
The Mario AI Benchmark and Competitions

Sergey Karakovskiy and Julian Togelius

Abstract—This paper describes the Mario AI benchmark,
a game-based benchmark for reinforcement learning algo-
rithms and game AI techniques developed by the authors. The
benchmark is based on a public domain clone of Nintendo’s
classic platform game Super Mario Bros, and completely open
source. During the last two years, the benchmark has been
used in a number of competitions associated with international
conferences, and researchers and students from around the
world have contributed diverse solutions to try to beat the
benchmark. The paper summarises these contributions, gives an
overview of the state-of-art in Mario-playing AIs, and chronicles
the development of the benchmark. This paper is intended as
the definitive point of reference for those using the benchmark
for research or teaching.

Keywords: game AI, reinforcement learning, benchmark-
ing, competitions

I. INTRODUCTION

When doing research in computational and/or artificial
intelligence applied to games, it is important to have suitable
games to apply the AI algorithms to. This applies regardless
of whether one is doing research on using games to test and
improve artificial intelligence (games provide challenging yet
scalable problems which engage many central aspects of
human cognitive capacity), or whether one is doing research
on using CI/AI methods to improve games (for example with
player satisfaction modelling, procedural content generation
and creation of believable and interesting bots). No single
game will ever satisfy all projects and directions within
this steadily growing research field, as different games pose
different challenges. However, the community has much to
gain from standardising on a relatively small set of games,
which are freely available and on which competing CI/AI
methods can be easily and fairly compared.

A “perfect benchmark game” would have to satisfy numer-
ous criteria. It should test a number of interesting cognitive
abilities, preferably such that are not effectively tested by
other benchmark games already out there. It should be “easy
to learn but hard to master”, in other words either have a
tunable challenge level or have a naturally deep learning
curve, so that it differentiates between players and algorithms
of different skill at all levels. It should be visually appealing,
easy to understand and generally something that spectators
know and care about. People should like to play it. The policy
representation (or input/output space) should be sufficiently
general that a number of different CI/AI methods can be
applied to it without too much work.

SK is with St. Petersburg State University, Universitetskii prospekt 35, Pe-
tergof, 198504 Saint-Petersburg, Russia. JT is with the Center for Computer
Games Research, IT University of Copenhagen, Rued Langgaards Vej 7,
2300 Copenhagen, Denmark. Emails: sergey@idsia.ch, julian@togelius.com

The technical platform is also important. The benchmark
game implementation should run on major computing plat-
forms available now and in the foreseeable future, and should
run identically on all systems. The software needs to be
simple to install, the API easy to understand and it should be
possible for anyone with adequate programming knowledge
to have a simple solution up and running within five minutes,
otherwise many researchers will choose to use their own
benchmarks which they know better. The implementation
needs to be computationally lightweight, and able to be sped
up to many times (hundreds or thousands of times) real-time
performance. This last criterion is particularly important for
applying learning algorithms to the game.

In this paper we present the Mario AI Benchmark, a
benchmark software based on Infinite Mario Bros which in
turn is a public domain clone of Nintendo’s classic platform
game Super Mario Bros. We argue that this benchmark
satisfies all of the criteria laid out above to at least some
extent, and therefore is highly suitable for several kinds
of CI/AI research. We also describe the competitions that
have been held during 2009 and 2010 based on successive
versions of the Mario AI Benchmark. These competitions
have attracted a reasonably large number of submissions and
considerable media attention, and as a result the benchmark
is now used in a number of university courses worldwide.

The structure of the paper is as follows. First, we discuss
other competitions and benchmarks, and the characteristics
of the game this particular benchmark is based on. We then
describe the benchmark, including the API and the AmiCo
and Punctual Judge libraries which permits the benchmark
to be used efficiently and fairly from diverse programming
languages. This is followed by a description of how the com-
petitions based on the benchmarks were organised and the
results of the individual competitions. In connection with this
we discuss how the evolution of both the benchmark and the
competition entries was informed by the advances in playing
capability displayed by the best entries in each competition.
A final section discusses other research that has used the
Mario AI Benchmark, how you can use the benchmark in
your own research and teaching and what we can learn from
the competitions. The concluding acknowledgements make
clear how this paper differs from other papers that have
been published previously about this benchmark and these
competitions.

A. Previous game-based competitions and benchmarks

Chess is probably the oldest known artificial intelligence
benchmark, and has played an important role in CI/AI
research since Turing first suggested that the game could be
automatically played using the MiniMax algorithm [1]. In the



famous Kasparov vs. Deep Blue match in 1997, a computer
program for the first time beat the human grandmaster
and became the world’s best chess player [2]. The exact
significance of this event is debated, but what was proven
beyond doubt was that an AI implementation can excel
at a particular game without necessarily having a broad
behavioural repertoire or being able to adapt to a variety
of real-world challenges. The related board game Checkers
(draughts), which was used for influential early machine
learning experiments [3] has recently been completely solved
using tree-search methods and can now be played perfectly
(perfect play by both players leads to a draw) [4]. Another
game where it is no longer interesting to try to beat humans
is Scrabble; the best Scrabble-playing programs (such as
Maven) can win over all humans without searching more
than one turn ahead, because of the advantage of quick and
complete dictionary access [5].

Other board games have delivered harder challenges for CI
and AI; international competitions have been set up where
competitors can submit their best game-playing programs
and play against each other for a number of board games.
In recent years, much work has focused on the ancient
oriental game of Go. The high branching factor of this game
makes traditional tree-search techniques ineffective, and the
winners of recent Go competitions have been based on Monte
Carlo techniques [6]. Other turn-based, originally non-digital
games games such as the board game Backgammon and
the card game Poker feature non-determinism or incomplete
information, which seems to necessitate statistical models to
play well. In such games, the current best computer programs
are typically not yet competitive with human grandmasters,
as evidenced by competitions where humans and programs
can play each other.

While board games and card games certainly pose many
hard and interesting challenges and, in humans, require
cognitive abilities such as reasoning and planning to play
well, there are many relevant challenges that are not posed
by such games. Digital games, in particular video games,
might require planning and reasoning to play well; but they
may also require such capacities as visual pattern recog-
nition, spatial navigation and reasoning, prediction of en-
vironmental dynamics, short-term memory, quick reactions,
very limited information and ability to handle continuous
multi-dimensional state and action descriptions. Additionally,
video games are visually and culturally more appealing than
board games for many people – especially young people, a
fact which can help draw students into CI/AI research and
advertise the field to the general public.

With this in mind, during the last decade a number
of competitions have been organized in conjunctions with
international conferences, several of them sponsored by the
IEEE Computational Intelligence Society. Some of these
competitions are based on arcade-style games such as Ms.
Pac-Man [7], Cellz [8], X-pilot [9] and a simple 2D racing
game [10]. But there are also competitions based on the first-
person shooter Unreal Tournament [11], [12], the modern

racing game TORCS [13] and the real-time strategy game
StarCraft [14]. The organization, results and summaries of
entries of many of these competitions have been written
up as journal articles or conference papers, providing an
archival reference point for other researchers wishing to
use the benchmarks developed for their own experiments;
for other competitions, at least the benchmark software and
initial experiments have been published.

B. Platform games as an AI challenge

Platform games can be defined as games where the player
controls a character/avatar, usually with humanoid form, in
an environment characterised by differences in altitude be-
tween surfaces (“platforms”) interspersed by holes/gaps. The
character can typically move horizontally (walk) and jump,
and sometimes perform other actions as well; the game world
features gravity, meaning that it is seldom straightforward to
negotiate large gaps or altitude differences.

To our best knowledge, there have not been any previ-
ous competitions focusing on platform game AI. The only
published papers on AI for platform games we know of is
a recent paper of our own where we described experiments
in evolving neural network controllers for the same game as
was used in the competition using an earlier version of the
API [15], and our earlier conference paper on the first iter-
ation of this competition. Some other papers have described
uses of AI techniques for automatic generation of levels for
platform games [16], [17], [18]; some of this research was
done using versions of the Mario AI Benchmark [19], [20],
[21].

Most commercial platform games incorporate little or no
AI. The main reason for this is probably that most platform
games are not adversarial; a single player controls a single
character who makes its way through a sequence of levels,
with his success dependent only on the player’s skill. The
obstacles that have to be overcome typically revolve around
the environment (gaps to be jumped over, items to be found
etc) and NPC enemies; however, in most platform games
these enemies move according to preset patterns or simple
homing behaviours. (This can be contrasted to other popular
genres such as first-person shooters and real-time strategy
games, where the single-player modes require relatively
complex AI to provide an entertaining adversary for the
player.)

Though apparently an under-studied topic, artificial in-
telligence for controlling the player character in platform
games is interesting from several perspectives. From a game
development perspective, it would be valuable to be able
to automatically create controllers that play in the style
of particular human players. This could be used both to
guide players when they get stuck (cf. Nintendo’s recent
“Demo Play” feature, introduced to cope with the increas-
ingly diverse demographic distribution of players) and to
automatically test new game levels and features as part of
an algorithm to automatically tune or create content for a
platform game.



From an AI and reinforcement learning perspective, plat-
form games represent interesting challenges as they have
high-dimensional state and observation spaces and relatively
high-dimensional action spaces, and require the execution of
different skills in sequence. Further, they can be made into
good testbeds as they can typically be executed much faster
than real time and tuned to different difficulty levels. We
will go into more detail on this in the next section, where we
describe the specific platform game used in this competition.

C. Infinite Mario Bros

The Mario AI benchmark is based on Markus Persson’s
Infinite Mario Bros, which is a public domain clone of
Nintendo’s classic platform game Super Mario Bros. The
original Infinite Mario Bros is playable on the web, where
Java source code is also available1.

The gameplay in Super Mario Bros consists in moving the
player-controlled character, Mario, through two-dimensional
levels, which are viewed sideways. Mario can walk and run to
the right and left, jump, and (depending on which state he is
in) shoot fireballs. Gravity acts on Mario, making it necessary
to jump over holes to get past them. Mario can be in one of
three states: Small, Big (can crush some objects by jumping
into them from below), and Fire (can shoot fireballs). Getting
hurt by an enemy means changing to previous mode or dying.
While the main goal is to get to the end of the level, auxiliary
goals include gaining a high score by collecting items and
killing enemies, and clearing the level as fast as possible.

1) Automatic level generation: While implementing most
features of Super Mario Bros, the standout feature of Infinite
Mario Bros is the automatic generation of levels. Every
time a new game is started, levels are randomly generated
by traversing a fixed width and adding features (such as
blocks, gaps and opponents) according to certain heuristics.
The level generation can be parameterised, including the
desired difficulty of the level, which affects the number
and placement of holes, enemies and obstacles. The original
Infinite Mario Bros level generator is somewhat limited; for
example, it cannot produce levels that include dead ends,
which would require back-tracking to get out of, and does not
allow for specifying random seeds that allow the recreation
of particular levels. For the Mario AI Benchmark we have
enhanced the level generator considerably, as will be detailed
below.

2) The challenges of playing Infinite Mario Bros: Several
features make Super/Infinite Mario Bros particularly inter-
esting from an AI or reinforcement learning perspective.
The most important of these is the potentially very rich
and high-dimensional environment representation. When a
human player plays the game, he views a small part of
the current level from the side, with the screen centred
on Mario. Still, this view often includes dozens of objects
such as brick blocks, enemies and collectable items. The
static environment (grass, pipes, brick blocks etc.) and the
coins are laid out in a grid (of which the standard screen

1http://www.mojang.com/notch/mario/

covers approximately 19 ∗ 19 cells), whereas moving items
(most enemies, as well as the mushroom power-ups) move
continuously at pixel resolution.

The action space, while discrete, is also rather large. In
the original Nintendo game, the player controls Mario with
a D-pad (up, down, right, left) and two buttons (A, B). The A
button initiates a jump (the height of the jump is determined
partly by how long it is pressed); the B button initiates
running mode and, if Mario is in the Fire state, shoots a
fireball. Disregarding the unused up direction, this means that
the information to be supplied by the controller at each time
step is five bits, yielding 25 = 32 possible actions, though
some of these are nonsensical (e.g. left together with right).

Another interesting feature is that there is a smooth learn-
ing curve between levels, both in terms of which behaviours
are necessary and their required degree of refinement. For
example, to complete a very simple Mario level (with no
enemies and only small and few holes and obstacles) it might
be enough to keep walking right and jumping whenever
there is something (hole or obstacle) immediately in front
of Mario. A controller that does this should be easy to
learn. To complete the same level while collecting as many
as possible of the coins present on the same level likely
demands some planning skills, such as smashing a power-
up block to retrieve a mushroom that makes Mario Big so
that he can retrieve the coins hidden behind a brick block,
and jumping up on a platform to collect the coins there and
then going back to collect the coins hidden under it. More
advanced levels, including most of those in the original Super
Mario Bros game, require a varied behaviour repertoire just
to complete. These levels might include concentrations of
enemies of different kinds which can only be passed by
timing Mario’s passage precisely; arrangements of holes and
platforms that require complicated sequences of jumps to
pass; dead ends that require backtracking; and so on. How to
complete Super Mario Bros in minimal time while collecting
the highest score is still the subject of intense competition
among human players2.

II. THE BENCHMARK

In order to build a benchmark out of Infinite Mario Bros,
we modified the game rather heavily and constructed an
API that would enable it to be easily interfaced to learning
algorithms and competitors’ controllers. The modifications
included removing the dependency on the system clock so
that it can be “stepped” forward by the learning algorithm,
removing the dependency on graphical output, and substan-
tial refactoring (Markus Persson did not anticipate that the
game would be turned into an RL benchmark). Each time
step, which corresponds to 40 milliseconds of simulated time
(an update frequency of 25 fps), the controller receives a
description of the environment, and outputs an action. The
resulting software is a single-threaded Java application that
can easily be run on any major hardware architecture and

2Search for “super mario speedrun” on YouTube to gauge the interest in
this subject.



operating system, with the key methods that a controller
needs to implement specified in a single Java interface file.
On a MacBook from 2009, 10−40 full levels can be played
per second (several thousand times faster than real-time); for
anything but trivial agents, most of the computation time is
spent in the agent rather than in the benchmark.

A. API

The application programming interface (API) of the Mario
AI benchmark can be broken down into the following Java
interfaces:

1) The Environment interface: Describes the game state
to the agent at each time step. The main types of information
presented are:

• One or several receptive field observations. These are
two-dimensional arrays that describe the world around
Mario with block resolution, and with Mario himself in
the center. In the first version of the benchmark, one re-
ceptive field contained binary information about the en-
vironment (where 0=passable terrain and 1=impassable,
such as blocks and platforms) and another receptive
field contained binary information about the enemies on
screen (1 for enemies, otherwise). In later versions, the
ability for agents to change Z-level, the level of detail for
objects in the receptive field informations, was added.
Initially, all receptive fields had the dimensions 22×22,
but in later versions this became a property of the level.
Figure 1 illustrates a small receptive field around Mario,
used in early neural network experiments.

• Exact positions of enemies. As the receptive field ob-
servations have block resolution, they might not provide
enough detail for some agents. Therefore, a list of x
and y positions relative to Mario with pixel resolution
is provided in later versions of the benchmark.

• Mario state. Information about what state Mario is in
(Small, Big, Fire), whether Mario is currently on the
ground, can currently jump and is currently carrying
the shell of a Koopa (turtle-like enemy) is provided as
separate binary/discrete variables.

Additionally, the possibility of receiving the raw bitmap
of the rendered game screen was implemented, but has not
been used in competitions so far.

2) The Agent interface: This is the only interface that
needs to be implemented in order to create a functional
Mario-playing agent. The key method here is getAction,
which takes an Environment as input and returns a five-bit
array specifying the action to take. The original Super Mario
Bros game is controlled by the Nintendo controller featuring
a four-dimensional directional pad (d-pad) and two buttons,
A and B; when played by a human, a similar arrangements
of keys on the keyboard is used for Infinite Mario Bros. The
five bits correspond to pressing or not pressing each of the
two buttons A and B, and three of the four directions (left,
right and down) - the up direction has no meaning with the
feature set we are implementing. Left and right moves Mario
left right, down makes Mario duck, A initiates a jump and

Fig. 1. A small receptive field around Mario. Each grid cell is the size of
one block.

B makes Mario run if pressed together with left or right and
additionally makes Mario shoot a fireball if in Fire mode.
All of these buttons can be pressed simultaneously. This
yields a total of 25 = 32 actions, though several of these
are pointless and not commonly used (e.g. pressing left and
right simultaneously).

3) The Task interface: The Task defines certain aspects of
the gameplay, including the presence or absence of sensory
noise, whether there should be intermediate rewards and
exactly which evaluation function is used.

B. Tunable level generator

The initial versions of the benchmark used the standard
level generator that comes with Infinite Mario Bros, though
slightly changed to allow for the specification of random
seeds. As competition entries became more sophisticated, it
became evident that the existing level generator could not
provide levels of sufficient diversity and challenge. A new
level generator was therefore constructed, which can con-
struct harder, more diverse and (in the opinion of the authors)
more interesting levels. Figure 2 illustrates the workflow of
the level generator. The basic idea is to add “zones” from
left to right until the required length has been reached, where
both the content of the zones and their placement can be
modified in multiple ways depending on the parameters given
to the generator. In contrast to the original level generator,
the new generator has more than 20 tunable parameters. The
following parameters are among the most important:

• Seed: any level can be recreated by specifying the exact
same parameters, including random number seed.

• Difficulty: affects the complexity of levels generated,
size of gaps etc.

• Type: overground, underground, castle (indoor environ-
ment used for boss fights).

• Length: the length of the level. The time limit can also
be controlled.



• Creatures: bit mask specifying the presence/absence of
particular creatures.

• Dead ends: the frequency of level constructs that may
force the player to backtrack and try another route.

• Gravity: affects how high and far Mario can jump.
Several other physical properties (e.g. friction, wind)
can also be controlled.

37 4.1 Mario AI benchmark

Figure 4.1: LevelGenerator.creatreLevel() diagram.
Fig. 2. Workflow for the tunable level generator.

Figure 3 depicts part of a level generated by the tunable
level generator.

C. The AmiCo library

In the first versions of the benchmark, a TCP interface
for controllers was provided so that controllers written
in other languages than Java could be interfaced to the
code. However, this TCP interface introduced a considerable
communication overhead making non-Java agents orders of

magnitude slower, and had occasional stability issues. For
later releases, a new library called AmiCo was developed
for communication between the benchmark and agents de-
veloped in other language.

The AmiCo library is applicable for inter-language pro-
cess communication beyond the Mario AI Benchmark. The
purpose of the library is to provide an easy-to-use and as
seamless as possible bridge between foreign programming
languages preserving high performance, comparable to the
native languages’ runtime speeds. The idea behind it is
to make use of the native language bindings of various
languages, such as JNI for Java, ctypes for Python and
HSFFIG for Haskell. Currently it has bindings for the above
mentioned three languages, but can easily be extended to
others. This native bridge is possible due to native C++
bindings for both Java and Python. The library allows the
programmer to invoke both static and non-static methods of
a target Java class and provides complete access to JNI3

methods from Python.

D. Punctual Judge

Punctual Judge is the part of the benchmark software that
is responsible for fair timing of controllers across computers
and changing computer load. Like AmiCo, this part of
the software can readily be used outside the Mario AI
benchmark, for example in other time-critical benchmarking
applications.

When Punctual Judge is activated, a custom classloader
loads the user-provided Mario controller, instruments it on
the fly through injecting additional byte code and returns an
instrumented class, which can be called by the benchmark.
During evaluation, Punctual Judge counts the number of byte
codes executed. Exceptions are disregarded, as any exception
will terminate the benchmarking software.

Experimental runs show that Punctual Judge gives an
additional overhead of only about 32% for Java, a factor
which could conceivably be optimised further if necessary.

Using Punctual Judge, a competitor can get accurate
information about the number of byte code instructions his
controller performs before submission. As this number is
machine-independent, this information allows the competi-
tors to match the competition time bounds tightly without
running the risk of the controller being disqualified because
of differing performance profile of the computer on which
the scoring is done.

For more information about the level generator, Punctual
Judge and AmiCo, please refer to [22].

III. COMPETITION ORGANIZATION

The organization and rules of the competition sought to
fulfil the following objectives:

1) Ease of participation. We wanted researchers of dif-
ferent kinds and of different levels of experience to
be able to participate, students as well as withered
professors who haven’t written much code in a decade.

3Java Native Interface



21 3.1 Mario AI benchmark

Figure 3.3: Level generated: Example of a more complex level requir-
ing advanced learning techniques or/and heuristics involved. Corresponding
command-line options passed to CmdLineOptions class are: "-lf off -ltb on -ll
400 -ld 12 -lde on -lc on -lco on -ls 352 -i on", which means "level flat dis-
abled, level tubes enabled, level length 400, level difficulty 12, level dead-ends
enabled, level cannons enabled, level coins enabled, level seed 352, invulnera-
bility for Mario enabled (otherwise you’ll have hard time trying to clear the level
without this nice cheating)"

Figure 3.4: Level generated: Example of another complex level of under-
ground type. Corresponding command-line options passed to CmdLineOptions
class are: "-lf off -ltb on -ll 400 -ld 12 -lde on -lc on -lco on -ls 1352 -lt 1", which
is almost the same as in Figure 3.3, so only the difference is "level seed 1352,
level type 1 (UNDERGROUND)"

Fig. 3. Part of a level generated by the tunable level generator. Mario can be seen standing standing on a question mark near the left end of the picture.
Note that this elongated screenshot contains the same information as approximately four standard screens. Under normal conditions, it would not be possible
to judge from the place Mario is standing whether it would be possible to proceed by walking under or on top of the the overhanging platform adjacent
to the right.

2) Transparency. We wanted as much as possible to
be publicly known about the competing entries, the
benchmark software, the organization of the competi-
tion etc. This can be seen as an end in itself, but a
more transparent competition also makes it easier to
detect cheaters, to exploit the scientific results of the
competition and to reuse the software developed for it.

3) Ease of finding a winner. We wanted it to be unam-
biguously clear how to rank all submitted entries and
who won the competition.

4) Depth of challenge. We wanted there to be a clear score
difference between controllers of different quality, both
at the top and the bottom of the high-score table.

After each iteration of the competition, these four objec-
tives were evaluated, and changes were introduced to the
benchmark and competition organization if any objective was
not fulfilled. While the two first objectives have generally
been well met throughout the competition, several changes
have been introduced in order to better meet the two latter
objectives, as we will see below.

The competition web page hosts the rules, the download-
able software and the final results of the competition4. (For
the 2009 edition of the competition, a different webpage was
used5). Additionally, a Google Group was set up to which
all technical and rules questions were to be posted, so that
they came to the attention of and could be answered by both
organisers and other competitors6, and where the organisers
posted news about the competition. The searchable archive
of the discussion group functions as a repository of technical
information about the competition.

Competitors were free to submit controllers written in any
programming language and using any development method-
ology, as long as they could interface to an unmodified
version of the competition software and control Mario in
real time on a standard desktop PC running Mac OS X or
Windows XP. For competitors using only Java, there was a
standardised submission format. Any submission that didn’t
follow this format needed to be accompanied by detailed
instructions for how to run it. Additionally, the submission

4http://www.marioai.org
5http://julian.togelius.com/mariocompetition2009
6http://groups.google.com/group/marioai

needed to be accompanied by the score the competitors
had recorded themselves using the benchmark software, so
that the organisers could verify that the submission ran as
intended on their systems. We also urged each competitor to
submit a description of how the controller works as a text
file.

Competitors were urged to submit their controllers early,
and then re-submit improved versions. This was so that any
problems that would have disqualified the controllers could
be detected and rectified and the controllers resubmitted. No
submissions or resubmissions at all were accepted after the
deadline (about a week before each competition event).

IV. THE 2009 COMPETITIONS

In 2009, two phases of the competition were run. The first
was associated with the IEEE Games Innovation Conference
(ICE-GIC) conference in London in August, and the second
was associated with the IEEE Conference on Computational
Intelligence and Games (CIG) in Milan, Italy, in September.
The results of each phase were presented as an event during
the conference it was associated with.

A. Media campaign

A media campaign was initiated through stories on social
media websites Digg and Slashdot. At about the same time
one of the competitors (Robin Baumgarten) posting a video
of his controller online. This video quickly went viral, and
gathered six hundred thousand views in a few days. This
attracted the attention of mainstream and popular science
media, resulting in several articles about the competition
and research associated with it [23], [24], [25]. We believe
that these articles contributed substantially to the number of
qualified entrants to the competition, while at the same time
dissuading some less advanced and/or ambitious potential
competitors from entering.

B. Summary of competition entries

The 15 different entries submitted to the two phases of
the 2009 Mario AI competition can be classified into three
broad categories.



1) Hand-coded heuristic: This was the largest category.
Seven different controllers were submitted which were hand-
constructed, non-adaptive and did not use search-based meth-
ods for action selection. All of these were very quick to return
an action when prompted, implying that a low amount of
computation was performed. Trond Ellingsen, Sergio Lopez,
Rafael Oliveira and Glenn Hartmann submitted rule-based
controllers, that determined the action to return based on
verifying a number of relatively simply conditions. Spencer
Schumann augmented one of the sample rule-based con-
trollers with a bit of internal simulation to determine the
end position of possible jumps. Mario Perez submitted a
controller based on the subsumption architecture, common
in robotics, and Michal Tulacek built his controller around a
finite state machine.

2) Learning-based: Five controllers were based on offline
training. Three of these used artificial evolution: Matthew
Erickson evolved expression trees of the type commonly used
in genetic programming; Douglas Hawkins evolved code for
a stack-based virtual machine; and Erek Speed evolved a
rule-based controller. Sergey Polikarpov trained a controller
based on the “cyberneuron” neural network architecture
using a form of ontogenetic reinforcement learning, and
Alexandru Paler trained a neural network to play using
supervised learning on human playing data.

3) A*-based: The stars of the 2009 competition were the
A*-based controllers. These agents reduce the problem of
how to safely navigate the levels to the problem of how at
any point to get to the rightmost edge of the screen, and
cast this problem as a pathfinding problem. The A* search
algorithm is a widely used best-first graph search algorithm
that finds a path with the lowest cost between a pre-defined
start node and one out of possibly several goal-nodes [26].
This algorithm is used to search for the best path in game
state space, which is different from simply searching in the
space of Mario’s positions and requires that a fairly complete
simulation of the game’s dynamics is available to the search
algorithm. Fortunately, given that the game is open-source
and computationally lightweight, it is reasonably simple to
copy and adapt the game engine to provide such a simulation.

The first of these controllers was submitted by Robin
Baumgarten, who also posted a video showing his agent’s
progress on a level of intermediate difficulty on YouTube.
This video quickly garnered over six hundred thousand
views, and gave a considerable boost to the publicity cam-
paign for the competition. (A screenshot of Robin’s agent
in action, similar to what was depicted in the viral video,
is shown in figure 4.) The proficiency of the controller as
evident from the video inspired some competitors, while
dissuading others from participating in the competition. Be-
fore the deadline, two other controllers based on A* had
been submitted to the competition, one by Peter Lawford
and another by a team consisting of Andy Sloane, Caleb
Anderson and Peter Burns. These controllers differed subtly
from Robin’s controller in both design and performance,
but were all among the top entries. More information about

Fig. 4. Visualization of the future paths considered by the Robin
Baumgarten’s A* controller. Each red line shows a possible future trajectory
for Mario, taking the dynamic nature of the world into account.

Robin Baumgarten’s controller can be found in [27].

C. Scoring

All entries were scored before the conference through
running them on 10 levels of increasing difficulty, and
using the total distance travelled on these levels as the
score. The scoring procedure was deterministic, as the same
random seed was used for all controllers, except in the few
cases where the controller was nondeterministic. The scoring
method uses a supplied random number seed to generate the
levels. Competitors were asked to score their own submis-
sions with seed 0 so that this score could be verified by
the organizers, but the seed used for the competition scoring
was not generated until after the submission deadline, so that
competitors could not optimise their controllers for beating
a particular sequence of levels.

For the second phase of the competition (the CIG phase)
we discovered some time before the submission deadline that
two of the submitted controllers were able to clear all levels
for some random seeds. We therefore modified the scoring
method so as to make it possible to differentiate better
between high-scoring controllers. First of all, we increased
the number of levels to 40, and varied the length of the levels
stochastically, so that controllers could not be optimised for a
fixed level length. In case two controllers still cleared all 40
levels, we defined three tie-breakers: game-time (not clock-
time) left at the end of all 40 levels, number of total kills,
and mode sum (the sum of all Mario modes at the end of
levels, where 0=small, 1=big and 2=fire; a high mode sum
indicates that the player has taken little damage). So if two
controllers both cleared all levels, that one that took the least
time to do so would win, and if both took the same time the
most efficient killer would win etc.

D. Results

The results of the ICE-GIC phase are presented in ta-
ble IV-D, and show that Robin Baumgarten’s controller



performed best, very closely followed by Peter Lawford’s
controller and closely followed by Andy Sloane et al.’s
controller. We also include a simple evolved neural network
controller and a very simple hard-coded heuristic controller
(the ForwardJumpingAgent which was included with the
competition software and served as inspiration for some of
the competitors) for comparison; only the four top controllers
outperformed the ForwardJumpingAgent.

Competitor progress ms/step
Robin Baumgarten 17264 5.62
Peter Lawford 17261 6.99
Andy Sloane et al. 16219 15.19
Sergio Lopez 12439 0.04
Mario Perez 8952 0.03
Rafael Oliveira 8251 ?
Michael Tulacek 6668 0.03
Erek Speed 2896 0.03
Glenn Hartmann 1170 0.06
Evolved neural net 7805 0.04
ForwardJumpingAgent 9361 0.0007

TABLE I
RESULTS OF THE ICE-GIC PHASE OF THE 2009 MARIO AI

COMPETITION. THE NUMBERS IN THE “PROGRESS” COLUMN REFER TO
HOW FAR THE AGENT GOT TOWARDS THE END OF THE LEVEL, SUMMED
OVER ALL LEVELS; “MS/STEP” REFERS TO HOW MANY MILLISECONDS

EACH AGENT ON AVERAGE TAKES TO RETURN AN ACTION AFTER
PRESENTED WITH AN OBSERVATION.

For the CIG phase, we had changed the scoring procedure
as detailed in section IV-C. This turned out to be a wise
move, as both Robin Baumgarten’s and Peter Lawford’s
agents managed to finish all of the levels, and Andy Sloane
et al.’s came very close. In compliance with our own rules,
Robin rather than Peter was declared the winner because of
his controller being faster (having more in-game time left at
the end of all levels). Peter’s controller, however, was better
at killing enemies.

The best controller that was not based on A*, that of Trond
Ellingsen, scored less than half of the A* agents. The best
agent developed using some form of learning or optimisation,
that of Matthew Erickson, was even further down the list.
This suggests a massive victory of classic AI approaches
over CI techniques. (At least as long as one does not care
much about computation time; if score is divided by average
time taken per time step, ForwardJumpingAgent wins the
competition...)

E. Result evaluation and benchmark improvements

The most obvious message of the 2009 competition was
the superiority of the A*-based agents over everything else
that was submitted. Search in state-space for the fastest
way to move right using simulation of the game engine
was clearly superior to all reactive approaches. Looking a
bit closer at the results, it is clear that the top two A*
agents had very similar scores and in the CIG phase of
the competition they could only be distinguished based on
auxiliary criteria such as the amount of time left at the end of
levels or the number or creatures killed. This is because those
controllers cleared every level in the competition. Either the

A* algorithm was the final answer to how to play platform
games, or the levels that were part of the competition did
not accurately represent the challenges posed by levels in
the original Super Mario Bros and other platform games.

We analysed the functioning of the A* algorithm for level
features which were present in real Super Mario Bros levels
but not in the competition levels, and which would pose
problems for the A* algorithm. One feature in particular
stood out: dead ends. A dead end is a situation where the
player can choose to take at least two different paths forward,
but at least one of these paths is blocked, requiring the player
to backtrack and choose another path. It is important that
it is not possible to see which path is blocked at the time
of choosing; this means that the blocked path must be at
least half a standard screen long. For the 2010 Mario AI
Championship, the level generator was extended to include
the possibility of generating dead ends. (Figure 3 shows
a dead end generated by the augmented level generator.)
Additionally, a number of other changes were introduced to
the level generator to make it possible to create harder levels,
such as greater control over numbers of particular items and
possibility of hidden blocks and longer gaps. It was decided
to increase the difficulty of the hardest levels in future
competitions and including some levels which were literally
impossible to finish to test the behaviour of controllers on
such levels.

None of the winning controllers incorporated any kind
of learning. This is not a problem in itself, as the rules
stipulated that any kind of controller was welcome and
the objective was to find the best AI for platform games
regardless of underlying principles. However, a variation
the same benchmark could conceivably also be used to test
the capabilities of learning algorithms to be integrated into
platform game controllers. We therefore decided to broaden
the competition by introducing a new track of the competition
dedicated to this.

The playing style of the A*-based controllers is very
far from human-like. A video of e.g. Robin Baumgarten’s
controller playing looks very different from a video of a
human playing the same level; the controller is constantly
running and jumping rightwards, and has a spooky exactness
in that it tends to jump off platforms at the very last pixel.
Indeed, this machine-like quality of the gameplay is probably
a major reason for why the YouTube video of Baumgarten’s
agent became so popular. While the gameplay not being
human-like is not a problem for the competition, the same
benchmark could conceivably be used to compete in human-
like gameplay as well, and therefore a new competition track
was introduced dedicated to this.

Finally, the recent interest in procedural content generation
within the game AI community [28], [29] suggested to us
that the benchmark could be used as the basis for a content
generation competition as well. A new track was therefore
devised for 2010, focusing on programs that generate levels.



Competitor approach progress levels time left kills mode
Robin Baumgarten A* 46564.8 40 4878 373 76
Peter Lawford A* 46564.8 40 4841 421 69
Andy Sloane A* 44735.5 38 4822 294 67
Trond Ellingsen RB 20599.2 11 5510 201 22
Sergio Lopez RB 18240.3 11 5119 83 17
Spencer Schumann RB 17010.5 8 6493 99 24
Matthew Erickson GP 12676.3 7 6017 80 37
Douglas Hawkins GP 12407.0 8 6190 90 32
Sergey Polikarpov NN 12203.3 3 6303 67 38
Mario Perez SM, Lrs 12060.2 4 4497 170 23
Alexandru Paler NN, A* 7358.9 3 4401 69 43
Michael Tulacek SM 6571.8 3 5965 52 14
Rafael Oliveira RB 6314.2 1 6692 36 9
Glenn Hartmann RB 1060.0 0 1134 8 71
Erek Speed GA out of memory

TABLE II
RESULTS OF THE CIG PHASE OF THE 2009 MARIO AI COMPETITION. EXPLANATION OF THE ACRONYMS IN THE “APPROACH” COLUMN: RB:

RULE-BASED, GP: GENETIC PROGRAMMING, NN: NEURAL NETWORK, SM: STATE MACHINE, LRS: LAYERED CONTROLLER, GA: GENETIC
ALGORITHM. EXPLANATION OF COLUMN LABELS: PROGRESS, AS IN THE PREVIOUS TABLE; LEVELS: NUMBER OF LEVELS CLEARED (OUT TO 40);

TIME LEFT: SUM OF IN-GAME SECONDS LEFT AT THE END OF EACH LEVEL (A HIGHER NUMBER MEANS THAT THE AGENT FINISHED THE LEVEL
FASTER); KILLS: NUMBER OF ENEMIES KILLED; MODE: NUMBER OF MODE SWITCHES, MEANING THE NUMBER OF TIMES THE AGENT LOST A MODE

(THROUGH GETTING HURT) OR GAINED A MODE (THROUGH COLLECTING A MUSHROOM OR FLOWER).

V. THE 2010 CHAMPIONSHIP

The 2010 Mario AI Championship consisted of four sep-
arate tracks:

• The Gameplay track was the direct continuation of the
2009 Mario AI Competition. Like in that competition,
the goal for submitted controllers was to clear as many
levels as possible, and the rules were the same. The
main difference to the year before was the incremental
addition of new features to the benchmark API, and
the more diverse and harder levels used to test the
controllers on.

• The Learning track was created to test learning agents,
or in other words to disadvantage agents that do not
incorporate any learning (online of offline). Agents
are tested on levels that are unseen during (human)
development of the agent, but the agent is allowed to
train on the track before being scored. More precisely,
each agent was allowed to play each testing track 10000
times, but only the score from 10001st playthrough
contributed to the final score. This way, agents that
incorporated mechanisms for learning how to play a
particular track could do better than those that were
overall good players but lack the ability to specialize.

• The Turing Test track responds to the perceived ma-
chinelike quality of the best controllers from the 2009
track, by asking competitors to submit controllers that
behave in a human-like fashion. The controllers were
assessed by letting an audience of non-expert humans
view a number of videos of humans and agents playing
the same level, and for each video voting on whether
the player was human or machine.

• The Level Generation track used the Mario AI bench-
mark software for a procedural content generation com-
petition. Competitors submitted personalized level gen-
erators, that could produce new, playable Infinite Mario

Bros levels given information about the playing style
and capabilities of a human player. The level generators
were assessed by letting humans play first a test track,
and then levels generated on-line specifically for them
by two different generators, and choosing which one of
the generated levels was most engaging.

Both the Gameplay, Learning and Turing Test track used
variations on the same interface, meaning that the same
agents could be submitted to all three tracks with minor
changes. The Level Generation track, on the other hand, used
a radically different interface as the submitted software was
asked to do something quite different from playing the game.

The championship was run in association with four inter-
national conferences on AI/CI and games. Not every track
was run at every competition event:

• EvoGames, part of EvoStar; Istanbul, Turkey, 7 April:
Gameplay and Learning tracks.

• IEEE World Congress on Computational Intelligence;
Barcelona, Spain, July: Gameplay track and a dry run
for the level generation track.

• IEEE Conference on Computational Intelligence and
Games; Copenhagen, Denmark, August: Gameplay,
Learning and Level generation tracks.

• IEEE Games Innovation Conference; Hong Kong,
China, 24 December: Turing test track.

In this paper, the organization, competitors and results of
the Gameplay and Learning tracks are discussed. As there is
simply not room to discuss all four tracks to a satisfactory
level of detail within a single journal article, the other two
tracks have been described elsewhere. For more about the
Level generation track, see [30]; the Turing test track is
discussed further in [31].

A. The gameplay track
The 2010 championship saw both new (5) and old (3)

competitors entering, and the best controllers were signifi-



cantly better players than previous years. We kept improving
the benchmark as described above between the three com-
petition events, and therefore the scores attained in different
events are not directly comparable. In particular, the EvoStar
competition event did not yet include levels with dead-ends
(which were part of the two later competition events) though
it did include levels that were overall harder than those in
the 2009 competition.

Because of the gradual evolution of the interface, and
the fact that most interface changes were additions of new
modes of experiencing the environment, almost complete
backwards compatibility has been maintained for controllers.
This means that participants in the 2009 competition could
enter the 2010 gameplay track with none or only minor
changes to their controllers. Therefore, a relatively high
number of participants has been maintained throughout the
2010 competition events, and new ideas could easily be com-
pared with the best of the previous controllers. In particular,
Robin Baumgarten entered all three gameplay events with
incrementally refined versions of the controller that won the
2009 competition. Still, there were fewer competitors in 2010
than there were in 2009, which can be explained partly
by that we could not get the same media attention as we
got for the 2009 competition, and partly by that the levels
were harder and several of the competitors more mature,
suggesting that newcomers with weaker entries that would
have submitted their entries if they thought they had a chance
of winning chose not to do so as they thought the competition
too stiff.

One strong new contender in the 2010 championship was
the REALM agent, due to Slawomir Bojarski and Clare Bates
Congdon. This agent is built on sets of rules, which are
evolved offline to maximize the distance travelled by the
agent. An agent is built up of a set of 20 rules, where each
rule has a handful of preconditions that test for relatively
primitive aspects of the game state, such as whether Mario
may jump or there is an enemy above to the left. The
consequences of the rules, on the other hand, are relatively
high level plans (such as move to the right of the screen or
kill the nearest enemy or bypass the dead-end) which are
executed with the help of A* planning. More information on
this entry can be found in [32].

Another interesting newcomer was the bot by Diego Perez
and Miguel Nicolau, which uses grammatical evolution (a
form of genetic programming) to evolve behaviour trees.
Descriptions of different versions of that agent can be found
in [33], [34].

As can be seen from table V-A, Bojarski and Congdon’s
REALM agent won the CIG event of the 2010 championship,
which was the final of that year. The superiority of the
REALM approach was evident in that it not only reached
the highest overall distance score, but also cleared the most
levels, killed the most enemies and was not disqualified even
once. The runner up was Sergey Polikarpov’s CyberNeuron
agent, which won the previous competition event at IEEE
WCCI (see table V-A) and also came second in the EvoStar

event V-A. Robin Baumgarten’s revised controller finished
third with a very high number of disqualified levels, meaning
that it often timed out when faced with a situation where
it could not find a path to the left end of the screen. As
the most difficult levels became more difficult between each
competition, Robin’s agent dropped from first to second to
third place.

However, not even the REALM agent managed to clear all
levels. In some cases, it got stuck in a particularly vicious
dead end, or failed to clear a very long jump. These two types
of situations are responsible for the vast majority of deaths
and disqualifications for all of the top controllers - it was rare
to see any of these controllers lose a life to enemy collisions.
Some of the levels in the test contain gaps that cannot be
bypassed in a single jump, but only through stomping on
a bullet or flying koopa mid-air, an operation that requires
good timing and is usually quite hard for a human to execute.
All of the top controllers were occasionally able to display
such feats, which would seem like the outcome of careful
planning to a casual human spectator.

B. The learning track

As described above, the submission format for the learning
track was intentionally very similar to that of the gameplay
track, and the same agent could with minimal modifications
be submitted to both tracks. In terms of evaluation, the
difference is that while in the gameplay track each agent is
tested once on a number of levels, in the learning track the
agent is tested 10001 times on the same level and only the
score from the last attempt counts. The challenge is to use
the first ten thousand attempts to learn to play this particular
level as well as possible.

Three of the four participants in the learning track were
variations of controllers submitted to the gameplay track.
Slawomir Bojarski and Clare Bates Congdon participated in
the learning track with the “full version” of the REALM
controllers, having the evolutionary rule learning mechanism
turned on and using the ten thousand trials for fitness
evaluations [32]. The evolutionary run is seeded with the
same set of rules that won the gameplay track.

The FEETSIES Team: (Erek Speed, Stephie Wu and Tom
Lieber) submitted an entry where the policy (represented
as direct mappings from screen observations to actions)
was optimised between trials by “Cuckoo Search via Lévy
Flights”, a recent biologically inspired stochastic search
algorithm [36]. The search was seeded with the policy of the
simplistic heuristic ForwardJumpingAgent, in other words
to continuously run rightwards and jump. Starting from this
policy, the search process identifies the situations where the
agent should do something else, via mutations that randomly
select another action for a given state. On top of the state-
action mapping, hardcoded heuristics deal with searching for
hidden blocks and retreating from dead ends. The agent is
described in more detail in [35].

Laura Villalobos was the only participant in the learning
track that did not submit to the gameplay track. Her solution
was based on genetic programming, dividing the 10000 trials



Competitor score disqualifications technique
Robin Baumgarten 634468 3 A*
Sergey Polikarpov 301775 9 CyberNeuron (RL)
Alexander Buck 290204 0 ?
Eamon Wong 253867 0 Q-learning
Mathew Erickson 167862 0 Genetic Programming

TABLE III
RESULTS OF THE EVOSTAR EVENT OF THE 2010 MARIO AI CHAMPIONSHIP, IN DESCENDING RANK ORDER. EXPLANATION OF COLUMN LABELS:

SCORE: SUMMED SCORE FOR THE AGENT BASED ON PROGRESS, KILLS AND TIME TAKEN, AND USED TO CALCULATE THE WINNER;
DISQUALIFICATIONS: NUMBER OF TIMES THE AGENT WAS DISQUALIFIED FOR TAKING TOO LONG TIME TO RETURN AN ACTION AFTER BEING

PRESENTED WITH AN OBSERVATION; TECHNIQUE: WHAT THE CONTROLLER WAS BASED ON.

Competitor score disqualifications technique
Sergey Polikarpov 1637935 1 CyberNeuron (RL)
Robin Baumgarten 1537834 312 A*
Robert Reynolds, Leonard Elman network /
Kinnaird-Heether & Tracy Lai 1113437 0 cultural algorithm
Alexander Buck 991372 0 ?
Eamon Wong 972341 0 Q-learning
Mathew Erickson 634239 0 Genetic Programming

TABLE IV
RESULTS OF THE WCCI EVENT OF THE 2010 MARIO AI CHAMPIONSHIP, IN DESCENDING RANK ORDER.

Competitor score disqualifications levels cleared kills reference
Slawomir Bojarski and Clare Bates Congdon 1789109.1 0 94 246 [32]
Sergey Polikarpov 1348465.6 4 82 156
Robin Baumgarten 1253462.6 271 63 137 [27]
Diego Perez and Miguel Nicolau 1181452.4 0 62 173 [33], [34]
Robert Reynolds and Erek Speed 804635.7 0 16 86 [35]
Alexander Buck 442337.8 0 4 65
Matthew Erickson 12676.3 7 60 80
Eamon Wong 438857.6 0 0 27

TABLE V
RESULTS OF THE CIG EVENT OF THE 2010 MARIO AI CHAMPIONSHIP, IN DESCENDING RANK ORDER. EXPLANATION OF COLUMN LABELS: LEVELS

CLEARED: NUMBER OF LEVELS CLEARED; KILLS: NUMBER OF ENEMIES KILLED.

into 25 generations with a population of 400 individuals,
using tree-based program representation and a standard set of
GP instructions. The terminals (inputs) corresponded to the
presence of objects and enemies in the standard grid obser-
vation. Meanwhile, Robin Baumgarten submitted the same
A* agent as to the gameplay track without any significant
changes.

The results of the competition are presented in table VI.
The most striking result is that all three agents that incorpo-
rate learning between trials perform vastly better than the
non-learning agent, even though that agent is one of the
better entries for the gameplay track. While the winner of the
learning track (Bojarski and Congdon) outperformed the non-
learning controller (Baumgarten) in the gameplay track as
well, the difference is much larger in the learning track. This
shows that the learning controllers were indeed able to benefit
from the time given to adapt to particular levels. (In turn, this
shows that the design of the learning track was successful
in advantaging learning controllers.) Upon visual inspection
of the 10001st attempt of any of the learning controllers on
any particular level, a number of behaviours are found which
indicate having learnt how to play a particular level rather
than levels in general. These include jumping in the air to

reveal known hidden blocks, and always choosing the right
path when presented with two paths, one of which is a dead
end.

It is also interesting to note that the two best-performing
submissions, despite both relying on stochastic global search
in some form, are quite different. Whereas one uses an
evolutionary algorithm, the other uses Cuckoo search; one
uses a compact rule-based policy representation that maps
particular features of the state to actions, whereas the other
uses a sparse and direct mapping of complete states to
actions; finally, only the second uses hard-coded rules for
dead ends.

VI. DISCUSSION

A. Evaluating the competition

In section III we laid out four objectives that we sought
to fulfill in the design and running of the competition. These
were ease of participation, transparency, ease of finding a
winner and depth of challenge.

Ease of participation was mainly achieved through hav-
ing a simple web page, simple interfaces, simple sample
controllers available and letting all competition software be
open source. Participation was greatly increased through



Participant Affiliation Score
Slawomir Bojarski and Clare Bates Congdon University of Southern Maine 45017
FEETSIES Team (Erek Speed, Stephie Wu, Tom Lieber) 44801
Laura Villalobos 41024
Robin Baumgarten Imperial College, London 19054

TABLE VI
LEARNING TRACK RESULTS, CIG 2010 EVENT, COPENHAGEN

the very successful media campaign, built on social media.
Transparency was achieved through forcing all submissions
to be open source and publishing them on the web site
after the end of the competition. However, the short de-
scriptions submitted by competitors have in general not
been enough to replicate the agents, or perhaps even to
understand them given the source code, and therefore it has
been very welcome that several of the competitors (including
two competition winners) have published their agent designs
as academic conference papers.

The two latter objectives proved to be somewhat more
tricky. In the second competition event of 2009, the top two
controllers managed to clear all levels and therefore had the
same progress score; auxiliary performance measures had to
be used in order to find a winner. The addition of harder
levels including longer gaps, hidden blocks and dead ends
changed this situation, and during the last competition event,
no agent was able to clear all levels, and there was significant
difference in progress score between the best controller and
the runner-up. Therefore, all objectives can currently be seen
as fulfilled.

B. AI for platform games

It was a bit disappointing for the organisers (and no doubt
some of the competitors) to see the levels in the 2009
competition events yield so easily to the A*-based agents.
Would the whole problem of playing platform games be
solvable by a four decades old (and rather simple) search
algorithm? This seemed improbable, given the grip classic
platform games such as Super Mario Bros has held over
generations of players, and the skill differentiation among
even very experienced players of such games.

The addition of more complex features to the levels for
the 2010 competition events showed that this was indeed not
the case. In order to handle dead ends, the agent needs to
identify when it is stuck, decide to retrace its steps, decide for
how long to do this before attempting a new path, and finally
remember which path was the wrong one so as not to take it
again. It could be argued that this is algorithmically trivial,
but the challenge is for the agent to perform these relatively
high-level actions integrated with the low-level actions of
avoiding enemies, navigating gaps and platforms etc. From
a robotics perspective, the challenge could be formulated as
that of carrying out plans in a complex environment using an
embodied agent, even if the embodiment is within a virtual
world. This AI problem seems to call for a hierarchical
solution, so it is not surprising that the winner of the 2010

championship (due to Bojarski and Congdon) employs a two-
level solution, where rules specify higher-level plans that are
executed by a lower-level mechanism.

While there are still advances to be made given the
current set of game elements and level generator features
and settings, there is scope for increasing and diversifying
the challenge further by integrating more level elements from
existing platform games (including Super Mario Bros). Some
examples are moving platforms, which would require the
player to model the system of platforms and await the right
moment to start a sequence of jumps, and sequences of
switches and doors (or keys and locks), which would require
the player to plan in which order to press various buttons (or
pick up keys) in order to proceed.

C. Using the Mario AI benchmark for your own research
and teaching

The Mario AI Competition web page, complete with the
competition software, rules and all submitted controllers,
will remain in place for the foreseeable future. We actively
encourage use of the rules and software for your own events
and courses. The Mario AI benchmark software is used
for class projects in a number of AI courses around the
world;either for a well-defined exercises or as an environ-
ments that students can use for implementing a term project.
It is unrealistic to demand that a student produce a controller
that competes with the current best approaches during a
simple course project — creating a world-class Mario AI
player using some interesting technique would rather be
suitable as a half-year advanced project, such as a masters
thesis.

When organising courses or local competitions using the
Mario AI Benchmark, it is worth remembering that the
existing Google Group and its archive can serve as a useful
technical resource, that the result tables in this paper pro-
vide a useful point of reference, and that existing sample
controllers help students get started quickly. We appreciate
if students are encouraged to submit their agents to the next
iteration of the Mario AI Championship.

The benchmark software can also be used as a tool for
your own research. In addition to the several papers cited
referenced above, which describe various submitted entries
to the competition, a number of papers have been published
by various authors where the main goal was not to win the
Mario AI Championship — the following is a sample:

Handa [37] investigated techniques for reduction of the
dimensionality of the input space, so as to make the problem
tractable for standard reinforcement learning algorithms. It



was shown that such algorithms could perform well on the
problem when the right sort of dimensionality reduction was
used. In a similar vein, Ross and Bagnell try to reduce
the dimensionality of the input space, but for the purpose
of imitation learning [38]. Karakovskiy [22] applied mul-
tidimensional recurrent neural networks the problem, and
was able to train controllers that played particular levels
very well using this novel neural network architecture, and
which generalised better to unseen levels than other neural
network architectures. Shaker et al. [39] recorded video of
players’ faces while playing the Mario AI benchmark (con-
trolling the character manually) and used machine learning
techniques to predict player behaviour and experience from
facial expressions. In addition, a number of authors have
attempted to predict player experience from playing style and
to generate entertaining/interesting levels automatically, but
these publications relate more to the level generation track
of the championship [30].

VII. CONCLUSIONS

This paper has described the Mario AI Benchmark, and
the various competitions that have been held based on it
in 2009 and 2010 (except the level generation and Turing
test competitions, which are described elsewhere). As the
paper does not include competition participants as authors,
the individual entries have not been described in detail
(though we have referenced publications describing them
where available). Instead, we have focused on describing
the technology behind the benchmark, the organisation of
the competitions, and the rationale behind both. We have
also sought to draw general conclusions about competition
organisation and about the AI problem of playing platform
games.

ACKNOWLEDGEMENTS

Much of this work was performed while both authors
were with IDSIA, Galleria 2, 6928 Manno-Lugano, Switzer-
land, working under the direction of Jürgen Schmidhuber.
JT was during this time supported by the Swiss Research
Agency (SNF), grant number 200021-113364/1. Part of the
work was supported by the Danish Research Agency (FTP),
grant number 274-09-0083 (AGameComIn). Thanks to Jan
Koutnik, Noor Shaker, Georgios Yannakakis and all of the
participants in the competitions and discussions (both online
in the marioai Google group and offline in conferences) for
useful suggestions and feedback.

This paper incorporates some material from an earlier con-
ference paper reporting on a first version of the benchmark
and initial learning experiments [15] and another conference
paper reporting on the results of the 2009 edition of the
competition [27]. Compared to those papers, the current
paper contains updated and technically deeper information on
the benchmark, results from the 2010 competitions, descrip-
tions of new entrants and tracks, and additional and updated
discussion. More details about several of the technical aspects
can be found in the first author’s Master’s thesis [22].

REFERENCES

[1] A. Turing, “Computing machinery and intelligence,” Mind, 1950.
[2] M. Newborn, Kasparov Vs. Deep Blue: Computer Chess Comes of

Age. Springer, 1997.
[3] A. Samuel, “Some studies in machine learning using the game of

checkers,” IBM Journal, vol. 3, no. 3, pp. 210–229, 1959.
[4] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller,

R. Lake, P. Lu, and S. Sutphen, “Checkers is solved,” Science, vol.
317, 2007.

[5] B. Sheppard, “World-championship-caliber scrabble,” Artificial Intel-
ligence, 2002.

[6] C.-S. Lee, M.-H. Wang, G. Chaslot, J.-B. Hoock, A. Rimmel, O. Tey-
taud, S. R. Tsai, S.-C. Hsu, and T.-P. Hang, “The computational
intelligence of mogo revealed in taiwan’s computer go tournaments,”
IEEE Transactions on Computational Intelligence and AI in Games,
2009.

[7] S. Lucas, “Evolving a neural network location evaluator to play ms.
pac-man,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games, 2005, pp. 203–210.

[8] S. M. Lucas, “Cellz: A simple dynamic game for testing evolutionary
algorithms,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2004.

[9] G. B. Parker and M. Parker, “Evolving parameters for xpilot combat
agents,” in Proceedings of The IEEE Symposium on Computational
Intelligence and Games (CIG), 2007.

[10] J. Togelius, S. M. Lucas, H. Duc Thang, J. M. Garibaldi,
T. Nakashima, C. H. Tan, I. Elhanany, S. Berant, P. Hingston,
R. M. MacCallum, T. Haferlach, A. Gowrisankar, and P. Burrow,
“The 2007 ieee cec simulated car racing competition,” Genetic
Programming and Evolvable Machines, 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10710-008-9063-0

[11] P. Hingston, “A turing test for computer game bots,” IEEE Trans.
Comput. Intellig. and AI in Games, vol. 1, no. 3, pp. 169–186, 2009.

[12] ——, “A new design for a turing test for bots,” in Proceedings of the
IEEE Conference on Computational Intelligence and Games, 2010.

[13] D. Loiacono, P. L. Lanzi, J. Togelius, E. Onieva, D. A. Pelta, M. V.
Butz, T. D. Lönneker, L. Cardamone, D. Perez, Y. Saez, M. Preuss,
and J. Quadflieg, “The 2009 simulated car racing championship,” IEEE
Transactions on Computational Intelligence and AI in Games, 2010.

[14] B. Weber, P. Mawhorter, M. Mateas, and A. Jhala, “Reactive planning
idioms for multi-scale game ai,” in Proceedings of the IEEE Con-
ference on Computational Intelligence and Games (CIG), 2010, pp.
115–122.

[15] J. Togelius, S. Karakovskiy, J. Koutnik, and J. Schmidhuber, “Super
mario evolution,” in Proceedings of IEEE Symposium on Computa-
tional Intelligence and Games (CIG), 2009.

[16] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proceedings of the Artificial Intelligence and Interactive
Digital Entertainment International Conference (AIIDE), 2006.

[17] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proceedings of the 2010 International Conference
on the Foundations of Digital Games, 2010.

[18] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph:
A model for dynamic level generation,” in Proceedings of Artificial
Intelligence and Interactive Digital Entertainment, 2010.

[19] C. Pedersen, J. Togelius, and G. Yannakakis, “Modeling player expe-
rience in super mario bros,” in Proceedings of IEEE Symposium on
Computational Intelligence and Games (CIG), 2009.

[20] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling Player Ex-
perience for Content Creation,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 1, pp. 54–67, 2010.

[21] N. Shaker, J. Togelius, and G. N. Yannakakis, “Towards Automatic
Personalized Content Generation for Platform Games,” in Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE). AAAI Press, October 2010.

[22] S. Karakovskiy, “Solving the mario ai benchmark with multidi-
mensional recurrent neural networks,” Master’s thesis, University of
Lugano, 2010.

[23] T. Simonite, “Race is on to evolve the ultimate mario,” New Scientist,
2009.

[24] E. Bland, “Ai tested on “super mario” video game,” Discovery Channel
News Service, 2009.

[25] D. Leloup, “Quand c’est l’ordinateur qui joue a mario,” Le Monde,
2009.



[26] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[27] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 Mario
AI Competition,” in Evolutionary Computation (CEC), 2010 IEEE
Congress on. IEEE, 2010, pp. 1–8.

[28] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” in Proceedings of EvoApplica-
tions, vol. 6024. Springer LNCS, 2010.

[29] G. N. Yannakakis and J. Togelius, “Experience-driven procedural
content generation,” IEEE Transactions on Affective Computing, vol.
in press, 2011.

[30] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, and R. Baumgarten, “The 2010 Mario AI championship:
Level generation track,” IEEE Transactions on Computational Intelli-
gence and AI in Games, 2011.

[31] J. Togelius, G. N. Yannakakis, N. Shaker, and S. Karakovskiy, “As-
sessing believability,” in Believable Bots, P. Hingston, Ed. Springer,
2012.

[32] S. Bojarski and C. B. Congdon, “Realm: A rule-based evolutionary
computation agent that learns to play mario,” in Proceedings of the
IEEE Conference on Computational Intelligence and Games, 2010,
pp. 83–90.

[33] D. Perez, M. Nicolau, M. O’Neill, and A. Brabazon, “Evolving
behaviour trees for the mario ai competition using grammatical evo-
lution,” in Proceedings of EvoApps, 2010, pp. 123–132.

[34] ——, “Reactiveness and navigation in computer games: Different
needs, different approaches,” in Proceedings of the IEEE Conference
on Computational Intelligence and Games, 2011.

[35] E. R. Speed, “Evolving a mario agent using cuckoo search and softmax
heuristics,” in Proceedings of the IEEE Consumer Electronics Society’s
Games Innovations Conference (ICE-GIC), 2010, pp. 1–7.

[36] X.-S. Yang and S. Deb, “Cuckoo seach via lvy flights,” in Proceedings
of World Congress on Nature and Biologically Inspired Computing
(NaBIC), 2009, pp. 210–214.

[37] H. Handa, “Dimensionality reduction of scene and enemy information
in mario,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2011.

[38] S. Ross and J. A. Bagnell, “Efficient reductions for imitation learning,”
in International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

[39] N. Shaker, S. Asteriadis, G. Yannakakis, and K. Karpouzis, “A game-
based corpus for analysing the interplay between game context and
player experience,” in Proceedings of International Conference on
Affective Computing and Intelligent Interaction, 2011.

Sergey Karakovskiy is a senior researcher (Ph.D.
pending) at Saint-Petersburg State University. He
received a 5-year diploma (2008) in Applied Math-
ematics and Engineering from Saint-Petersburg
State University and M.Sc. degree in Informatics
major in Intelligent Systems from University of
Lugano in 2010. His research interests include
artificial intelligence, computational intelligence in
games, neuroevolution, theory of interestingness
and artificial curiosity, reinforcement learning and
brain-computer interface; he has published several

papers on these topics in conferences and journals. He is a co-organizer of
the Mario AI Championship.

Julian Togelius is an Assistant Professor at the
IT University of Copenhagen (ITU). He received
a BA in Philosophy from Lund University in 2002,
an MSc in Evolutionary and Adaptive Systems
from University of Sussex in 2003 and a PhD
in Computer Science from University of Essex in
2007. Before joining the ITU in 2009 he was a
postdoctoral researcher at IDSIA in Lugano.

His research interests include applications of
computational intelligence in games, procedural
content generation, automatic game design, evo-

lutionary computation and reinforcement learning; he has around 60 papers
in journals and conferences about these topics. He is an Associate Editor of
IEEE TCIAIG and the current chair of the IEEE CIS Technical Committee
on Games. He initiated and co-organised both the Simulated Car Racing
Competition and the Mario AI Championship.


