
Predicting Resource Locations in Game Maps
Using Deep Convolutional Neural Networks

Scott Lee, Aaron Isaksen, Christoffer Holmgård, Julian Togelius
NYU Game Innovation Lab, New York University, Brooklyn, NY 11201

sl3998@nyu.edu, aisaksen@appabove.com, christoffer@holmgard.org, julian@togelius.com

Abstract

We describe an application of neural networks to predict
the placements of resources in StarCraft II maps. Net-
works are trained on existing maps taken from databases
of maps actively used in online competitions and tested
on unseen maps with resources (minerals and vespene
gas) removed. This method is potentially useful for
AI-assisted game design tools, allowing the suggestion
of resource and base placements consonant with im-
plicit StarCraft II design principles for fully or partially
sketched heightmaps. By varying the thresholds for the
placement of resources, more or fewer resources can be
created consistently with the pattern of a single map. We
further propose that these networks can be used to help
understand the design principles of StarCraft II maps,
and by extension other, similar types of game content.

Introduction
Procedural Content Generation (PCG) has proven a useful
tool for game designers and developers as well as a rich
and rewarding research topic for researchers in artificial in-
telligence and games (Shaker, Togelius, and Nelson 2015).
While PCG applications and research has often focused on
methods for producing game content with no or limited hu-
man input, there has been a recent focus on developing sys-
tems that can assist designers with game content creation, by
providing suggestions, refinement, or feedback or otherwise
collaborating with designers to augment their creativity.

Of course, research and practice in PCG (and other game
AI fields) do not exist in a limbo, but are in a dialogue with
game development and the wider field of artificial intelli-
gence. In particular, new developments in artificial intel-
ligence can often be appropriated for use in a game con-
text, sometimes in unexpected roles and with unexpected
results. In the past five years or so, a main trend in arti-
ficial intelligence has undoubtedly been the resurgence of
neural network research and applications, after algorithmic
advances and better hardware, as well as the availability
of large data sets, have improved performance of such net-
works drastically. What is now referred to as deep learn-
ing is essentially the construction of neural networks with
multiple layers for prediction, classification or unsupervised

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learning in data sets which typically exhibit very high di-
mensionality. Within the last few years, we have seen deep
networks perform transformations and predictions from raw
high-dimensional image data, something that was previously
thought to be out of the league of machine learning (LeCun,
Bengio, and Hinton 2015).

Could deep learning and high-dimensional data be used
for PCG and AI-assisted game design tools? Yes, it would
appear that this is a fruitful combination. The basic idea
would be to learn recurring patterns from sets of game con-
tent artifacts, and use these patterns to generate more content
or to assist human designers. This could be done by starting
with some “seed” or “prompt” game content and generat-
ing the rest of the content by following the patterns learned
from previous game content. While such a process could be
run autonomously, it would probably be even more valuable
within an AI-assisted game design tool, responding to the
user’s input with suggestions or evaluations based on the
learned patterns. We will refer to this general approach as
data-driven procedural content generation1.

In this paper, we describe a data-driven PCG approach to
partially generating StarCraft II maps. More specifically, we
train (deep and shallow) neural nets to predict resource lo-
cations for existing Starcraft II maps. We then show that the
trained nets combined with simple image processing tech-
niques can, in some cases, accurately predict these locations
on unseen maps, thereby capturing a persistent pattern in
StarCraft II map design. We envision that these predictions
can work as suggestions in an AI-assisted map creation tool,
where the designer can be presented with suggestions for
placing various map features based on incomplete designs
at all stages of the map creation process.

Background
Real-time strategy games have featured frequently in game
AI research, and within this genre the most common game
is indisputably Blizzard’s StarCraft (Blizzard Entertain-
ment 1998). For several years, a series of competitions on
playing StarCraft has been associated with CIG and AI-
IDE conferences, and numerous papers have been pub-
lished on StarCraft-playing agents or some aspects of such
agents (Churchill 2016; Ontanón et al. 2013; Churchill et

1It is also tempting to call it “game design by autocomplete”.



al. 2016). But StarCraft has been used as a testbed not only
for game-playing agents, but also for map generation. To-
gelius et al. used search-based methods for generating bal-
anced StarCraft maps (Togelius et al. 2010; 2013). While
search-based methods are capable of optimizing overall map
properties, they are computationally expensive. Faster, con-
structive methods for StarCraft map generation have been
proposed by (Uriarte and Ontanón 2013). Other methods
have been applied to generate maps for other real-time strat-
egy games, including Answer Set Programming to Warzone
2100 (Brain and Schanda 2009) and a hybrid search-based
and cellular automata method to Dune II (Mahlmann, To-
gelius, and Yannakakis 2012). None of these map generation
methods were trained on existing game content, instead the
relevant parameters for e.g. constraints and evaluation func-
tions were hand-crafted.

Several types of AI-assisted game design tools have been
proposed, usually based on a mixed-initiative co-creation
paradigm, where both the software and the human de-
signer has agency and can suggest or critique the arti-
fact being designed (Yannakakis, Liapis, and Alexopoulos
2014). The Tanagra system for designing platform game
levels (Smith, Whitehead, and Mateas 2011) and the Ro-
possum system for designing levels for the physics puz-
zler Cut the Rope (Shaker, Shaker, and Togelius 2013b;
2013a) are examples of tools which assist the human with
designing levels for specific games. Of particular interest to
the current work is Sentient Sketchbook, an AI-assisted map
design tool for real-time strategy games operating on the
level of somewhat abstracted map representations (Liapis,
Yannakakis, and Togelius 2013). Using evaluation functions
similar to those in (Togelius et al. 2010; 2013) Sentient
Sketchbook provides continuous feedback on maps as they
are being designed, and also suggests new maps that move
the existing map design in various directions. As far as we
are aware of, no existing AI-assisted game design tools sug-
gest the placement of individual entities; also, none of them
are data-driven.

Overall, little work has been done on data-driven PCG. A
notable exception is Super Mario Bros. levels, where sev-
eral methods have been presented for producing new levels
from models learned from sets of existing levels. Dahlskog
et al. devised a one-dimensional representation of Mario lev-
els, allowing the use n-grams in the same way that simple
method is commonly used for text generation (Dahlskog,
Togelius, and Nelson 2014). The n-grams were trained on
the levels of the originals Super Mario Bros. game and
produced good-looking results but with limited variability.
Snodgrass and Ontanon instead use a two-dimensional rep-
resentation of the same levels, and train Markov Chains in-
stead of n-grams (Snodgrass and Ontanon 2014). A sim-
ilar approach was taken by (Guzdial and Riedl 2015),
though they use geometry information inferred from game-
play videos for training set. Shaker and Abou-Zleikha used
non-negative matrix factorization to train a model on con-
tent from five other generators to create a generator with
a wider expressive range (Shaker and Abou-Zleikha 2014).
An example from a different domain is Summerville and
Mateas’s work on generating maps for Zelda using Bayes

Figure 1: Heightmap generated from a StarCraft II map file.

Nets and Principal Component Analysis (Summerville and
Mateas 2015).

Perhaps most closely related to the work undertaken here
are those approaches that use neural networks. Hoover et al.
evolved neural networks to output various types of tiles in
Super Mario Bros. levels based on layers of other tile types,
e.g. outputting question mark blocks and enemies based on
ground and platforms; the training set was, again, the levels
of the original Super Mario Bros. game (Hoover, Togelius,
and Yannakis ). Summerville and Mateas trained recurrent
neural networks (Summerville and Mateas 2016) to gener-
ate Super Mario Bros. levels with good results and demon-
strated the same approach with Zelda levels (Summerville et
al. ). In other domains, prominently the imitation of paint-
ing, progress has been made in transferring the style from
a painting to another image using deep networks (Gatys,
Ecker, and Bethge 2015) and deep network based systems
that allow provide users with auto-completion by filling in
details have been proposed and demonstrated (Champandard
2016) and served as inspiration for this work.

In the following section we give a brief introduction to
StarCraft II maps and how we use them in this paper.

StarCraft II Maps
A Starcraft II map can be thought of as a grid of tiles, where
each tile is a particular type of map content and may or may
not contain object(s) and decoration(s). Any location on a
Starcraft II map can therefore be expressed as point (X , Y ),
which would refer to the tile at row X and Column Y . This
point can then be described in terms of its type and content.
This representation of a map makes it feasible to express
properties of a map as a two dimensional coordinate system.

Of particular interest to this project is the height of tiles, as
they constrain unit movement, and the distribution of min-
eral objects across a map. Minerals represent key strategic
locations for base expansion, and appear in all competitive



maps. Vespene gas is important for the same reasons, and is
typically found at the same locations as minerals. We there-
fore chose to combine minerals and gas into a single cate-
gory which we will refer to as resources. Other objects are
not guaranteed to appear in maps, and when they do, are typ-
ically very sparse. The work presented in this paper focuses
on the gameplay aspects of StarCraft II maps, not the visual
components. Therefore we represent maps as tiles that are
characterized by their height and whether resources objects
are present or not.

For this project, we use maps listing Blizzard as the au-
thor. The rationale behind this decision is that Blizzard, be-
ing the developers of StarCraft II, have a strong vision for
their maps, as well as a motivation to make quality maps.
Therefore, we believe treating Blizzard-made maps as a ref-
erence set of maps is a safe assumption for the intents and
purposes of this project. The experiments conducted in this
paper make use of maps created for the StarCraft II (Blizzard
Entertainment 2010) game, as well as its expansions Heart of
the Swarm (Blizzard Entertainment 2013) and Legacy of the
Void (Blizzard Entertainment 2015). A total of 147 individ-
ual maps were collected. The map files, which were down-
loaded through either the Starcraft II game or the included
map editor in Blizzard’s MPQ map data archive format. We
decompressed the StarCraft II map files and extracted height
and resource data into our own reduced map format. Each of
these extracted maps were rotated by 90, 180, and 270 de-
grees, and these rotated instances were added to our data set.
In total, 528 instances were used in the training set and 60
were used in the validation set. Assignments to training and
validation sets were chosen randomly.

Method
This section describes how we used neural networks to pre-
dict resource placement, and a post-processing step for user
control of the amount of resources and grouping.

Because the map data is already represented as a Carte-
sian coordinate system, it is relatively easy to format the in-
formation stored in these files as images. As such, StarCraft
II maps lend themselves well to network structures that deal
well with image processing. We therefore use a deep convo-
lutional neural network in order to investigate whether the
topological features of a map are indicative of certain quali-
ties, followed by some additional image processing for addi-
tional user control. The architecture and other parameters of
this network were determined through experimentation until
a well-performing network was found. In order to character-
ize this network we compare it to two baselines: a shallow
convolutional network, and a simple, fully-connected one-
layer network with linear activation. We start by presenting
the output of our networks and then compare them to each
other to understand the effect of using a deep network and
the effect of using convolution.

Neural Network Architecture
The structure for the deep convolutional neural network is as
follows. The input takes a 64x64 grayscale image for each

game map, where values describe the height of the terrain
(0 lowest, and 255 highest). The output is a 64x64 tensor
describing the likelihood of placing a resource in this down-
sampled version of the game map. All convolutional layers
use a 1 unit stride, and are followed by a ReLu activation
function. The baseline shallow convolutional network uses a
single convolution layer, and the simple network has a sin-
gle, fully connected layer with a linear activation function.
All network architectures are described in Table 1.

Table 1: Architectures of the three networks

Simple network
Layer Activation Size
Input 64x64
Fully connected Linear 64x64

Shallow convolutional network
Layer Activation Size
Input 64x64
Convolution, 16 3x3 filters ReLu
Fully connected Linear 64x64

Deep convolutional network
Layer Activation Size
Input 64x64
Convolution, 4 2x2 filters ReLu
Convolution, 16 3x3 filters ReLu
Convolution, 32 4x4 filters ReLu
Convolution, 64 5x5 filters ReLu
Fully connected Linear 64x64

It is important to note that StarCraft II maps are not all the
same size. However, because neural networks require con-
sistency in the size of their inputs, the maps must be mod-
ified in some way to accommodate the neural network. We
chose to center the map and pad the sides with impassable
terrain to increase the size of the map image. The output of
this neural network is a 2 dimensional tensor indicating po-
tential locations for resources across the map. To optimize
memory usage when training, we chose to use input and
output image sizes of 64x64 which can later be scaled up
to describe full size maps.

The filter sizes we used were found experimentally.
Smaller filters resulted in the network being incapable of
recognizing larger formations, such as plateaus and ravines,
and larger filters resulted in the network being incapable of
recognizing smaller features, such as ramps. ReLu was also
chosen as the result of experimentation, as it was found that
other activation functions resulted in noisier outputs.

To calculate loss for the training phase, we use a mean
squared error criterion. We subtract the predicted 64x64
network output resource map from the training target re-
source map (calculated by scaling the original resource map
down to 64x64). We solve for the network weights using
the stochastic gradient descent solving method. All networks
were trained for 200 epochs at a learning rate of 0.1. Em-
pirical evidence showed that any additional training yielded



Figure 2: The best and worst examples from each kind of network after 200 epochs, as measured by the Mean Squared Error.
In the best cases, all networks reproduce the original unseen validation image. In the worst case some general patterns seem to
be recognizable by visual inspection, but especially minerals located in the middle of the map seem difficult for the networks
to reproduce.

negligible gains, and was deemed unnecessary. The devel-
opment in loss over the epochs are displayed in Figure 3 for
both training sets and validation sets.

Generating Resource Locations
The outputs of the neural networks are values that are pro-
portional to the likelihood of placing a resource at a partic-
ular location on the map. We then apply several additional
image processing techniques to finalize the placement of re-
sources. First, we use a threshold value on the output of the
neural network to determine if we want to put a resource
at a particular place on the map. By raising or lowering the
threshold, we can place less or more resources, respectively.

Second, we then require that resources placed on the
64x64 map by the threshold step are also placed in clus-
ters that have at least 3 connected tiles. Resources are not
placed by themselves in Starcraft II, they always appear in
groups. We look for all connected components on the map,
and eliminate those that which only 1 or 2 tiles in the com-
ponents. Neighbors are determined by their 8-neighborhood
so diagonal connectivity is acceptable.

Threshold values can vary between maps, so the user can
select a number of resources they would like on the map.
An optimizer can then search for the ideal threshold that
minimizes the squared difference between the number of re-
sources placed and the target number of resources. This op-
timization can be done in real-time for the user to add or
remove resources. If desired, the user can also target a num-
ber of clusters instead of a number of resources – this is done

by counting the number of connected components during the
small-cluster elimination phase.

Results
After the networks were trained on the training set (n=528),
they were evaluated based on their performance on the val-
idation set, a smaller set of maps (n=60) that the networks
were not trained on. These outputs were then subjected to
a simple 64x64 tile-level comparison with their originals in
order to allow us to compare the networks’ resource place-
ments to the original resource locations placed by human de-
signers. The tile-level precision of the placements are used
to evaluate the performance of the networks, in addition to
the mean squared error.

False negatives are of less interest to this project, if we as-
sume that a suggestion system’s value is derived more from
its specificity than its sensitivity: For a designer using the
system as a computer-assisted-design (CAD) tool, false pos-
itives would be distracting, as the system would produce un-
reasonable suggestions. False negatives, on the other hand,
are less problematic, as they don’t interrupt the designer, but
of course mean that the designer is missing out on advice
that might have been helpful.

While the outputs shown in Figure 2 seem acceptable,
they show a large degree of variation across the validation
set, with some maps performing very well and other maps
performing poorly. We speculate this may be due, in part,
to biases in the training set and in part due to biases in the
evaluation method.



0.00

0.03

0.06

0.09

0 50 100 150 200

Epoch

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

DataSet

Training

Validation

NetworkType

Deep convolutional

Shallow convolutional

Simple

Figure 3: Mean squared error over 200 epochs of training.

Figure 3 shows how the loss of the networks changed over
the course of training. The figures show how the simple net-
work slowly converges on fitting to the training set, while
the two convolutional networks quickly converge to a com-
plete fit to their respective training sets. This shows that the
convolutional networks quickly, around epoch 15, overfit to
the training set and plausibly learn each map topology and
resource distribution. This overall increases loss for the val-
idation set, something that does not happen in the case of
the simple network. The convolutional networks reproduce
some maps from the validation set very well, while perform-
ing worse on the rest. This is likely due to the low amount
of training maps available, but we also speculate that this
may indicate that StartCraft II maps exist in stylistic classes,
and the convolutional networks learn a class that is overly
represented in the training set. Methods for classifying Star-
Craft II maps would be necessary to explore this hypothe-
sis further, but visual and qualitative inspection can support
this idea. Figure 2 shows examples of maps that were gener-
ated by each kind of network. On the top row in yellow are
the original maps. In the middle row in white are the gener-
ated maps. On the bottom row are displayed the differences
between the resource placements with true positives (gener-
ated content agrees with original) in white and false posi-
tives (generated content places resources in empty spaces in
the original) in cyan. False negatives (generated content has
no resource where the original does) are indicated in red.

In general, it seems that the networks perform better on
maps where resources are closer to the edges of the map
and worse in cases where minerals are scattered around the

center of the map.
In terms of using the convolutional nets for design support

tools, they seem potentially useful for the maps where they
perform well. Figure 4 shows how applying the combina-
tion of the network output and the threshold works for one
of the maps for which the deep network performs well. It
shows how changing the threshold for different amounts of
resources changes the output of the combined network out-
put and post-processing steps. Using this approach demon-
strates how a designer could use a trained network to ei-
ther add or remove resources from a given map, depending
on her objective. The original maps given to the network
are displayed on the left in yellow and variations on content
amounts are displayed increasing from left to right in white.
For maps where the method performs well, we believe this
could have straight forward applicability for a map designer.

Discussion
The results presented above show that this method clearly
has potential for placing resources in real time strategy game
maps. Still, the method and the study suffer from a number
of weaknesses that should be investigated and refined in fu-
ture work. The performance of the predictions is, as demon-
strated in the figures above, convincing for some maps, but
lacking for others. This seems to be due to overfitting to bi-
ases in the training set and/or the relationship between the
training set and the validation set. Additional data sets could
be included, or more randomized training and testing runs
could be applied to further investigate this. Because our net-
work outputs are, by nature, probability distributions, often
with a certain degree of noise, sensitivity and specificity can
be thought of as mutually exclusive. Therefore, it is worth-
while to discuss which of the two is more important to this
project, especially when considering its potential value as a
game design aide. Specificity may be much more valuable
to novice designers, especially those without the knowledge
necessary to accurately evaluate suggestions given to them.

These users would have a more difficult time recognizing
weak suggestions, and may be overwhelmed by too large
an option set. A smaller option set with a stronger guaran-
tee that all of the presented options are of quality would be
more useful to this class of less experienced designers. A
high sensitivity would be of more value to users who are
already capable of recognizing the value of suggestions for
themselves. One obvious consequence of limiting an option
set is that it severely limits variety and novelty. Because this
is a data driven approach to a design aid, the highest confi-
dence suggestions are going to be those consistent with maps
that already exist. For designers with a strong degree of do-
main knowledge, a lower threshold may present options that
are possibly viable, but not necessarily consistent with the
training set. So long as the threshold is high enough to filter
out the noise present in the system, the results have demon-
strated that this approach to resource placement suggestion
can offer substantial results.

In this system, we used data from just 147 maps (though
the number of instances in the data set was quadruple that
because of rotations). This is a relatively small training set,
in particular given the very large number of parameters for



Original Much Less Less Same Amount More Much More

Original Much Less Less Same Amount More Much More

Figure 4: Two examples how changing the desired number of resources changes which parts of the network output are kept,
allowing a designer to ask for either less or more content, relative to the original. A designer could use a slider to control this.

the deep network, which could contribute to the apparent
overfitting. Most successful cases of deep networks on high-
dimensional data employ much larger datasets, typically or-
ders of magnitude larger. It is therefore worth consider-
ing dropping quality standards for maps, and including any
human-made maps we can scrape from the internet in our
dataset in future work.

It is also very much worth investigating combining super-
vised training seen here with unsupervised methods. In par-
ticular, recent work has shown that autoencoders can be used
to learn abstract representations of 2D game levels; these
representations can then be used to generate new levels ad-
hering to design constraints, to classify levels and to repair
levels (Jain et al. 2016). These methods would presumably
work well on StarCraft maps as well, and could be used
in tandem with supervised training to generate further sug-
gestions in an AI-assisted map design tool. It is also possi-
ble that the compressed level representations themselves can
offer useful inputs for networks predicting resource place-
ments, or other map features.

Finally, a user study implementing this method into an
actual level design tool and collecting feedback from map
designers would validate the output of the method and util-
ity for practicing game designers. The need for human vali-
dation is especially apparent considering weaknesses in the
mean squared error method of evaluation. MSE employs a
pixel-level subtraction between outputs, which means that
a mineral placement can still be punished if it is even one
pixel off. The goal of procedural generation is high quality
content, a metric that is extremely difficult to express quan-
titatively, and we have come to believe that MSE does not
adequately represent the quality of a mineral placement.

Conclusion
In this paper, we have demonstrated how deep networks can
be used to learn and predict design features of maps for real-
time strategy games, specifically StarCraft II. By extracting
heightmaps and resource location maps from custom Star-
Craft II map data files, we constructed a dataset which was
used to train a deep convolutional network. In spite of a rela-

tively small data set, this network was capable of predicting
resource locations in unseen maps with examples of high
precision. Future work that would increase the efficiency of
training and the precision of predictions was outlined. Alto-
gether, the results presented here suggest that deep convo-
lutional networks can be trained by example to drive com-
puter assisted design tools for real time strategy game level
designers.

It is likely that this approach could be extended to other
games such as e.g. arena-based first-person-shooter games,
open-world games, or possibly any kind of game where the
placement of features of interest and strategic importance
are motivated by the topology of levels. Due to the fast out-
put processing capabilities of such networks, it would be fea-
sible to add suggestion capabilities to existing level design
tools, enabling a form of on-line autocompletion for level
designers or including them in procedural content genera-
tion systems.



References
Blizzard Entertainment. 1998. StarCraft. Blizzard Enter-
tainment.
Blizzard Entertainment. 2010. StarCraft II: Wings of Lib-
erty. Blizzard Entertainment.
Blizzard Entertainment. 2013. StarCraft II: Heart of the
Swarm. Blizzard Entertainment.
Blizzard Entertainment. 2015. StarCraft II: Legacy of the
Void. Blizzard Entertainment.
Brain, M., and Schanda, F. 2009. DIORAMA (Warzone 2100
map tools).
Champandard, A. J. 2016. Semantic style transfer and
turning two-bit doodles into fine artworks. arXiv preprint
arXiv:1603.01768.
Churchill, D.; Preuss, M.; Richoux, F.; Synnaeve, G.; Uri-
arte, A.; Ontanón, S.; and Certickỳ, M. 2016. Starcraft bots
and competitions.
Churchill, D. 2016. Heuristic Search Techniques for Real-
Time Strategy Games. Ph.D. Dissertation, University of Al-
berta.
Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. In Proceedings of the 18th Inter-
national Academic MindTrek Conference: Media Business,
Management, Content & Services, 200–206. ACM.
Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2015. A neural
algorithm of artistic style. arXiv preprint arXiv:1508.06576.
Guzdial, M., and Riedl, M. O. 2015. Toward game level gen-
eration from gameplay videos. In Proceedings of the FDG
workshop on Procedural Content Generation in Games.
Hoover, A. K.; Togelius, J.; and Yannakis, G. N. Composing
video game levels with music metaphors through functional
scaffolding.
Jain, R.; Isaksen, A.; Holmgård, C.; and Togelius, J. 2016.
Autoencoders for Level Generation and Style Identification.
In Second Computational Creativity and Games Workshop.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
Nature 521(7553):436–444.
Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sen-
tient sketchbook: Computer-aided game level authoring. In
FDG, 213–220.
Mahlmann, T.; Togelius, J.; and Yannakakis, G. N. 2012.
Spicing up map generation. In Applications of evolutionary
computation. Springer. 224–233.
Ontanón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-time
strategy game ai research and competition in starcraft. Com-
putational Intelligence and AI in Games, IEEE Transactions
on 5(4):293–311.
Shaker, N., and Abou-Zleikha, M. 2014. Alone we can
do so little, together we can do so much: A combinatorial
approach for generating game content. AIIDE 14:1–1.
Shaker, N.; Shaker, M.; and Togelius, J. 2013a. Evolving
playable content for cut the rope through a simulation-based
approach. In Ninth Annual AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment.

Shaker, N.; Shaker, M.; and Togelius, J. 2013b. Ropossum:
An authoring tool for designing, optimizing and solving cut
the rope levels. In AIIDE.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2015. Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer.
Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra:
Reactive planning and constraint solving for mixed-initiative
level design. Computational Intelligence and AI in Games,
IEEE Transactions on 3(3):201–215.
Snodgrass, S., and Ontanon, S. 2014. A hierarchical ap-
proach to generating maps using markov chains. In Tenth
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Summerville, A. J., and Mateas, M. 2015. Sampling hyrule:
Multi-technique probabilistic level generation for action role
playing games. In Eleventh Artificial Intelligence and Inter-
active Digital Entertainment Conference.
Summerville, A., and Mateas, M. 2016. Super mario as a
string: Platformer level generation via lstms. arXiv preprint
arXiv:1603.00930.
Summerville, A. J.; Behrooz, M.; Mateas, M.; and Jhala, A.
The learning of zelda: Data-driven learning of level topol-
ogy.
Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.; Hagel-
back, J.; and Yannakakis, G. N. 2010. Multiobjective explo-
ration of the starcraft map space. In Computational Intelli-
gence and Games (CIG), 2010 IEEE Symposium on, 265–
272. IEEE.
Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.;
Hagelbäck, J.; Yannakakis, G. N.; and Grappiolo, C. 2013.
Controllable procedural map generation via multiobjective
evolution. Genetic Programming and Evolvable Machines
14(2):245–277.
Uriarte, A., and Ontanón, S. 2013. Psmage: Balanced map
generation for starcraft. In Computational Intelligence in
Games (CIG), 2013 IEEE Conference on, 1–8. IEEE.
Yannakakis, G. N.; Liapis, A.; and Alexopoulos, C. 2014.
Mixed-initiative co-creativity. In Proceedings of the 9th
Conference on the Foundations of Digital Games.


