
Depth in Strategic Games

Frank Lantz∗, Aaron Isaksen†, Alexander Jaffe‡, Andy Nealen∗†, Julian Togelius†

∗NYU Game Center †NYU Game Innovation Lab ‡Spry Fox

Abstract

This paper explores the question of whether it’s possible to
discover a well-defined property of game systems that corre-
sponds to what game designers and players mean by the term
“depth.” We propose a measurable property of a game’s formal
system, which we call ‘d’, that corresponds to the capacity
of a game to absorb dedicated problem-solving attention and
allow for sustained, long-term learning. To define this property
we develop a formal model that measures how susceptible a
game is to partial solutions under conditions of steadily in-
creasing computational resources. We then sketch out several
directions for using the model to investigate questions about
the structural properties of games that produce these effects.

Introduction
Game designers and players often make reference to the
concept of depth. This term has a broad, general meaning that
expresses the idea that something is absorbing and profound.
But there is a narrow application of the term which refers
specifically to the formal system of strategic games. Our goal
is to examine this particular meaning of the term as it is
used to describe the abstract system of choices and outcomes
within games of this type. In this context, depth refers to a
game’s capacity to provide a lifetime of study, learning, and
improvement. A game with great depth is one that seems
to unfold into an endless series of challenging problems
and responds to serious thought by continually revealing
surprising and interesting things to think about.

Games like Chess, Bridge, Go, StarCraft, Hearthstone, and
League of Legends are able to absorb the dedicated efforts of
a large community of expert players over many generations
of serious competition and collaborative analysis while con-
tinually producing fascinating strategic problems. Does this
capacity correspond to a property of game systems that can
be objectively observed and measured? After all, there are
many well-defined formal properties of game systems that
can be analyzed and quantified, features such as state space
and branching factor. We often talk about depth as if it were
a property like this, but is it? Is there some precisely defin-
able, objectively observable property of a game’s underlying
structure that allows it to exhibit this quality?

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One challenge with the informal use of the word ”depth” is
that it is often used as a binary term, implying a quality that
games either do or don’t have. The real picture is much more
complex; every game exists along a spectrum of depth. More-
over, the same game may exhibit different levels of depth
in relation to different player communities, or in relation to
the same community at different times. We are interested in
examining depth as a quality that all games have to various
degrees, understanding how this quality is related to a game’s
formal structure, and developing conceptual tools that allow
us to explore this relationship with greater precision.

Depth is often referred to by game developers (Pulsipher
and Others 2011; Kiley 2013; Ghostcrawler 2016) and
in scholarly research (Browne 2008; Nielsen et al. 2015;
Abbott 1975) but to our knowledge no attempts have been
undertaken to make a thorough and rigorous investigation
into the property to which it refers. The purpose of this paper
is to lay the groundwork for such an investigation. We are
attempting to establish a foundation, clarify the important
questions, and suggest directions for further study. We are not
at this time proposing final answers to the central question.

Goals and Clarifications
It is not our goal with this project to make normative claims
about how games should be designed or what makes a good
game. The term depth can be used casually as a general su-
perlative but that’s not the way we are using it here. We
aren’t claiming that this quality is the most important feature
for judging a game’s overall value; there are many ways for
a game to be good that aren’t related to the kind of depth
this paper investigates. In addition, even though we are at-
tempting to analyze precise and quantifiable properties of a
game’s formal system, we are not attempting to reduce aes-
thetic judgments to objective empirical claims. Instead, we
wish to establish clarity regarding features of game systems
which can be observed and measured in order to better inform
aesthetic analysis and discussion. In this way, our project is
analogous to research into color theory (Albers 1971), which
doesn’t claim to distinguish between good and bad paintings,
but provides a powerful, consistent, fine-grained conceptual
tool for artists and critics to use in analyzing painting’s aes-
thetic qualities. We believe that this conceptual tool can be
used by game designers to understand some of the effects
that rule and parameter changes have on their games.



Similarly, we are not proposing a threshold that distin-
guishes “deep” from “non-deep” games. Our goal is to dis-
cover a formal property of game systems, which we refer to
as d, which would be present in all games to different degrees.
Our methodology can apply to a wide variety of games, from
Snakes and Ladders, where there are no strategic decisions
and therefore a minimal value of d, all the way up to the most
complex strategic games played by humans, and beyond to
hypothetical games more complex than anything humans are
capable of playing.

We aim to develop a precise definition of d that is
psychology-independent. It should not make special refer-
ence to how humans learn or what humans find interesting
or challenging (Gobet, Retschitzki, and de Voogt 2004). We
want to describe structural features of game systems that hold
regardless of the particular details of human cognition, and
understand how these features produce certain kinds of com-
plex problems, similar to how we can measure the spectral
distribution of light sources, and then see how their interac-
tions produce specific visual effects (Albers 1971). These
structural features would be consistent under any conditions
and would remain true for any intelligent, problem-solving
process, whether human, non-human, or mechanical.

We recognize that the perception of depth is a function of
the interaction between a game’s formal properties and the
cognitive capabilities of the perceiving player. For example,
young players and novices may subjectively experience a
great deal of depth where expert players find little. However,
in this paper we are interested in the other side of this interac-
tion - what are the objective formal properties to which these
different kinds of players are reacting?

To simplify matters we will limit ourselves throughout this
paper to looking at two-player, turn-based games; the term
“game” in this paper refers to this category. Nonetheless, we
hope that many of our arguments and concepts will be valid
for or easily adaptable to to other types of games, such as
one-player games (many videogames fall into this category)
or real-time strategy games. Also, for simplicity’s sake, we
consider the rules of the game to be fixed. For example,
in a collectible card game (CCG) we would consider the
addition of new cards, or the modification of existing cards, to
constitute a new game requiring new strategies and therefore
potentially giving a different value for d.

At this stage in our research we do not yet have a system
built to evaluate our proposed technique. This paper docu-
ments our initial forays into calculating the d property and
outlines our thoughts and justifications regarding the require-
ments of such a metric.

Outcomes
We believe that the model we sketch out in this paper can
enrich and inform our discussions about game design, sug-
gesting directions for design exploration and expanding our
palette of analytical tools and techniques.

Beyond the practical applications of this project, there
is the intrinsic value of pure knowledge. We want to know
if there is some specific structural quality that is shared by
Chess, Bridge, Go, and games like them, some recognizable
topological feature of their systems. And if there is then we

would like to illuminate it in order to see it, and talk about it,
and reason about its ramifications.

In addition, we believe this project may provide some in-
sight into more general questions about artificial intelligence
and machine aesthetics. If we can describe what makes cer-
tain games interesting in this particular way then we may
learn something about “interestingness” in general, about
the relationship between information, systems, and meaning.
Deep games require knowledge, explanation, creativity, and
cleverness. Modeling depth may help us better understand
how to think about these things.

Existing Properties to Consider
To begin, we want to consider existing well-defined properties
of game systems such as state space and branching factor.
Could it be that one of these features is the property we’re
looking for? Or some simple combination of the two?

State Space
State space is the set of all possible arrangements of a game’s
elements. The set of valid arrangements which could be
reached in actual games through the legal operation of the
game’s rules is a subset of the game’s state space called state
space complexity (Allis 1994). A related concept is game tree
size, which refers to the total number of leaf nodes in the
game tree. The game tree can be larger than the state space
because one position can occur in many different branches.

Intuitively, any game that humans consider to be very deep
will have an sufficiently large state space. However, state
space by itself cannot explain the qualities of depth that we
are looking to isolate. To see why, imagine any existing game
and then add a new rule that allows either player, after their
turn, to flip a token from side A to side B. This immediately
doubles the size of the game’s state space without affecting
its depth in the slightest.

This thought experiment shows how one could artificially
inflate a game’s state space without increasing its depth at all.
While it may be a necessary component of d, state space by
itself cannot be sufficient. What matters is meaningful state
space. The question of what makes state space meaningful in
this way is exactly what our project seeks to understand.

Branching Factor
A game’s branching factor (or average branching factor)
refers to the number of choices presented to a player at each
point in the game tree. Intuitively, this seems like it could
be an important ingredient of strategic depth. One of the
qualities of a deep game experience is the challenging process
of weighing one’s options and considering possible moves.
A game with fewer options to consider would seem to offer
less challenge and interest.

However, once again we can imagine inflating a game’s
branching factor artificially by adding any arbitrarily large
number of “dud” alternatives at each node of the tree. Every
dud branch leads in an obvious way to a losing position. In
this way we can increase the branching factor as much as we
want without affecting the game’s depth.



Conversely, it’s easy to imagine two games, one that
presents the player with a highly-interesting binary choice at
each node; the other that presents a large number of choices,
one of which is obviously superior. Intuitively, the first game
is much deeper, despite having the substantially smaller
branching factor.

While it may be strongly correlated to d, branching factor
cannot, by itself, be d. Nor, does it seem, can any combination
of state space and branching factor by themselves. Again, it
is a particular kind of meaningful state space and branching
factor we are looking for.

Computational Complexity
Computational complexity is a concept used to describe how
difficult a problem is to solve algorithmically (Papadimitriou
2003; Cormen et al. 2001). Traditionally, when applied to
games this technique involves transforming the game system
into a generalized problem and then measuring how the so-
lution difficulty increases as that problem is made larger by
scaling up variable quantitative factors such as size of board,
number of pieces, etc. The difficulty is measured in terms
of the amount of computational resources required: the time
and/or (memory) space needed to find the solution. The result
of this analysis is to place the game into one of several large
classes of problems.

Computational complexity is a key concept for our project.
Understanding depth in games means understanding them as
problems and observing the specific nature of the challenges
they present and the kind of solutions they demand.

However, classical computational complexity by itself
can’t serve as a proxy for d. For one thing, the traditional
categories into which it classifies games are far too broad
to be useful for our purposes. We are interested in making
fine-grained distinctions between similar games. Knowing
whether a game is in PSPACE or EXP, for example, doesn’t
give us enough detail about the game to help us distinguish it
from the myriad other games in the same category.

Moreover, we want to know more than just how hard a
game is. We want to understand the particular way in which a
game is hard. A problem can require lots of resources to solve
without being interesting. Searching for a needle in a haystack
is a difficult problem (in the sense of being resource intensive)
but it’s not the kind of problem that requires cleverness and
creativity, the kind of problem that rewards life-long learning
and can support a large, long-term community of serious,
dedicated players. Those are the features we are interested
in explaining. Looking at the game system as a problem and
thinking about the type of algorithm needed to solve it is a
powerful tool for this project, but traditional computational
complexity by itself can’t be the complete answer.

Skill Chains and Strategy Ladders
So what exactly are the game features that indicate depth?
Can we get more precise about them?

A key concept in addressing this question is the idea of
the skill chain, as articulated by Bill Robertie under the term
complexity number (1992), and later expounded upon in Char-
acteristics of Games (Elias et al. 2012). The size of a game’s

skill chain is the number of distinct steps in the ranking of
all players, where players at each step beat all the players at
lower steps some significant percentage of the time.

This concept is important because the presence of a skill
chain with a large number of distinct steps is evidence of a
game in which a player can improve through study, a game in
which the more you think about it the better you get. Players
of a game like this are on a journey of gradual and continuous
improvement, ascending ever-upwards towards better under-
standing and stronger play. Trivially easy games can’t support
long skill chains, and neither can all-or-nothing puzzles, no
matter how large and difficult they might be.

The Strategy Ladder Model
In order to make this quality more precise and measurable,
we propose a formal model called a strategy ladder. Whereas
a game’s skill chain consists of a sequence of human players
of ascending skill, a game’s strategy ladder consists of a
sequence of algorithms called strategies. Each strategy is
a complete set of instructions for how to play the game.
The more complex and powerful these strategies become,
the more computational resources they require to execute
– time and/or memory - and the better performance they
exhibit compared to simpler strategies. There are several
advantages to study algorithmic strategies instead of human
players, including (1) algorithms are repeatable, testable,
and measurable, (2) algorithms can be fully examined while
human players can’t always describe how they are thinking,
(3) human players change over time and are not static in their
tactics or performance, and (4) the distribution of possible
strategies is likely different than those used by human players
influenced by community, opponents, and conventions.

We can frame d as the capacity for a game system to
allow for a ranked population of strategies that provide par-
tial/approximate solutions. The more discrete ranks in such
a population, the greater the degree of d within the game. In
other words, the more d a game has, the more it is suscep-
tible to a sequence of partial solutions, each one requiring
more time and/or memory to execute, and providing a better
approximate solution to the problem of the game.

In Figure 1, we see three example games with differ-
ent strategy ladders. Each dot represents a complete, fully-
defined algorithmic strategy for playing a particular game
represented by each path. Each dot is the best strategy that can
be achieved at that level of computational resources (a thor-
ough definition of ”strength” and ”computational resources”
is given below). On the left we see a game that yields quickly
to perfect play. On the right we see a game that requires a
great deal of computational resources to play perfectly, but
has only a few intermediary strategies along the way. In the
center we see a game that requires a great deal of computa-
tional resources to play perfectly, and also allows for many
intermediary strategies along the way. In this game, adding
more resources immediately and continuously results in im-
proved performance, allowing for many discrete stages of
incremental improvement.

For any game of reasonable complexity the practical diffi-
culty of building an algorithmic strategy ladder of this type
would be insurmountable, as the model assumes both com-



Perfect Play
So

lu
tio

n 
St

re
ng

th

Computational Resources

Figure 1: Strategy ladder steps and solution strength, as func-
tion of computational resources

plete knowledge of perfect play and a thorough comparative
analysis of a sufficiently large sample of all possible strate-
gies. Nonetheless, we believe this model can serve as a pow-
erful conceptual tool for clarifying our thinking about the
topic of depth. Furthermore, by building strategy ladders for
simple games and observing how they respond to changes in
the game’s structure we hope to observe patterns that can be
extrapolated to provide general insights about larger games
as well.

The concept of the strategy ladder differs from the concept
of the skill chain by highlighting how strategies with limited
computational resources are necessarily imperfect, even for
games of perfect information. Each dot in the model repre-
sents the best possible strategy available at that computational
resource level. Even though the algorithms that populate the
strategy ladder play the game sub-optimally, they all exhibit
the strongest play for the resources available to them.

What is a Strategy?

In the strategy ladder model each algorithmic strategy is
a complete set of instructions for playing the game. Each
strategy determines how to play in every situation. They say
when and how to look step-by-step through the branches of
the game tree, when and how to evaluate board positions or
apply other strategic rules of thumb, when to make a choice
randomly or semi-randomly, when to follow a pre-determined
sequence of moves, etc.

Before creating a sequence of algorithmic strategies that
could be evaluated in a strategy ladder model one must first
specify a language in which each of these algorithms is ex-
pressed. Because the choice of language will affect the possi-
ble strategies, any observations made about a game’s depth
based on this model must refer to the language selected.

To have the strategy ladder model applied to it, a game
must have a well-defined time limit (on a reference machine).
To be a valid strategy an algorithm must be able to output
legal moves within the specified time-limit, given the compu-
tational resources available.

What are Computational Resources?
A specific level of computational resources is defined in
terms of three factors: speed (operations per second), size
(amount of memory available to store the algorithm and its
data), and working memory (amount of memory available to
the algorithm for use in carrying out its operations).

Any application of the strategy ladder model must specify
how levels of computational resources (‘CR-levels’) are de-
fined, and how many distinct levels to include. One approach
would be to set the CR-levels needed for random-legal play
and perfect play as lower and upper bounds, then divide the
CR spectrum into, say, 100 evenly-distributed segments be-
tween them. On the other hand, it could be useful to observe
how the strategy ladder changes when one or more CR factors
are kept fixed while others increase.

What is Strength?
The strategy ladder looks at the relationship between a se-
quence of strategies, each of which is the strongest strategy at
a particular level of computational resources. We refer to the
strongest strategy at a given resource level CRn as A(CRn).

The strength of a strategy refers to the quality of its perfor-
mance along a spectrum that ranges from poor (performing
no better than random legal moves) to perfect (optimal play
from any position). We consider two primary ways to define
this spectrum: win rate (WR) or quality of move selection
(QM). Win rate looks at the results of a series of games in
which the strategy is pitted against some set of other strate-
gies at its own computational resource level or below. Quality
of move selection looks at the frequency with which the strat-
egy selects the best move, specifically how often its move
corresponds to that selected by the perfect strategy.

Each of these methods has advantages and disadvantages.
An approach based on win rate is especially sensitive to the
question of which strategies it competes with to derive that
win rate. Including every possible strategy adds yet another
practical impossibility into the model. It also creates a sit-
uation in which an exploitative strategy might have a high
overall WR because of its spectacular results against many
weak strategies, even though it performs poorly against the
other strongest strategies at its CR-level. Win rate can also be
intransitive: strategy A can win against strategy B which wins
against strategy C which, in turn, wins against A. Win rates
are also highly dependent on factors such as game length,
and can change based on game session duration or number of
rounds. Finally, games with random elements have a looser
correlation between strategic decisions and game outcome,
which can obfuscate the signal win rate gives us about strate-
gic strength. None of these problems are intractable, but they
give some indication that win rate is not an unproblematic
criteria for strategic strength.

A quality of move based approach can be more simply,
clearly, and consistently defined. Another advantage is that
QM offers a metric that increases as strategies gain access
to more computational resources and improve in strength
whereas, in most cases, WR does not. However, this approach
has its own problems. A QM-based criteria limits our ability
to apply the model in partial ways to games for which perfect



play is unknown. It would also allow for counter-intuitive
situations in which, for example, a strategy could have an
extremely high rate of best move selection, but a very low win
rate (because of some fatal weakness in end game play). More
generally, a QM-based approach would force us to sometimes
select a strategy as “best” even when there is another strategy
that beats it most of the time. To the degree that the strategy
ladder model is meant to capture and refine our intuitions
about human players and real-world games, these issues make
quality of movement selection highly problematic.

Suffice to say, the issue of how best to define strategy
strength within our model is an unresolved question. Our
belief is that we can defer this issue for future study. It seems
likely that any reasonable method for determining strategy
strength would yield mostly similar results, and we can pro-
ceed to use the strategy ladder model by assuming a clear and
consistent method for determining strategy strength without
yet knowing what that method will be.

What are Steps?
The final requirement for specifying a strategy ladder model
for a particular game is to define some degree X of difference
between each discrete “step” of strength level. However one
ultimately decides to define strength, a new step is achieved
whenever the best strategy at the current CR-level demon-
strates improvement of X degree over the strategies of the
previous step. Traditional skill chain models typically use
some version of a win rate of 60-75 percent. As with all of
the parameters that go into the strategy ladder model, it’s less
important to have a universal definition of step that applies
across games than to have a well-specified definition within
each application of the model.

The final output of the skill chain model is the number of
these steps. The more steps in the chain, the more the game
under consideration exhibits the characteristic of yielding a
steady series of partial solutions as computational resources
are increased, and therefore the more it demonstrates the
quality we are looking for, the quality we call d.

Games where perfect play can be achieved at low levels of
CR don’t have sufficient capacity to support a high degree of
d, and games that don’t have interim strategies that produce
significant jumps in performance also fail to exhibit this
quality by not allowing incremental improvement.

Rolling Out a Strategy Ladder to Measure d
Putting these elements together, we can outline the steps one
would go through in order to apply the strategy ladder model
to a specific game:

1. Specify a complete definition of the game, including time
limit.

2. Specify a language used to express algorithmic strategies.

3. Specify CR-levels by weighting or fixing constant each of:

• operations per second
• size of algorithm
• working memory

4. Specify a performance metric for determining strategy
strength (e.g. WR win rate or QM quality of move selec-
tion)

5. Specify a degree of strength increase to count as a step
unit.

6. Find the best strategy at each CR-level, A(CRn).

7. Plot each A(CRn) as a point on a graph with computa-
tional resources as one axis and strategy strength as the
other.

8. Start with A(CR1). Move to the next point on the curve,
which is A(CR2). Compare it to the strength of A(CR1),
if the difference in strength is a step unit or more then this
point constitutes step one, otherwise proceed to A(CR3)
and compare it to A(CR1) and so on until a point is
found whose strength level is a step unit or more greater
in strength than A(CR1). Whenever step one is found,
start the process over with that point, looking for the next
point at which the difference in strategy strength meets or
exceeds a step unit, this point will be step two. Keep going
until you reach the furthest point on the curve, which repre-
sents perfect play. The number of steps you have counted
is the d for the this game for the given settings.

Note: Step 8 above presents one proposed way of measur-
ing d, however other possible methods exist. For instance,
one could count only the number of steps which occur be-
tween two adjacent points, thereby capturing how often a
small change in computational resources produces a large
change in strategy strength.

In either case, the main idea of the model is this: the shape
of the curve reveals something important about the game’s
structure. The shape of the curve reflects how the game re-
sponds to the incremental application of computational re-
sources.

Practical Limits and Theoretical Applications
As described, the complete model assumes knowledge, not
only of a strategy for playing perfectly, but also of the min-
imal computational resources needed for such perfect play.
This makes the model impossible to apply completely to com-
plex, real-world games. Nonetheless, in our view, the model
still has substantial value in the following ways:

• as a conceptual tool which allows us to speculate about
what a complex game’s algorithmic strategy ladder would
look like if the model were applied completely

• as a practical tool for looking at the characteristics of a
complex game’s strategy ladder at the lowest CR-levels
(by applying a partial version of the model)

• as a practical tool which can be applied completely to
smaller games for which solutions and computationally-
efficient strategies are known to some substantial degree
of certainty (Silva et al. 2016)

• as a research tool for discovering the qualities of rule sets
that result in depth, by finding correlations in small games,
which persist as size increases.



Reverse Complexity
In some ways, the strategy ladder model we are proposing
presents an inverse of the standard method of determining
a game’s computational complexity. Instead of looking at a
particular game as one instance of a general class of problems
and seeing how the computational requirements for solving
that problem increase as the problem scales up, we analyze
a game as a specific problem of a fixed size and observe
how optimal strategies for solving this problem increase in
effectiveness as computational resources scale up.

Search and Heuristics
The strategy ladder model allows us to observe directly, or
speculate about with greater clarity, the consequences of
depth, the evidence that a game has a high degree of this
quality we call d. But can we use it to develop a greater un-
derstanding of the underlying structural properties of a game
system that lead to it exhibiting these characteristics? Can
the strategy ladder model help us explain why some prob-
lems lend themselves to partial and approximate solutions
and some don’t?

To begin with, let’s consider the counterfactual, how might
a game fail to produce many steps in our model?

We know that every game of the type we are looking at
has some theoretical perfect strategy, a strategy that tells you
exactly what move to make at any point. In fact, we know
how to produce this solution in theory: you map out the entire
game tree, find a winning node and work backwards looking
for a path that your opponent can never force you off of.

Imagine a game in which this were the only way to play.
Whatever your position, the only way to do better than choos-
ing a move at random is to look ahead in the game tree,
calculating move by move until you see the necessary out-
come of each move. A game of this type would only have
one type of strategy: raw look-ahead calculation.

Games of this type would display an increase in strategy
performance at higher CR-levels but, intuitively, we can see
that such games would allow for a much smaller degree of
performance increase. Search isn’t useful if there are no eval-
uation functions to tell us which moves to prefer. Strategies
at lower CR-levels in such a game would be making random
moves up until the point, late in the game, when they could
start seeing win/loss outcomes at the end of the branches they
were searching. There simply aren’t enough different types
of strategies to allow for a diverse, well-populated strategy
ladder in such a game.

What’s missing from this type of game is heuristics – the
rules of thumb that players use as a shortcut through the
intractable problem of fully searching the game tree. Here
are examples of heuristics from various real-world games:

• Chess: control the center, avoid doubling your pawns

• Go: hane at the head of two stones, avoid making empty
triangles

• Poker: loosen up on the button, avoid cold-calling raises

Heuristics take advantage of regularities in the game tree to
guide the player towards areas of state space where winning
paths are statistically denser. It’s not true that every Chess

position in which you control the center squares leads to a
win, but it is true that, on average, these positions contain
shorter and more certain paths to winning outcomes. In a
sense the heuristic operates as a kind of compression function
on the game tree – a map that reveals structural features
in the underlying tree. A blurry, tattered map, but a map
nonetheless.

In fact, in some ways, heuristics simply are the partial
strategies we are talking about when we talk about the in-
cremental solutions that comprise the strategy ladder. The
more heuristics a game can support the more you can com-
bine them into better and better strategies and the more you
can improve with effort and study. In order to have a sig-
nificant degree of d, a game must have a decision tree with
some structural regularities that allow for the compression
that heuristics provide.

But we can also imagine a game that fails in the opposite
way. Consider a game in which a single heuristic allowed
you to play perfectly. In such a game you would never need
to search the game tree at all; whatever the situation, you
would simply apply this one weird trick. This is how a game
can fail to support a long strategy ladder by having a simple
strategy that exploits an underlying regularity of the game
tree to make the problem trivial.

Both of these theoretical depth-lacking games – one requir-
ing pure search and one that allows for one simple heuristic
– share an interesting property. In both cases the description
of how to find the best move is short. In the first game, the
description is “search the entire game tree and find the win-
ning move”, in the second game the description is “always
move the smallest piece one square forward” (for example).
Even though the process indicated by the first description is
impossibly difficult and that of the second trivially easy, the
descriptions themselves are both short.

But in deep games the best description for finding the
best move is long and complicated. It will require a mix of
heuristics (all things being equal, you usually want to move
the smallest piece one square forward) and raw look ahead
(actually in this position you need to move your largest piece
backwards because otherwise this bad thing will happen).

We believe the quality we are looking for is a kind of semi-
orderedness of the game’s state space, a level of underlying
structure that allows for some useful compression of the game
tree but not so much that pure search is never needed.

We can frame this in terms of entropy. The best way of
looking for something, like a best move, depends on how
ordered the space you are searching through is. If the space is
completely disorganized then one is forced to examine every
possibility. This corresponds to high entropy. If the space is
well-organized, precise instructions indicate where to look.
This corresponds to low entropy.

The description of the best way to find something in a
semi-ordered space is long and complicated. Deep games are
semi-ordered. This is what the literature that a deep game
produces is made of, all the strategy books and blog posts
and training videos and forum arguments are part of this
lengthy description of the most efficient method for finding
the best move in a semi-ordered system under conditions of
computational constraints.



D
ep

th

Entropy
Shallow

Deep

Low Entropy:
- Highly Ordered
- Strong Heuristics

High Entropy:
- Disordered
- Raw Search

Figure 2: Maximizing depth requires a balance between
heuristics and search.

Kolmogorov Complexity

In algorithmic information theory there is a precise term for
referring to the size of the smallest algorithm that produces
a desired output: Kolmogorov complexity (Li and Vitányi
2009; Kolmogorov 1968). By including algorithm size as one
of the factors that determine CR-levels, the strategy ladder
model presents a method for investigating how Kolmogorov
complexity of optimal strategies is related to the concept of
strategic depth.

Picture a “worst case” heuristic-resistant game, with no
regularities that can be exploited as efficient shortcuts around
pure search. Even in such a case, extra memory can be used as
a substitution for operations by pre-computing a segment of
the game tree and encoding it as a lookup table, in effect sub-
stituting size for speed. This global, base-level ability to trans-
mute speed into size means that even a “search-only” game
would make full use of all computational resources available
to it - including both operational speed and algorithm size.
However, we would expect a semi-ordered, non-search-only
game to make better use of its combined resources by using
algorithm size to gain performance increases that outpace the
benefits gained from standard size for speed substitution.

One way we might apply our model to illuminate this topic
is by taking a game and observing its strategy ladder under
two sets of conditions:

• Speed Only: CR-levels have a fixed algorithm size and
increasing speed

• Size Only: CR-levels have a fixed speed and increasing
algorithm size

What would it mean if a game exhibited a substantially
longer strategy ladder under the Size Only conditions? It
would seem to suggest that the bigger strategies in this ladder
are taking advantage of regularities in the game’s structure
to gain performance improvements that surpass the improve-
ments gained by the faster strategies in the Speed Only model.
An experiment of this type would allow us to directly observe
how the incremental strategies of a deep game encode knowl-
edge about that game’s structure.

Search as Heuristic Arbitration
What about a situation in which a game’s algorithmic strategy
ladder is populated by strategies that don’t use search at all,
strategies that are just collections of heuristics? In any such
case, there needs to be a way for the strategy to choose when
to apply one heuristic vs another. This method itself must be
some form of search. The source of a heuristic’s efficiency is
that it bundles together responses to many different situations
that share some underlying structural similarity but are not
identical. At some point, you can’t improve this efficiency by
slicing the situations into finer-grained categories; eventually
one must use pure search to decide which heuristic to apply.

Search vs Heuristics in the Real World
If our approach is, in fact, the right direction for thinking
about this issue then playing a deep game will involve a
complex dance between heuristics and pure search. And sure
enough, listening to the real-time thought process of an expert
player often reveals just this – the compressed knowledge
of proverbs, patterns, and rules of thumb alternating with
periods of raw, if/then, move-by-move calculation.

Consider also the “killer move” – the unexpected, spec-
tacular, high-impact play. What makes a killer move sur-
prising and impressive is the way it deviates from a strong
heuristic, indicating that heuristic’s limitations. See, for ex-
ample, Go expert Michael Redmond doing a triple take
in response to AlphaGo’s 4th line shoulder hit in the
AI’s second game against Lee Sedol (Silver et al. 2016;
Redmond and Garlock 2016). The reason this move was
so surprising was that it directly contradicts a well-known
Go heuristic. Killer moves demonstrate how raw search can
outperform even the most powerful rule of thumb.

Speaking of AlphaGo, it is interesting to note that the archi-
tecture of the world’s best game-playing AI reflects this same
search/heuristic balance. Its Monte Carlo tree search uses
heuristics to channel the raw power of pure look-ahead, effi-
ciently searching the game tree for directions with the great-
est average value. Meanwhile, its board-evaluation functions
are heuristics baked into its neural net, structural patterns
discovered through millions of real and simulated games.

The human brain itself may demonstrate a similar struc-
ture. In Thinking Fast and Slow psychologist Daniel Kahne-
man (2011) outlines the two main modules of human cog-
nition – System 1 (snap judgments, intuition, reflex) and
System 2 (slow, step-by-step, logical calculation.) System 2
corresponds to the theoretically perfect but impractically slow
process of pure search, while System 1 corresponds to the
compression of reason into powerful but flawed heuristics.

Conclusion
In this paper we set out to examine the question of depth in
strategic games. Can we define a property d that is precise,
objectively measurable, and corresponds usefully with the
concept of depth as it is broadly understood by game players
and designers?

We considered existing concepts for measuring game size
and complexity and discussed why, while they may be useful



ingredients for constructing such a property, they could not
by themselves suffice for our purposes.

We drew inspiration from the existing concept of the skill
chain and then developed a new model that uses concepts
from computational problem-solving to achieve a greater
degree of precision and flexibility - the strategy ladder. We
defined the strategy ladder model in detail, and suggested
ways to apply it.

We then used our new conceptual model to speculate about
questions of game structure, developing some initial thoughts
about how the formal systems of deep games exhibit a semi-
ordered structure that allows for strategies that balance pure
search with powerful heuristics.

Next Steps
The project we’ve outlined in this paper is a substantial ongo-
ing research program. What we have tried to do here is lay
the foundation for this research, clarify the central questions,
and define key terms. Our ongoing research agenda for this
project includes the following:

• further refinement and clarification of the strategy ladder
model

• development of “toy games” that illustrate key ideas of
the model (all-search/no-heuristic games, games with the
same game tree complexity but amounts of d)

• full application of the model to simple, real-world games
(Tic Tac Toe, Blackjack)

• full application of the model to “toy versions” of complex
real-world games (3x3 Go)

• partial application of the model to complex real-world
games in order to observe the strategies that occur at the
lowest computational resource levels

• further exploration of the entropy model of state space
topology

Acknowledgments
We would like to thank Jason Rohrer, Keith Burgun, Eric
Miles, Abe Friesen, and the anonymous reviewers for their
thoughts and comments on this work. Special thanks to the
Banff International Research Station for Mathematical Inno-
vation and Discovery, for hosting the Computational Model-
ing in Games workshop, and to Marc ten Bosch, Seth Cooper,
and Steve Swink for our helpful discussion in Banff.

References
Abbott, R. 1975. Under the strategy tree. Games & Puzzles
(reprinted in Game and Puzzle Design, 2016) 36:4–5.
Albers, J. 1971. Interaction of color. Yale University Press.
Allis, L. V. 1994. Searching for solutions in games and
artificial intelligence. Ponsen & Looijen.
Browne, C. 2008. Automatic generation and evaluation
of recombination games. Ph.D. Dissertation, Queensland
University of Technology.
Cormen, T.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2001. Introduction to algorithms, 3rd ed. MIT Press.

Elias, G. S.; Garfield, R.; Gutschera, K. R.; and Whitley, P.
2012. Characteristics of games. MIT Press.
Ghostcrawler. 2016. /dev: On Depth vs. Accessibility.
http://nexus.leagueoflegends.com/2016/
10/dev-on-depth-vs-accessibility. Online;
accessed 12-Oct-2016.
Gobet, F.; Retschitzki, J.; and de Voogt, A. 2004. Moves in
mind: The psychology of board games. Psychology Press.
Kahneman, D. 2011. Thinking, fast and slow. Macmillan.
Kiley, O. 2013. Searching the depths: Strat-
egy, tactics, and the deception of complexity.
http://www.big-game-theory.com/2013/01/
Searching-the-Depths.html. Online; accessed
20-Dec-2015.
Kolmogorov, A. N. 1968. Three approaches to the quanti-
tative definition of information*. International Journal of
Computer Mathematics 2(1-4):157–168.
Li, M., and Vitányi, P. 2009. An introduction to Kolmogorov
complexity and its applications. Springer Media.
Nielsen, T. S.; Barros, G. A.; Togelius, J.; and Nelson, M. J.
2015. General video game evaluation using relative algorithm
performance profiles. In European Conference on the Appli-
cations of Evolutionary Computation, 369–380. Springer.
Papadimitriou, C. H. 2003. Computational complexity. John
Wiley and Sons Ltd.
Pulsipher, L., and Others. 2011. What is depth in
games? http://www.gamasutra.com/blogs/
LewisPulsipher/20111219/90810/What_is_
Depth_in_Games.php. Forum Post; accessed 13-Dec-
2015.
Redmond, M., and Garlock, C. 2016. Match 4 - Google Deep-
Mind Challenge Match: Lee Sedol vs AlphaGo. https://
www.youtube.com/watch?v=yCALyQRN3hw. On-
line; accessed 13-Mar-2016.
Robertie, B. 1992. Letters to the editor. Inside Backgammon
2(1):2–4.
Silva, F. d. M.; Isaksen, A.; Togelius, J.; and Nealen, A.
2016. Generating heuristics for novice players. In IEEE
Computational Intelligence in Games.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529(7587):484–489.


