
Script- and Cluster-based UCT for StarCraft
Niels Justesen

IT University of Copenhagen
Copenhagen, Denmark

noju@itu.dk

Bálint Tillman
IT University of Copenhagen

Copenhagen, Denmark
btil@itu.dk

Julian Togelius
IT University of Copenhagen

Copenhagen, Denmark
julian.togelius@gmail.com

Sebastian Risi
IT University of Copenhagen

Copenhagen, Denmark
sebr@itu.dk

Abstract—Monte Carlo methods have recently shown promise
in real-time strategy (RTS) games, which are challenging because
of their fast pace with simultaneous moves and massive branching
factors. This paper presents two extensions to the Monte Carlo
method UCT Considering Durations (UCTCD) for finding optimal
sequences of actions for units engaged in combat in the RTS
game StarCraft. The first extension is a script-based approach
inspired by Portfolio Greedy Search and searches for sequences
of scripts instead of actions. The second extension is a cluster-
based approach as it assigns scripts to clusters of units based
on their type and position. The presented results demonstrate
that both the script-based and cluster-based UCTCD extensions
outperform the original UCTCD with a winning percentage
of 100% for battles with 32 units or more. Additionally, unit
clustering is shown to give some improvement in large scenarios
while it is less effective in small combats. The algorithms were
tested in our StarCraft combat simulator called JarCraft, a
complete Java translation of the original C++ package SparCraft,
made in hopes of making this research area more accessible.

I. INTRODUCTION

Controlling units in real-time strategy (RTS) games is a
challenging problem in AI research as these games usually
are characterized by massive branching factors, simultane-
ous moves, partial observability, open-endedness and a short
amount of time to decide what moves to perform [1], [2].
The RTS game StarCraft1 is the most popular test bed for AI
research in this genre [1]. The challenge in StarCraft combats
is to find the optimal sequence of actions for a group of units
engaged in combat. However, the original AI in StarCraft as
well as state of the art bots from StarCraft AI competitions
appear to control units with simple scripts alone without
implementing any learning techniques or search methods.

The UCT (Upper Confidence bound applied to Trees) is
a popular tree-search algorithm in the Monte Carlo Tree-
Search family. The algorithm is used for finding optimal
decisions by using random sampling. Churchill and Buro [3]
have successfully applied a variation of the UCT algorithm
called UCT Considering Durations (UCTCD) to combats in
StarCraft. The branching factor of the UCTCD is however
extremely large as each unit under control can choose from
multiple possible actions. The UCTCD was shown to be
beaten by a greedy search algorithm, called Portfolio Greedy
Search [3], which searches for sequences of scripts instead of
individual unit actions. The final sequence of scripts is used
to assign actions to units. In this way, the search space can

1Copyright (c) Blizzard Entertainment 1998

be decreased significantly as long as the number of possible
scripts is kept low.

This paper introduces two UCTCD extensions that are
aimed to decrease the branching factor, potentially allowing
improved control of larger groups of units in StarCraft. First,
a novel script based extension to UCTCD is introduced. The
script-based extension searches for sequences of scripts instead
of unit actions in a similar way as the Portfolio Greedy Search
[3]. Next, the script-based UCTCD is extended further with
a cluster-based approach. The idea behind the cluster-based
approach is that it is likely to be more efficient to assign
actions (or scripts) to groups of units instead of individual
units. The insight behind the clustering is that units of the
same type and similar position in combat should likely execute
similar actions and can therefore be grouped together.

The main conclusion is that a script-based approach can be
applied successfully to StarCraft and outperforms the standard
UCTCD algorithm. Additionally, the presented results show
that clustering can give small improvements in large scenarios
while being less effective in small combats. In addition to these
two extensions we translated an existing StarCraft combat
simulator called SparCraft [4] into the Java programming
language to make this research area more accessible.

II. BACKGROUND

A. StarCraft

StarCraft is a Real Time Strategy (RTS) video game released
by Blizzard Entertainment in 1998 and has sold millions of
copies worldwide. In StarCraft each player controls one of
three different races; Terran, Protoss or Zerg, each with their
own strengths and weaknesses. The goal of the game is to
eliminate the enemy base and in order to do so each player
must gather resources, build buildings and produce units.

RTS games such as StarCraft offer challenging AI control
problems, as they are usually characterized by uncertainty,
massive branching factors, simultaneous moves and open-
endedness [2]. In StarCraft each player takes turn simul-
taneously, can perform actions in each frame of the game
(StarCraft has 24 frames per second) and the game is partially
observable [1]. Units in StarCraft have an attack and move-
ment cooldown, which prevents them from taking an action for
a certain amount of time after they have moved or attacked.
Due to cooldown, actions can not be assigned to every unit
in each frame and in some frames it is not possible to assign

actions at all. Units that can be assigned actions in a frame
will be referred to as being ready.

In StarCraft each player can have up to 200 units in a game
including workers that gather resources. Additionally, some
combat units are so powerful that they count as several units.
Churchill and Buro [3] estimate that the largest armies in a
typical game of StarCraft consist of roughly 50 units.

B. AI scripts for StarCraft

The simplest way to control units in StarCraft is script-
based without implementing any search or learning techniques.
A script normally iterates over every unit under control and
based on its overall strategy analyzes nearby enemy units,
decides which unit to attack and determines the unit’s move-
ment direction. Both retail RTS game’s AI and bots in AI
competitions use scripted unit behaviors [3]. Following [3],
two scripts named No-Overkill-Attack-Value (NOK-AV) and
Kiter are employed by the introduced search algorithms and
also serve as the baseline controllers in this paper. These two
scripts complement each other well, with NOK-AV imple-
menting a more aggressive behavior and Kiter following a
more defensive strategy:

• The No-OverKill-Attack-Value script (NOK-AV) [3] as-
signs commands to attack the enemy unit in range with
the highest dpf(u)

hp(u) , where dpf(u) is the damage per frame
the unit is able to deal and hp(u) is the health points of
the unit. NOK-AV additionally makes sure that units do
not attack an enemy unit, which already will be dealt
lethal damage in the current turn. If enemy units are not
in range NOK-AV will command units to move toward
the closest enemy unit.

• The Kiter script [3] is more defensive as it will command
units to move away from enemy units if they are unable
to attack in the given frame. If the units are able to attack
they will attack the closest unit.

C. MCTS and UCT

Monte Carlo Tree-Search (MCTS) is a method for finding
optimal decisions by using random sampling [5]. The algo-
rithm builds up a tree where each node represents a game
state. For each possible action in a particular game state a
node can be expanded, wherein the new child nodes represent
the resulting states. MCTS has the following four steps that
are executed sequentially until its time budget is reached:

1) Selection: A tree policy is applied to the tree to re-
cursively select the most urgent child node until an
expandable and non-terminal node is reached.

2) Expansion: The selected node is expanded either fully
or partially.

3) Playout: A game is played from the selected node to a
terminal state using the default policy. Playouts are also
called rollouts or simulations.

4) Backpropagation: The outcome of the playout is back-
propagated to the root node where each node has its
value and visit count updated.

The default policy can be a random playout, in which
each player simply performs random actions. However, better
results can often be achieved by adding domain knowledge
[2]. The most popular algorithm in the MCTS family is the
Upper Confidence bounds applied to Trees (UCT) algorithm
[6] which employs the UCB1 formula [7] to balance the search
between exploitation and exploration.

UCB1 = Xj + Cp

√
2 lnn

nj
,

where n is the visit count of the current node, nj is the visit
count of the child j, Cp is a constant determining the amount
of exploration versus exploitation and Xj is the normalized
value of child j [7]. In the selection step the child with the
highest UCB1 value is the most urgent and will be selected
over its siblings.

D. UCT for StarCraft

Controlling units in StarCraft is a multi-agent problem,
wherein each player can assign several commands each frame.
Commands will be denoted as actions and are e.g. <Move unit
a to position p > or <Unit a attack unit b >. In this context,
the term move denote a vector of actions. In StarCraft players
do not take turns but can make moves simultaneously, which
is not supported by the original UCT algorithm. Additionally,
the cooldown restriction introduces more challenging durative
unit actions. In other words, only some units can be assigned
actions during a frame while other units can be assigned
actions in the next frame.

Churchill and Buro [3] introduced a variation of the UCT al-
gorithm which handles simultaneous and durative actions. The
algorithm is called UCT Considering Durations (UCTCD) and
was able to beat the NOK-AV script in 100% of their tested
scenarios. UCTCD employs move ordering, which affects the
order of moves to be generated by the search in the expansion
phase. First, it assigns a move, which is generated by the NOK-
AV script and then a move generated by the Kiter script. When
we refer to a move generated by a script we mean the sequence
of actions which the script would have produced. The two
script moves are followed by moves generated by selecting
random unit actions. This is however not completely true as
the possible actions are ordered so the generated moves will
contain more attack actions. Because the NOK-AV and Kiter
scripts generate the first two moves, it draws on the advantages
of using scripts. It is however only the first two moves that
are generated by scripts, while the rest are combinations of
random actions.

However, a problem with UCTCD is that it does not explore
the search space very well for larger combats. If a player
has ten ready units in a frame and each unit can move in
eight directions the number of possible moves is 810. The
number is even higher when also considering attack actions for
ranged units. An approach to reduce the branching factor was
introduced with the MCPlan algorithm by Chung, Buro and
Schaeffer [8]. MCPlan can use an arbitrary level of abstraction

such as scripts instead of actions and is thus similar to what we
propose in this paper. MCPlan has however only been applied
to Capture the Flag scenarios and it does not implement the
MCTS method. Thus it differs from UCTCD as it simply runs
a single simulation for each generated move and selects the
best of these. In this paper we will investigate an exclusively
script-based variation of UCTCD that is able to assign a
specific script to some units while assigning different ones to
other units. In the original UCTCD the script generated moves
can only assign a script that will be collectively employed by
all units.

E. Portfolio Greedy Search (PGS)

A novel hill climbing greedy search algorithm called Port-
folio Greedy Search (PGS) was also introduced by Churchill
and Buro [3]. This algorithm also performs rollouts to evaluate
moves but does not build a search tree and is not part of the
MCTS family. PGS is given a game state s, a set of scripts
(the portfolio) P , a player to optimize p and a default script
D. The algorithm returns a move similar to the UCTCD. PGS
can be summarized with the following sequence:

1) Generate seeds: Create one vector of scripts of length l
for each script in P and fill it with the respective script
where l is equal to the number units controlled by p in
s. Perform one rollout for each vector of scripts where
the enemy is using D. Select the best script as the seed
sp. Compute enemy seed se in the same way but against
sp.

2) Improve self : For each script in sp swap the current
script with each script in P sequentially and do a rollout.
Pick the script that increased the value the most for p.
During rollouts use sp and se as scripts for units.

3) Improve enemy: Improve se similar to step 2 but to
minimize the value for p. If more time is available go
to step 2 else return sp.

PGS was shown to beat UCTCD in combat sizes of 16
units and more and has the advantage of applying script-based
behaviors to a search. While this paper applies the clustering
approach to the UCTCD algorithm it could also be applied to
PGS methods.

F. Clustering

A cluster is a set of similar objects that are dissimilar
to objects in other clusters [9]. In this paper we introduce
an extension to the UCTCD algorithm that implements unit
clustering as assigning actions to groups instead of individual
units. The hope is that such a cluster-based system should
perform well in large combats. Balla and Fern applied UCT
with groups of units to Wargus, an open source WarCraft 2
Clone, where each group were able to perform two types
of high level actions [10]. The two types of actions were
Attack(e) where e is an enemy group to attack and Join(G)
where G is a friendly group to join. This method groups units
in the beginning of the scenario and only changes them with a
Join(G) action. We are more interested in exploring continuous
clustering of units.

A popular clustering algorithm is K-Means, which is often
used for data analysis to find k clusters in a data set. The
algorithm initially selects k random mean points and assigns
all data points to the closest of the mean points. The algorithm
then iteratively calculates the new mean point of each cluster
and reassigns data points to the closest. When the mean points
no longer change the clustering is done.

Hierarchical clustering approaches [11] on the other hand
build a hierarchy of clusters in the form of a tree with a specific
height assigned to each node. When the tree is built any
number of clusters (lower or equal to the number of objects)
can be extracted by cutting the tree at a certain height. While
hierarchical clustering is more versatile, K-Means has better
performance with large data sets [9]. In this paper we test
the performance of a hierarchical clustering method called
UPGMA (Unweighted Pair Group Method using arithmetic
Averages) [12] and K-Means to determine their applicability
to unit clustering in StarCraft.

III. JARCRAFT

JarCraft is an open-source StarCraft combat simulator we
implemented in Java. The project is a faithful translation of
the original C++ project called SparCraft, which is written
and managed by Churchill [3] [4] but has some minor im-
plementation differences such as the choice of data structures.
SparCraft can be imported into existing StarCraft AIs using the
BWAPI, a programming interface to StarCraft BroodWar [13].
Thus it can be used by various search algorithms to improve
the action selection in combats. By building on JNIBWAPI, a
JNI interface to BWAPI [14], this is also possible with an AI
written in JAVA using JarCraft.

The motivation for creating JarCraft was to have a StarCraft
combat simulator for the Java environment. Our intention is to
keep the code-base close to SparCraft to enable students and
researchers to choose freely between these tools depending on
their programming language preferences.

Similar to SparCraft, it is also possible in JarCraft to setup
test scenarios and observe the behaviors of different algorithms
with a graphical interface, which includes statistics of the
current state of the game. However, certain game features are
not implemented in JarCraft or are simplified, enabling the
simulator to perform efficiently. JarCraft does not include fog-
of-war, highlands, unit collisions and some special abilities.
Additionally, units can only move in four directions, while
StarCraft supports diagonal moves as well. Experiments in this
paper compare algorithms in combats scenarios in JarCraft and
not in the actual StarCraft game.

IV. APPROACH

This section first introduces the script-based UCTCD and
shows how it can be applied to StarCraft. Section IV-B then
focuses on the cluster-based UCTCD extension, detailing how
efficient unit clustering can be realized.

Fig. 1: The script-based UCTCD assigns scripts to ready units
only. Ready units are marked with ’R’.

A. Script-based UCTCD

Group nodes can be employed in UCT algorithms for games
with high branching factors and have shown to be successful
in Go as well [15]. A group node represents a group of
similar moves and thus decreases the branching factor. The
branching factor in real-time multi-agent environments, such
as in StarCraft, can however be much larger than in Go
because of the many possible combinations of actions. Instead
of searching for vectors of actions we have altered the UCTCD
to search for vectors of scripts similar to the Portfolio Greedy
Search. Each script is then used to generate the action of the
unit it is pointing to.

The idea of assigning scripts to units is motivated by the
advantages of similar approaches in Portfolio Greedy Search
and in the move ordering of UCTCD. Move ordering can
also be applied to our script-based UCTCD by first generating
script vectors only containing one type of script for each unit
followed by random combinations of scripts. For example, if
we are to generate four moves with the script-based UCTCD
for five units using the scripts {NOK-AV, Kiter} with move
ordering it could result in the following sequences:

1) {NOK-AV, NOK-AV, NOK-AV, NOK-AV, NOK-AV}
2) {Kiter, Kiter, Kiter, Kiter, Kiter}
3) {NOK-AV, Kiter, NOK-AV, NOK-AV, Kiter}
4) {Kiter, Kiter, Kiter, NOK-AV, NOK-AV}
The script-based UCTCD differs significantly from the

original UCTCD as it exclusively searches for sequences of
scripts while the UCTCD searches for sequences of actions
and only incorporates scripts briefly in the move ordering. A
translation function was implemented that, given a gamestate
and a set of scripts with one script for each unit, returns a set
of actions. This translation function is used when updating the
gamestate during the tree traversals. The script-based UCTCD
can significantly reduce the branching factor if only a few
scripts are employed. If a player has 10 controllable units in a
frame and the script-based UCTCD has n scripts the number
of possible moves is n10 compared to the branching factor of
UCTCD which is 810 if only movement actions are considered.

Fig. 2: The cluster-based UCTCD assigns scripts to clusters of
units. Ready units are marked with ’R’. Notice how units in a
cluster share the same script. In this example scripts are also
assigned to clusters that contain non-ready units. In this paper
we compare clustering with and without discarding clusters
that do not contain ready units.

B. Cluster-based UCTCD

A cluster-based variation of the UCTCD algorithm is imple-
mented that first clusters all units into groups. The algorithm
first tries to find vectors of scripts similar to the script-based
UCTCD but assigns one script to each cluster that will act
collectively using the assigned script. Unit clustering must
be computationally efficient as a high computation time for
clustering will leave less time for searching.

However, clustering the player’s units can result in more
clusters than the number of ready units in a frame, thereby
increasing the search tree branching factor. For example, notice
how clusters with non-ready units are assigned actions in
Figure 2. Therefore this paper compares clustering with and
without discarding clusters that do not contain any ready units.

A potential strategy to make clustering more efficient is to
ensure that clusters do not contain units of different types,
e.g. clusters will not contain both Protoss Zealots and Protoss
Dragoons. As different types of units play different roles in
combats this may also lead to better UCTCD generated moves.
K-Means and UPGMA can meet this requirement by adding a
high value to the distance between two units of different type.

Another issue to consider when choosing between different
clustering algorithms is the way the number of clusters is
determined. K-Means requires a predetermined number of
clusters, while the tree produced by UPGMA can be analyzed
further to determine how many splits to perform. We have
implemented a dynamic variation of K-Means that determines
the number of clusters based on a maximum allowed distance
within each cluster mean (see Algorithm 1). The algorithm
first splits units by type and then recursively splits each group
in two using K-Means until the maximum distance to the mean
is less or equal to a specified distance d.

Enemy units can also be clustered when they are assigned
moves during the search, but best results were achieved by
considering the enemy units as one cluster controlled by the

same script.

Algorithm 1 Dynamic K-Means clustering

1: procedure CLUSTER(Unit[] U , Integer d)
2: Unit[][] K = ∅ . Clusters to keep
3: Unit[][] C = SplitByType(U)
4: for Unit[] c in C do
5: K.addAll(Split(c, d))
6: return K
7:
8: procedure SPLIT(Unit[] c, Integer d)
9: Unit[][] K = ∅

10: if maxDistanceToMean(c) > d then
11: Unit[][] S = KMeans(c, 2) . Split cluster in 2
12: K.addAll(Split(S[0], d))
13: K.addAll(Split(S[1], d))
14: else
15: K.add(c)
16: return K

V. EXPERIMENTS

A. Test scenarios

The algorithms are evaluated and compared based on a
test scenario created in JarCraft with a map size of 25×20
tiles with a tile size of 32 pixels. The scenario takes one
parameter n determining the number of units on each side.
Each player in the scenario controls n

2 Protoss Zealots (close
combat unit) and n

2 Protoss Dragoons (ranged combat unit).
A realistic battle setup is achieved by first lining up the
units vertically by unit type and then changing their position
slightly in each direction (randomly choosen between -100
and 100 pixels). Algorithms are tested in this scenario with
n = 4, 8, 16, 32, 48, 64, 80, 96, 112, 128, 144.

B. Configurations and setup

All experiments are performed on an Intel(R) Core(TM) i7-
3517U CPU @ 1.90GHz running Windows 8.1 with 8 GB of
DDR3 1600MHz RAM available. All implemented algorithms
are single threaded.

• Configurations for all UCT algorithms
– Time limit: 40 ms
– Max. children: 20
– Evaluation: NOK-AV vs. NOK-AV playout
– Final move selection: Most valuable
– Exploration constant: 1.6

• UCTCD
– Child generation: All-at-leaf

• Script-based UCTCD
– Child generation: One-at-leaf
– Scripts used: {NOK-AV, Kiter}

• Cluster-based UCTCD (Ready)
– Child generation: One-at-leaf
– Scripts used: {NOK-AV, Kiter}

– Cluster max-distance-to-mean: 30 pixels
– Opponent clustering: No
– Units to cluster: Only ready units

• Cluster-based UCTCD (All)
– Child generation: One-at-leaf
– Scripts used: {NOK-AV, Kiter}
– Cluster max-distance-to-mean: 30 pixels
– Opponent clustering: No
– Units to cluster: All

In the All-at-leaf child generation all children of a leaf node
are expanded during the expansion phase, while in One-at-leaf
only one child is expanded per visit. Following Churchill and
Buro [3], the maximum number of children allowed per node
was set to 20. The maximum distance to the cluster mean is
set to 30 pixels. While this value may seem low it is important
to note that simulations in JarCraft currently do not support
unit collision, therefore units often stand on top of each other.
In games with collision detection this value will likely need
to be increased.

C. RandomScript

An implementation of a simple controller, which randomly
assigns the NOK-AV script or the Kiter script to units, is
implemented as a baseline controller to compare against the
script-based UCTCD and cluster-based UCTCD.

VI. RESULTS

This section first presents results on the performance of
the different clustering methods, tested under the real-time
constraints of StarCraft. Next, the sequence lengths of the
different algorithms are investigated and finally each of the
algorithms are tested against each other in the described test
scenario.

A. Clustering performance

The running times for UPGMA, K-Means and the dynamic
K-Means are determined in the test scenario (Figure 4).
UPGMA and K-Means are set to find eight clusters, which
only affects the running time of K-Means.

When analyzing the different running times, an important
factor is the time budget available in each frame, which is
41.6 ms (24 frames per second). While the running time
for UPGMA is increasing drastically when the number of
units increased, it is still reasonably fast for the usual army
sizes in StarCraft. For army sizes of around 140 UPGMA
begins to be unsuitable for time requirements of StarCraft
as it will leave too little time for the search. As we are
interested in a scalable solution UPGMA was not tested with
our cluster-based UCTCDs. K-Means is however much better
at handling large armies and is able to cluster hundreds of
units within a few milliseconds. The dynamic K-Means and
K-Means have almost identical running times.

The move length l is the number of units or clusters, which
the search algorithm needs to assign actions or scripts to.
Table I shows that the cluster-based UCTCD significantly

Fig. 3: Dynamic K-Means Implementation. (a) First, units are split into clusters by type, (b) then clusters which have units
too far from the cluster mean, shown by the red striped line, are identified and (c) split in two using K-Means until all units
are close enough to the cluster mean. The white crosses mark the cluster means.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140 160 180 200

m
s
.

n

UPGMA
Dynamic K-Means
K-Means

Fig. 4: The average running times for UPGMA, K-Means and
the dynamic K-Means with n units (n2 Protoss Zealots and n

2
Protoss Dragoons) in 100 runs with a random setup (described
in Section V-A). Error bars (only shown for UPGMA) show
standard deviation.

n = 16 n = 64 n = 144
UCTCD l Dev l Dev l Dev
Script-based 2.24 1.99 5.04 6.75 7.6 13.21
CB (Ready) 1.98 1.22 3.43 3.29 6.18 6.65
CB (All) 6.17 1.70 11.56 6.25 17.40 10.24

TABLE I: Shows move lengths l for script- and cluster-based
UCTCDs during a complete game against NOK-AV with n
units with the standard deviation. CB is short for Cluster-
based.

reduces the average l if only ready units are clustered but
is increased if all units are clustered. Furthermore, the high
standard deviation for the script-based UCTCD indicates that
the number of ready units in some frames is very high which
increases the branching factor in the search in these frames.
The results also show that l is higher when clustering all
units compared to not applying clustering. The reason for

this difference is the fact that while some frames only have a
few number of ready units, the cluster-based UCTCD assigns
actions to all clusters regardless of this property (e.i. the
number of clusters is sometimes larger than the total number
of ready units). As both the script-based and cluster-based
UCTCDs only use two scripts the branching factor is 2l.

B. Comparison with NOK-AV

The UCTCD algorithm was able to win 100% of the games
in all combat sizes against the NOK-AV script (Figure 5).
Similar results were reported by Churchill and Buro [3].
However, the script and cluster-based UCTCDs performed
worse in very small combats, loosing a few games. In games
with n ≥ 32 all the algorithms won 100% of the time. The
RandomScript was also tested but only won 5.2% of the games
against NOK-AV and was not tested further.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 8 16 32

W
in

n
in

g
 p

e
rc

e
n
ta

g
e

n

UCTCD
Script-based
Cluster-based-all
Cluster-based-ready

Fig. 5: The winning percentages of the different algorithms in
100 games for each combat size against the NOK-AV script
where n is the number of units on each side. Error bars show
95% confidence intervals for each experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 8 16 32

W
in

n
in

g
 p

e
rc

e
n
ta

g
e

n

Script-based
Cluster-based-all
Cluster-based-ready

Fig. 6: The winning percentages of the script- and cluster-
based UCTCDs in 100 games for each combat size against
UCTCD where n is the number of units on each side. Error
bars show 95% confidence intervals for each experiment.

C. Comparison with UCTCD

The script- and cluster-based UCTCDs were compared
against the original UCTCD and won 100% of the games
where n ≥ 32 (Figure 6). However, UCTCD showed the best
performance in very small combats of only four units. It is
also noticeable that the cluster-based UCTCDs perform worse
than the script-based UCTCD in small combats.

D. Cluster-based UCTCD vs. script-based UCTCD

The cluster-based UCTCDs were compared against the
script-based UCTCD to investigate the effect of using unit
clustering (Figure 7 and 8). The results do not show a clear
overall winner but the script-based UCTCD wins more games
if n ≤ 16 and the cluster-based UCTCD wins more games if
n ≥ 64. Additionally, the results indicate that the cluster-based
UCTCD that clusters all units wins more than the cluster-based
UCTCD that clusters ready units only.

VII. DISCUSSION AND FUTURE WORK

JarCraft was used as a test bed for the implemented al-
gorithms and was able to run and visualize abstract StarCraft
combats with hundreds of units per side. Additionally, it is able
to support rollouts for the UCTCD implementations. JarCraft
still requires further work and our intention is to keep working
on JarCraft to make this research area more accessible. The
source code can be accessed at [16].

The UCTCD algorithm by Churchill and Buro [3] was
implemented in JarCraft and was able to beat the NOK-AV
script in 100% of the tested scenarios. The implementation
is identical to the original C++ implementation [4] besides
differences in the final move selection. The original config-
uration is to select the move of the most visited node [3].
While this configuration was tried in initial experiments, it
resulted in all child nodes from the root having a visit count
of one if the number of iterations is below 20, therefore not

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 8 16 32 48 64 80 96 112 128 144

W
in

n
in

g
 p

e
rc

e
n
ta

g
e

n

Cluster-based-ready

Fig. 7: The winning percentages of the cluster-based UCTCD
(Ready) in 100 games for each combat size against the script-
based UCTCD where n is the number of units on each side.
Error bars show 95% confidence intervals for each experiment.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4 8 16 32 48 64 80 96 112 128 144

W
in

n
in

g
 p

e
rc

e
n
ta

g
e

n

Cluster-based-all

Fig. 8: The winning percentage of the cluster-based UCTCD
(All) in 100 games against the script-based UCTCD where
n is the number of units on each side. Error bars show 95%
confidence intervals for each experiment.

allowing the determination of the best next move. By selecting
the node with the highest value, the search also performs well
with more than 100 units. As this change was made to all the
UCTCDs, including the script- and cluster-based extensions,
they are still compared fairly. Depending on the number of
units in the game, the algorithms were usually able to make
between five and 100 iterations during the 40 ms.

The introduced script-based UCTCD was able to beat the
UCTCD in every combat with 32 units or more, while the
UCTCD was the best algorithm with four units. In fact with a
low amount of possible moves it is likely optimal to search the
moves directly instead of combinations of scripts. While, some
strategies are simply not considered when applying a script-
based approach, the chances for UCTCD to generate good
moves decreases when the number of units increases. Churchill

and Buro [3] showed that using scripts in Portfolio Greedy
Search instead of actions allows the algorithm to significantly
decrease the size of the search space. The results presented in
this paper demonstrate that this method can successfully be
applied to the UCT algorithm as well. In the future it will be
interesting to also apply these script-based approaches to other
games with very large branching factors. The algorithm seems
to be especially applicable in games with enormous numbers
of possible actions but with a set of known strategies.

While another initial goal of the presented investigation was
to also compare the script-based UCTCD with the Portfolio
Greedy Search, a complete PGS implementation that includes
the optimizations of the original C++ implementation was not
achieved to run with JarCraft. Thus a fair comparison could
not be made and remains an important goal for future work.

The presented results show that K-Means is well suited to
cluster units within the time requirements of StarCraft and
can also be adjusted to dynamically split a large number of
units into clusters. Additionally, tests with another popular
hierarchical clustering method called UPGMA, revealed that it
also meets the time requirements of StarCraft (e.g. clustering
up to 100 units in less than 2 ms). The clustering time does
however rise drastically as the number of units increase and
is thus not scalable.

An important insight is that the cluster-based UCTCD does
not perform well in small combats. Analyzing the clustering
during the game revealed that with few units the algorithm
often groups all units in one cluster, thereby making clever
maneuvering harder. The clustering method could possibly be
improved to have a lower limit on the number of clusters.
The cluster-based UCTCD improves in larger combats and
is able to beat UCTCD in combats with 32 or more units.
The presented results show that UCTCD with unit clustering
can be applied successfully to decrease the branching factor if
only ready units are considered. One key experiment presented
in this paper was testing the cluster-based UCTCD against
the script-based UCTCD. It is clear that the script-based
UCTCD is the best choice for small combats while the cluster-
based UCTCD wins slightly more games in larger combats.
Surprisingly, the cluster-based UCTCD performed best by
clustering all units instead of ready units only.

Further exploring clustering for UCT is an important next
step. Also applying it to simpler domains could allow us to
better understand its impact on the search and how it can and
should be configured to achieve best results.

VIII. CONCLUSION

In this paper we presented two extensions to the UCT
Considering Durations (UCTCD) algorithms and applied them
to unit control in StarCraft using the StarCraft combat simu-
lator JarCraft (a Java translation of the original C++ package
SparCraft). The first extension is script-based approach, as
it searches for sequences of scripts instead of unit actions.
The second extension is cluster-based as it also searches for
sequences of scripts but this time assigns them to clusters
of units instead of individual units. A K-Means clustering

approach was shown to be able to efficiently cluster a large set
of units and to automatically determine the number of clusters
in an army. Both the script- and cluster-based extensions were
able to beat the standard UCTCD in 100% of the tested
scenarios with 32 units or more. We believe that script-based
UCT can be applied successfully to other games with massive
branching factors as well. The cluster-based extension was
tested against the script-based extension and won only 20-
40% of the games in scenarios with fewer than 16 units while
the cluster-based extension is better in combats of 64 or more
units. We suggest that further investigation of the behavior of
cluster-based UCT is needed to understand its impact on the
search.

REFERENCES

[1] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and
M. Preuss, “A survey of real-time strategy game ai research and com-
petition in starcraft,” IEEE Transactions on Computational Intelligence
and AI in games (2013), pp. 293–311, 2013.

[2] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of monte carlo tree search methods,” Computational Intelligence
and AI in Games, IEEE Transactions on, vol. 4, no. 1, pp. 1–43, 2012.

[3] D. Churchill and M. Buro, “Portfolio greedy search and simulation for
large-scale combat in starcraft,” in Computational Intelligence in Games
(CIG), 2013 IEEE Conference on. IEEE, 2013, pp. 1–8.

[4] D. Churchill, “SparCraft,” https://code.google.com/p/sparcraft/, 2013,
Online – accessed 10-December-2013.

[5] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” in Computers and games. Springer, 2007, pp. 72–83.

[6] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
Machine Learning: ECML 2006. Springer, 2006, pp. 282–293.

[7] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[8] M. Chung, M. Buro, and J. Schaeffer, “Monte carlo planning in rts
games,” in CIG, 2005.

[9] O. A. Abbas, “Comparisons between data clustering algorithms.” Inter-
national Arab Journal of Information Technology (IAJIT), vol. 5, no. 3,
pp. 320–325, 2008.

[10] R.-K. Balla and A. Fern, “Uct for tactical assault planning in real-time
strategy games.” in IJCAI, 2009, pp. 40–45.

[11] R. Xu and I. Wunsch, D., “Survey of clustering algorithms,” Neural
Networks, IEEE Transactions on, vol. 16, no. 3, pp. 645–678, May 2005.

[12] Y. Loewenstein, E. Portugaly, M. Fromer, and M. Linial, “Efficient
algorithms for accurate hierarchical clustering of huge datasets: tackling
the entire protein space,” Bioinformatics, vol. 24, no. 13, pp. i41–i49,
2008.

[13] various, “BWAPI,” http://code.google.com/p/bwapi/, 2013, Online –
accessed 10-December-2013.

[14] ——, “JNIBWAPI,” http://code.google.com/p/jnibwapi/, 2013, Online –
accessed 10-December-2013.

[15] J.-T. Saito, M. H. M. Winands, J. W. H. M. Uiterwijk, and H. J. van den
Herik, “Grouping nodes for monte-carlo tree search,” in Computer
Games Workshop, 2007, pp. 276–283.

[16] B. Tillman, “JarCraft,” https://github.com/tbalint/JarCraft, 2014.

