Returns information about a
move with id moveid. The format of a returned move
can be found in moves.js. Relevant fields in the return
object include move.basePower, move.type, move.status.

o Tools.getTemplate(species) - Returns information about
a Pokemon species. The format of a returned template
can be found in pokemon.js. Relevant fields in the
return object include template.baseStats, template.types,
and template.abilities.

o Tools.getEffectiveness(source, target) - Returns an integer
value representing the effectiveness of an attack source
against a farget. A value of 1 represents super effective-
ness, -1 represents resistance, and O represents neutrality.
This function does not account immunity.

o Tools.getmmunity(source, target) - Returns a boolean
value representing a farget’s immunity against a source
attack. A value of false represents immunity.

Details regarding syntax and arguments for the invocation
of these functions can be found in documentation packaged
with the framework.



B. Forward Model

The Battle class provides methods of predicting outcomes
of moves. The class’s getDamage(user, target, move) function
estimates the damage move would do if used by user on
target. It is important to note that this function takes into
account the state of the game to run its calculations, meaning
which game state is used to call this function can affect the
outcome. Additionally, because Pokemon’s damage calculation
involves a degree of stochasticity, and because getDamage
uses Pokemon’s damage calculation formula as-is to make its
prediction, the result of these calculations is an estimate rather
than an exact prediction.

The Battle class’s choose(player, choice) method allows
agents to simulate full turns. Because turns in Pokemon are
processed atomically, turn simulation can only start once both
players have made a decision, meaning choose must be called
twice (once for each player) to advance the forward model.
The choice is a string which can be formatted as follows:

e “move X” - This indicates the decision to have the current

active Pokemon use move X.
o “switch X” - This indicates the decision to switch to the
Pokemon at position X in the team.
o “forceskip” - This indicates the decision to skip the
current turn.
Once both players have made a decision, the game state
advances automatically, simulating all events that take place
until the next request for a move. It is important to note that
due to the stochasticity and hidden information present in the
game, this simulation is an estimation of the resultant game
state.

V. CHALLENGES AND CONSIDERATIONS

Pokemon and the Showdown AI Competition can usefully
be compared and contrasted to other games from the point of
characteristics that affect AI gameplay as follows:

A. Branching Factor

Tree search agents will be interested in the number of results
that could emerge from a single state. Ignoring additional
complications from stochasticity, this largely reduces to the
number of choices a player can make at a given time. In
Pokemon, this number varies based on the state. In a clean
state without any effects or modifying factors, the branching
factor can be expected to be between four and nine: four
possible moves, five possible switches. In general, this is
the most common scenario in-game, and as such, nine is a
reasonable assessment of the game’s average branching factor.
Moves such as Encore and Fire Spin can reduce this branching
factor for their target, as these effects lock them out of several
options. Conversely, some moves require additional choices
after being used. For example, Baton Pass forces the user to
switch Pokemon after being used, and so Baton Pass as an
option can be split into five separate options, one for each
Pokemon. As such, the maximum theoretical branching factor
is 25: four moves leading to switches to five Pokemon plus
five switches.

B. Turn Count and Infinite Looping

Perhaps one of the first considerations when designing an
algorithm for any challenge is understanding how far the agent
may have to predict into the future. In human play, the average
battle ends before turn 60, but it is important to note that
there is no theoretical upper limit. Although the Endless Battle
Clause outlined in Section III-A provides some protection
against infinite loops, it fails to account for voluntary looping.
In the event both players switch Pokemon every turn, the game
can go on without ending. This may occur if both agents
recognize that choosing to switch in the current situation is
optimal, only to find that the opponent has also switched
Pokemon, making switching back to the original Pokemon the
optimal move. In human play, these situations should almost
never occur, but Agents may not be be designed with the
ability to identify and break this cycle. It is worth noting that
infinite switching does not violate the Endless Battle Clause
in Section III-A, as neither player is intentionally locking the
other into into an infinite loop. Both players are at fault in this
scenario. The turn limit rule outlined in Section III is designed
to counter this possibility.

C. Turn Atomicity

Although Pokemon is categorized as a turn-based game,
it handles turns somewhat differently from other turn-based
games such as Chess or Hearthstone. Rather than processing
decisions separately in alternating order, Pokemon processes
both players’ decisions simultaneously. This means that the
game state can change between the time the player makes a
decision and the time that decision is enacted. For example, at
the beginning of the turn, player 1 decides to attack. Once both
players have made their decisions, it is revealed that player
2’s Pokemon has a higher Speed stat, and thus moves first.
Player 2’s attack incapacitates player 1’s Pokemon, canceling
their move. Because these scenarios can occur, agents may
find themselves making decisions based on game states that
are already outdated.

D. Categorical Dimensions

Comparison of health values is a valid way to evaluate the
favorability of states in Pokemon. However, this metric only
captures a small portion of the full situation. Many moves
in the game forgo damage for some other effect, ranging
from modifying stats to applying damaging status effects to
the opponent. Unlike values such as health and stats, which
can be measured as-is, status, side, and field effects are often
categorical. For example, it is difficult to quantify the value of
the burn and paralysis status effects, which makes comparing
the two difficult. This is further compounded by the fact that
several of these categories have a large number of potential
values, and are not mutually exclusive. A single Pokemon can
be under the influence of multiple effects simultaneously, and
even if each effect can be individually quantified, it raises
questions of how to compound effects that may or may not be
related, interconnected, or amplified by one another.



E. Stochasticity

An important consideration in agent design is whether or
not the game or challenge acts as a deterministic system. A
fully deterministic game means that it is possible to predict
the exact outcome of any action or decision made in a game,
and as such, any predictions made regarding outcomes can be
considered accurate and reliable. In contrast, in a game with
stochasticity any predictions made would be predicated on
some assumption about the outcome of a random variable. The
impact of randomness in Pokemon is significant, and much
of the games competitive strategy comes from being able to
accurately estimate stochastic events.

This stochasticity exists on a number of levels, which makes
accurate evaluation of options difficult. For example, damage
done by a move is highly stochastic. The damage calculation
formula for attacks includes a random multiplier between the
values of 0.85 and 1.0. Additionally, all attacking moves have
an innate 6.25 percent chance of being a critical hit, which
increases the damage dealt by 50 percent.

It is also worth noting that this randomness can also
cause moves to fail altogether. All moves in Pokemon have
an accuracy value between O and 100. The represents the
percentage chance of a move succeeding. This is especially
important for attacks such as DynamicPunch and Zap Cannon,
which have exceedingly high destructive potential, but a low
chance of success. An appropriate valuation of accuracy is
also important for understanding the value of strategies that
modify the odds of success. For example, weather effects have
historically been a key part of Pokemons metagame, and some
of the value they bring is derived from their ability to raise
and lower accuracy values. A notable example is rain’s effect
of increasing Thunder’s accuracy from 70 to 100. Conversely,
there are ways to decrease an opponents odds of success. For
example, while hail is active, the Snow Cloak ability applies
a 20 percent penalty to accuracy for all attacks targeting it.

There is also the consideration of secondary effects in
moves. Many attacks in Pokemon have a chance of applying
additional effects after connecting. These effects are often
significant and lend great value to these moves. Notable
examples are Scald, which has a 30 percent chance of inflicting
the burn status, and Air Slash, which has a 30 percent chance
of flinching the opponent (forcing them to skip their turn).

F. Hidden Information

Hidden information exists primarily on two levels in Poke-
mon. At the Pokemon level, an opponent Pokemons moves,
ability, and stats are hidden from the opponent. A Pokemon’s
ability, while impactful, can only be one of up to three values,
and for many Pokemon, they have only one right answer
ability, and so this issue can be largely eliminated by applying
domain knowledge. A Pokemons stats can vary greatly based
on hidden information values, but the application of knowl-
edge regarding cookie-cutter builds for Pokemon can greatly
mitigate this issue. Moves, however, can be problematic to
predict. Although a Pokemon can only enter battle with up to
four moves, those four moves can be any move in a Pokemons

learnset, which can be large. As an example, Pikachu has
a learnset of over 100 moves. Domain knowledge is again
useful here, as it can be used to weed out moves that are
largely outclassed or considered non-viable in competitive
play. However, even after narrowing the possibilities, it is still
unlikely that an agent will be able to accurately predict all
four of an opponent’s moves.

Hidden information also exists at the team level. In some
battle formats, players are not informed as to which Pokemon
the opponent has in their team. This introduces a great deal
of difficulty when it comes to predicting when and how an
opponent will switch their Pokemon. This also presents some
issues for simulation. It is comparatively easy to simulate far
enough ahead to defeat the current opposing Pokemon, but
without any way of knowing what the next Pokemon may be, it
is difficult to formulate a plan that will hold for the remainder
of the battle. For formats wherein players build their own
teams, domain knowledge can be applied to identify synergies
between Pokemon to narrow the possibilities, but in formats
where teams are randomly generated, there are no such cues to
leverage. This presents a challenge in random-based formats
wherein accurate prediction past a certain point is almost
impossible, simply due to the vast number of possibilities in

play.
G. Deception

There is a very specific scenario in which a players knowl-
edge of the game state is simply incorrect. Zoroark possesses
a unique ability known as Illusion, which causes it to be
disguised as another Pokemon in battle. This creates a special
type of persistent hidden information involving the possibility
that any Pokemon the opponent uses may in fact be a Zoroark
in disguise, which is especially problematic because Zoroarks
typing gives it an immunity to Psychic type attacks. This
means that a player under the impression that a Psychic type
attack would be effective would attempt to use this attack and
fail. If an agent has no means of acknowledging the fact that
it failed or attributing this failure to the possibility that the
opponent is secretly a Zoroark, the player is liable to attempt
to repeat this attack with similarly futile results. It is however
difficult to make decisions while constantly accounting for
the possibility that the opposing Pokemon is disguised, as
that creates a great deal of uncertainty in strategic decision
making. For the time being, Zoroark is the only Pokemon in
standard competitive formats with this ability, so the problem
of attributing unexpected failures is mitigated to a certain
degree. That being said, due to the extraordinary circumstances
and challenges that are presented by this single Pokemon,
Zoroark is banned from this competition.

H. Simulation Cost

The simulation cost is an important factor for agents with
complex strategies or state search mechanisms. Simulation
of a single turn using this framework takes roughly 5-40
milliseconds, depending on the complexity of the events that
occur in the turn. Due to the high cost of simulation, it will



be difficult for agents to explore a large number of states
within the allotted 20 seconds of decision time. This presents a
practical challenge for agents that operate by simulating many
turns, such as Monte Carlo Tree Search (MCTS). It is worth
noting that damage prediction and usage of the reference API
described in IV-A are much faster than full-scale simulation.

VI. DOMAIN KNOWLEDGE

Pokemon battling contains a number of subsystems and
domain-specific considerations that players make use of in
decision making. It is possible for agents to also leverage this
information to expedite decision making or improve strategy.

A. Typing

The type chart is perhaps one of the most fundamental
aspects of the Pokemon combat system. All moves in the
game are assigned a type, and all Pokemon have one or two
types. When a move is used on a Pokemon, a multiplier is
applied after the damage calculation step based on these types.
If the moves type is super-effective against the targets type, the
damage dealt is doubled, If the target is resistant, the damage is
halved. Immunity nullifies the the attack altogether. For targets
with multiple types, the multiplier is calculated for each type,
and then multiplied together, potentially resulting in 4x or
0.25x multipliers. There is an additional multiplier of 1.5x that
is applied if the users type matches the moves type, known as
Same Type Attack Bonus (STAB). The bonuses and penalties
associated with type are quite large, and so super-effective
moves generally will do more damage than resisted moves.
This domain knowledge allows for the estimation of damage
and move value without requiring the use of simulation which,
as discussed earlier, is expensive.

B. Archetypes

Introducing domain knowledge can greatly mitigate the cost
of dealing with hidden information. For instance, there are
several pairs of moves that are well known to synergize. If
a grass type Pokemon is revealed to know the move Sunny
Day, it is generally reasonable to assume they have access
to the move Solarbeam, as it has an effect that directly
benefits from Sunny Day. Additionally, many Pokemon fall
under certain archetypes, and will be built to use moves that
leverage their strongest qualities. For instance, it is generally
safe to assume that a pokemon with exceedingly high physical
attack and subpar special attack will almost exclusively use
physical moves to deal damage. If one were to incorporate
domain knowledge at a higher degree of specificity, it would
be possible to predict moves based on what archetypes specific
Pokemon fall into. For example, there is a set of Pokemon in
competitive play that fall into an archetype known as Spinners.
These Pokemon are generally valued for their access to Rapid
Spin. It is generally safe to assume in competitive play that
Spinners will have Rapid Spin in their movesets.

On a macroscopic level, domain knowledge can be useful
in predicting what Pokemon an opponent has. It is important
to note that the following usage of domain knowledge is

only applicable in formats wherein players build their own
teams. Manually built teams are often with a core strategy
in mind. Being able to identify an opponents core strategy
allows players to predict the enemy team with a certain degree
of accuracy. For example, Trick Room is a move that reverses
the order Pokemon attack each turn. If a player uses this move,
it is generally safe to assume they are using a number of hard-
hitting but very slow Pokemon.

C. Delayed Rewards

Several strategies in Pokemon involve the use of moves that
provide benefits long after the current Pokemon have been
defeated. For example, Spikes, Toxic Spikes, and Stealth Rock
are moves known as entry hazards, which damage Pokemon
whenever they switch into battle. When used properly, a
Pokemon can take up to 75 percent of its maximum health in
damage upon switching into battle. These moves are often non-
damaging and offer offer no short term benefits, and so may be
viewed as low value by players who value short term gains.
However, there is general agreement among the competitive
community that these moves are valuable assets. Long-range
foresight is a key part of fully understanding the ramifications
of moves in Pokemon, and knowledge about how moves will
play out is essential in playing at a high level.

VII. SAMPLE CONTROLLERS

Several sample agents were developed to demonstrate the
development of players using the Showdown Al framework as
well as introduce preliminary results regarding the comparative
performance of several basic algorithms.

A. Breadth-First Search

Breadth-First search is a basic tree search algorithm. Given
a root Battle object representing the current game state,
this algorithm explores the outcomes of all possible choices,
treating these resultant states as child nodes. BES traverses
these nodes in level order until it finds a state in which the
current opponent Pokemon is fainted. As a non-adversarial
algorithm, the agent selfishly assumes that the opponent uses
“forceskip” (as outlined in Section IV-B) as its choice each
turn.

B. Minimax

Minimax is a tree search algorithm that deals with ad-
versarial paradigms by assuming the opponent acts in their
best interest. Each node in this tree represents the worst case
scenario that would occur if the player had chosen a specific
choice. The agent also uses an alpha-beta pruning strategy
to ignore any node in which any of the agent’s Pokemon
faints. The tree itself is traversed using a greedy strategy,
which terminates under the same conditions as BFS. Both the
traversal order and worst-case evaluation are performed using
the following evaluation function:

hpoppPoke
maxhpoppPoke

hpmyPoke

Fval = ——————
ma'xhpmyPoke

— 3 — 0.3 x depth



Random BFS Minimax SLP MLP OTL TS PBFS
Random N/A OR 15B OR 13B 3R 37B 4R 33B OR 13B OR 23B | OR 15B
BFS 15R 75B N/A 2R 34B 11R 66B | 9R 60B 1R 26B | 10R 65B | 3R 31B
Minimax | 1SR 77B | 9R 58B N/A 14R 80B | 10R 58B | 2R 30B | 10R 65B | 3R 31B
SLP 6R 53B 1R 24B OR 10B N/A 3R 30B OR 7B IR 21B | OR 20B
MLP 10R 57B 1R 30B 3R 32B S8R 60B N/A OR 8B 6R 45B | OR 25B
OTL 14R 77B | 10R 64B | 9R 60B | 15R 83B | 13R 82B N/A 12R 68B | 4R 43B
TS 12R 67B 1R 25B 3R 37B 13R 69B | SR 45B OR 21B N/A 3R 38B
PBES ISR 75B | 10R 59B | 5R 48B 12R 70B | 10R 65B | 7R 47B 6R 52B N/A
TABLE T

THE RESULTS OF PLAYING THE EXAMPLE AGENTS AGAINST EACH OTHER. EACH CELL REPRESENTS HOW MANY ROUNDS (R) OUT OF 15 AND BATTLES
(B) OUT OF 90 THE AGENT IN THE ROW WON AGAINST THE AGENT IN THE COLUMN.

This is a fairly knowledge-free evaluation function that
heavily favors dealing damage to the opposing Pokemon, while
also rewarding survival. The depth penalty exists to promote
exploration and discourage excessive turn depth.

C. Q-Learning

Q-Learning is a reinforcement learning algorithm designed
to have an agent learn the potential values of moves. This
is done by having the agent output the expected reward
corresponding to an input (State, Action) pair, and updating
the weights once actual reward values are found. Two agents
were developed using Q-Learning: a single layer perceptron
and multi layer perceptron. These agents were rewarded for
defeating an opponent’s Pokemon and punished for allowing
one of its own pokemon to faint. Because decisions made tend
to have long term consequences, weights are updated using
the last three (State, Action) pairs rather than the most recent
pair only. Additionally, in order to promote exploration, the
agent employs an epislon-greedy selection policy, causing it
to randomly override its decision with a probability of 0.1.
The single layer perceptron was trained using the Delta Rule,
while the multi player perceptron was trained using Delta Rule
plus Backpropagation.

D. One Turn Lookahead

One Turn Lookahead is a heuristic based agent designed to
encapsulate a greedy strategy that prioritizes damage output.
This is a fairly popular strategy at lower level play, although it
has been shown to be effective at that tier. The agent operates
by estimating the damage dealt by all usable moves, including
those usable by the agent’s inactive but usble Pokemon. If the
highest damaging move belongs to the active Pokemon, the
agent will use that attack. If the most damaging move belongs
to an inactive Pokemon, the agent will switch to that Pokemon.

E. Type Selector

Type Selector is a variation upon the One Turn Lookahead
agent that utilizes a short series of if-else statements in
its decision making. The agent begins by iterating through
all moves usable by the current Pokemon, and using the
frameworks getDamage function to estimate damage. If this
damage is greater than the opponents current health, then
this signifies a clear path to victory, and as such the agent
will return this move. If there is no move in the Pokemons
repertoire, it evaluates the favorability of the Pokemons typing.

If the type matchup between the current active Pokemon and
the opposing Pokemon is determined to be acceptable, the
agent will return the most damaging attack it found in the
initial search. If the type matchup is found to be undesirable,
the agent will iterate through the Pokemon it can switch to. It
will then switch to the Pokemon with the most favorable type
matchup against the current opponent.

FE. Pruned BFS

This agent is designed to demonstrate a simple way to utilize
domain knowledge as a cost-cutting measure. This algorithm
does so by making modifications to the Breadth First Search
agent. First, the algorithm does not simulate any actions that
involve using a damaging move with a resisted type, nor does
it simulate any actions that involve switching to a Pokemon
with a subpar type matchup. Additionally, rather than selfishly
assuming the opponent skips their turn in each simulation, the
agent assumes its opponent is a One Turn Lookahead agent
and simulates accordingly.

VIII. RESULTS

Each agent played 15 rounds of six games each against
every other agent in a similar fashion to the final round
outlined in Section III. The first number in each cell represents
the number of rounds the row agent win against the column
agent out of 15. The second number represents the number of
battle the row agent won against the column agent out of 90.
Ties are not counted, both for rounds and battles, and so the
numbers may not necessarily add up to 15 and 90 respectively.
A one-tailed binomial test was performed upon the number
of games won for each matchup. If the resultant p value is
less than 0.05, the value is bolded in the table, indicating
statistically significance superiority.

From this table, it can be seen that Minimax, One Turn
Lookahead, and Pruned BFS significantly outperform the other
agents in this set. While Pruned BFS appears to slightly
outperform One Turn Lookahead, its weaker performance
against other agents appears to perhaps suggest a strategic
rock-paper-scissors paradigm, where PBFS’s strategy happens
to counter that of OTL, but performs worse against other
strategies. This likely stems from the fact that PBFS uses an
OTL agent as its opponent model, meaning the agent in a way
is designed to play against OTL.

A possible explanation for the weakness of BFS, Minimax,
and Pruned BFS lies within the competition’s 20 second time



limit. Due to the cost of simulation as well as the large search
space, the tree search algorithms time out fairly often. This
is especially true if the player’s Pokemon is afflicted with a
status that causes it to skip turns, as that Pokemon will not be
able to make any progress toward its goal until the status is
cleared, wasting entire layers in the tree search.

One Turn Lookahead has demonstrated strong performance
among the agents. It is possible that among the toy metagame
established by these agents, an aggressive damage optimiza-
tion strategy is strongest. However, human play has established
that this is an easily countered strategy in upper level play, and
so there is a possibility that the performance of this agent will
drop significantly as more complex strategies are implemented.

One particular point of interest is the comparison of the
Minimax and Breadth First Search agents. These two agents
represent a direct trade-off between higher search depth and
more accurate prediction.

IX. CONCLUSION & FUTURE WORK

The initial results presented here provide some basis for
predictions into how agents may perform in this and future
iterations of this competition. In the long term, predetermined
heuristic-based agents will likely suffer. The complexity of a
heuristic agent is directly proportional to the complexity of
the strategy it employs. Implementing complex strategies with
priority lists and decisions trees by hand is likely to reach
diseconomies of scale at some point. Conversely, considering
the low computation cost and relatively high performance of
the One Turn Lookahead agent, there is possibly potential for
the automated training or evolution of strategic agents.

There is evidence to imply that simulation accuracy is more
valuable than search depth in this domain, and as such the
simulation strategy will be very important here. However,
as Minimax has demonstrated, thorough simulation is costly
and greatly limits the number of explored nodes. Methods by
which domain knowledge is used to create close approxima-
tions at mch lower cost will likely be useful moving forward.
As Pruned BFS has demonstrated, there are cost effective ways
to reduce the number of simulations in a tree search, and there
are undoubtedly other angles from which domain knowledge
can enhance tree search.

There is some potential for deep learning algorithms as well.
The Single Layer Perceptron’s dominance over the random
agent implies there is some pattern that can be learned. For
the time being, deep reinforcement learning seems to be
an effective direction for these algorithms. As Pokemon is
a new domain for Al, there is little training data to work
with, making offline learning problematic. One particularly
interesting avenue for machine learning may be the training
of state evaluators or in a sense neural forward models. By
using models to predict output states or evaluations, once
could potentially leverage the thoroughness of a tree search
algorithm while drastically cutting down on simulation costs.

A. Future Competitions

While randomly generated teams have the benefit of reduc-
ing the engineering workload for AI developers, it does have

the side effect of impacting the game’s strategic landscape[18].
While the randomized format tests an agent’s ability to deal
well with a hand they are dealt, giving an agent the ability to
build their own team tests the ability to formulate the optimal
hand. An interesting direction for the Showdown AI Competi-
tion is the introduction of a team building track. To the author’s
knowledge, there are currently no game Al competitions with a
substantial team or deck building component. This paradigm
brings with it a proactive strategic element that takes effect
before a game even starts, and introduces the problem of
compatibility. Which Pokemon a player has is significant to
what strategies they can execute, and so creating a team that
is compatible with the battling agent and vice versa will be a
key challenge in this domain.
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