Autoencoders for Level Generation, Repair, and Recognition

Rishabh Jain, Aaron Isaksen, Christoffer Holmgard, Julian Togelius

Tandon School of Engineering, New York University

Abstract

Autoencoders are neural networks for unsupervised learning
and dimensionality reduction which have recently been used
for generating and modeling images. In this paper we ar-
gue for the use of autoencoders in game content generation,
recognition and repair, and describe proof-of-concept imple-
mentations of autoencoders for these tasks for Super Mario
Bros levels. Concretely, we train autoencoders to reproduce
levels from the original Super Mario Bros game, and then use
these networks to discriminate generated levels from origi-
nal levels, and to generate new levels as transformation from
noise. We believe these methods will generalize to other types
of two-dimensional game content.

Introduction

Procedural Content Generation has been used in games
since the early 80’s. In recent years, it has also become
a topic of academic research (Togelius et al. 2011). The
generation of content by machines is a practical applica-
tion of exploratory computational creativity (Boden 2004;
Wiggins 2006) whereby a design space is explored for new
variations. Typically, human content is analyzed and a gener-
ator is created to generate content in a similar style.

Deep learning (Goodfellow, Bengio, and Courville 2016)
has been used for various creative purposes including the
recognition, generation, and transfer of visual style in relation
to images (Mordvintsev, Olah, and Tyka 2015; Johnson 2015).
Although trained on a subset of images, neural networks seem
particularly capable of generating novel content that was not
envisioned by the original content used to train the networks.
We aim to use similar techniques to generate new levels for a
2D platformer.

In this paper, we use autoencoders (Hinton and Salakhutdi-
nov 2006), a form of neural network, to generate levels, repair
level content, and classify level examples by style. In a nut-
shell, an autoencoder learns to output its own input after first
passing it through a channel (a neural layer) of much smaller
bandwidth (size) than the input and output. Of course, it is
impossible to learn a generic autoencoder that performs well
on any input. By the nature of the narrowing hidden layers,
we are forcing information to be lost. But well-performing
autoencoders can still be learned for specific datasets. They
can perform well because they have learned to encode and
reproduce the type of data that can be found in the particular

dataset they are trained on, to the extent of performing worse
on data that is substantially different from what it was trained
on. The autoencoder has implicitly encoded the regularities,
or “style” of the training data.

One way of viewing what an autoencoder does is in terms
of non-linear dimensionality reduction. Because one or more
hidden layers have a lower number of units than the input and
output, the number of the dimensions of the data needs to be
reduced in order to fit in this layer. Training the autoencoder
amounts to finding a way of doing this non-linear dimension-
ality reduction while losing as little information as possible,
relative to the training data. Unlike linear methods such
as Principal Component Analysis, the resulting non-linear
dimensionality reduction can model far more complicated
relationships.

Another way of viewing what an encoder does is that it
learns the style of the input data, and can then be used to
discriminate between data that adheres to the style of the
training data and data that diverges from that style. This can
be done because the reconstruction error of data from another
style would (in most cases) be higher. Trained autoencoders
can also be used to create new examples of the style they
are trained on. Once an autoencoder has been trained, one
can decide to use only the “encoder” part (the connections
from the input to the hidden layer) or only the “decoder”
part (connections from the hidden layer to the input). For
example, one can input random data into the hidden layer
and then observe the output from the decoder; a properly
trained autoencoder would output data which corresponds to
(some of) the characteristics of the training data. One can also
search the hidden layer for patterns that are as different as
possible from any patterns generated by feeding the training
data to the encoder, and observe the results of feeding such
unusual patterns to the decoder (Liapis et al. 2013). Neural
Networks have previously been used in all those roles for
image data (Denton et al. 2015).

What we propose here is to use autoencoders not on the
level of pixel data, i.e. images, but on the level of meaning-
bearing game elements. Specifically, we propose training
autoencoders on game levels represented as tiles. In this paper
we will train and test our networks with levels from Super
Mario Bros, obtained through the Mario Al Framework (Horn
et al. 2014) or Video Game Library Corpus (Summerville
et al. 2016) — this very popular 2-D platformer provides a

similar benchmark for Al in games that MNIST does for
Deep Learning research (Jarrett et al. 2009). We expect these
methods will transfer to other examples of 2D tile-based
game content as well.

We believe that autoencoders applied to games can be
useful in variety of ways, opening up new possibilities for
data-driven procedural content generation. Most of these
techniques could be useful both for standalone online or
offline content generators, or as part of Al-assisted game
design tools:

e Content generation/transformation. An autoencoder can
generate content that fits into a particular style from all
kinds of input, including random noise, a picture, a ge-
ometric shape or a signature. This could be useful for
data games: one can take a 2D representation of some
real-world object or area and turn it into game content
respecting style and gameplay constraints.

e Style recognition. We can detect whether content created
by another content generator, or human creator, fits into a
particular style. This is useful both for staying close to a
style and for intentionally deviating from or breaking it.

e Content repair. An autoencoder could take an unplayable
level and make it better fit the style it has been trained on,
thereby repairing it and making it playable. In the context
of an Al-assisted game design tool, this could be used to
complete levels that have been partly designed.

e Data compression. The compression into fewer dimen-
sions allows to store game content more efficiently. This
might seem pointless given today’s storage capacity, but
on the other hand some games might benefit from very
large game worlds, such as in PCG games like No Man’s
Sky.

e Design research. Similar to the work to explore the Flappy
Bird game space (Isaksen, Gopstein, and Nealen 2015),
examining the distribution of values in the hidden layers
(Erhan, Courville, and Bengio 2010) can give some insight
into what features are commonly shared among most levels
and most designers. By moving outside of the normal re-
gions defined by the game, it could be possible to generate
new level ideas that have not been tried before.

In the following section, we briefly outline other approaches
in the literature to level generation for 2D platformers in
general, and Super Mario Bros in particular.

Level Generation for 2D Platformers

Many types of procedural content generation methods have
been applied to generating platformer levels. Some of these
are based on designer-defined top-down models, such as rule-
based generation which was the basis of the original Infinite
Mario version of the framework (Togelius, Karakovskiy, and
Baumgarten 2010) or e.g. Smith et al.’s work on rhythm-
based generation (Smith et al. 2009).

Other work, closer to the work presented in this paper,
uses a bottom-up data-driven approach to generate the lev-
els. Dahlskog, Togelius, and Nelson trained n-grams on
sequences on of level “slices” (columns of tiles) cut from

the original Super Mario Bros levels, and showed that with
n=3 believable Mario levels can be generated; however the
constraints of the slice-based representation together with
the relatively small dataset leads to a lack of diversity in the
generated content (Dahlskog, Togelius, and Nelson 2014).
Similarly, Snodgrass and Ontanon trained two-dimensional
Markov models on the level of individual tiles to generate
levels (Snodgrass and Ontanén 2013). Baumgarten suggested
the use of Linear Discriminant analysis to gauge player skill
and then using these player models to adjust feature weights
for level generation (Shaker et al. 2011). Other approaches
have included search-based methods such grammatical evolu-
tion (Shaker et al. 2012), and learning from video replay data
using computer vision and probabilistic modeling (Guzdial
and Riedl 2015).

Recently, approaches using neural networks have been
proposed and demonstrated by Hoover, Togelius, and Yan-
nakis (2015), who use neuro-evolution, and Summerville and
Mateas (2016), who use long short-term memory (LSTM)
recurrent neural networks. Apart from these examples, work
in using networks for level generation is still sparse. In this
paper, we suggest using a third variant of neural networks,
autoencoders, to learn, reproduce, and vary levels for Super
Mario Bros.

Horn et al. (2014), in addition to providing a framework
for evaluating the expressive range of various generation pro-
cedural level generation methods, also provides a grouping
of these methods previously documented in the literature by
control type. The paper lists constructive (none), indirect, pa-
rameterized, and knowledge representation as control types
for shaping the levels expressed by the cited level genera-
tors. It also notes that pattern-based approaches combine the
indirect and knowledge representation based categories.

The approach we present here is novel in the sense that it
provides a new combination of control types: Autoencoders
allow us to to use existing levels as indirect representations
of patterns, learned by the autoencoders, but also allow us
to control the kinds of levels that are generated parametri-
cally, by varying the noise inserted into the autoencoder, as
explained below. In the following section, we provide an
introduction to autoencoders and how we adapt them to the
problem of generating Mario levels.

Autoencoders

Autoencoders are neural networks which encode data into a
different number of dimensions. A simple autoencoder is a
feed-forward multilayer neural network which has a hidden
layer smaller than the input layer. The output layer is the
same size as the input layer in a simple autoencoder since it
tries to recreate the input and learn its lower dimensional rep-
resentation in the hidden layer. Since the training data does
not need additional metadata, like labels in a classification
problem, it is considered to be an unsupervised algorithm.
Figure 1 presents a diagram of a simple autoencoder. We
take a small window of the input level of size WxH and
reshape it by appending each row of data into a vector of size
W Hx1. This new vector is fully connected to a hidden layer
of size hx1. A HardTanh transfer function is placed after the
fully connected layer so that our network is non-linear — this

input window
* reshape
1nput vector
hidden layer
output vector
* reshape
output window

:

WxH

WHHxI WHx]
Figure 1: A simple autoencoder with 3 levels tries to replicate
the output window from the input window. Because the
hidden layer is smaller than the input and output, correlations
in the data are discovered during the learning process.

is a simple function that clamps values < —1 to —1 and val-
ues > 1 to 1. However, this simple function combined with
the linear transforms allows the network to learn non-linear
behaviors. We then have another fully connected layer that
takes the hidden layer to an output vector that is the same size
as the input vector, again followed by a HardTanh for non-
linearity. This is finally reshaped back into an output window
of size WxH. We calculate the error between the input and
output windows and use back-propagation to calculate the
gradients in the fully connected layers that will minimize
this error. After repeated training, the autoencoder learns to
replicate the input data. Autoencoders can have more than
one hidden layer, and in this paper we use autoencoders of
different numbers of layers and layer sizes.

In order to prevent the autoencoder from overfitting and
only learning the original data, denoising autoencoders at-
tempt to force the network to learn useful features by adding
noise to the original signal during training (Vincent et al.
2008). This noise “corrupts” the input data and therefore
requires the autoencoder to learn how to reconstruct the origi-
nal signal from redundancies in the source. When calculating
the loss, the noise is not used so that the gradients and error
determine how good the autoencoder is at reconstructing the
original signal.

An example of a denoising autoencoder is presented in
Figure 2. The input, which as we will explain later in the
paper comes from another network, is corrupted with random
noise. It then passes through three fully connected hidden
layers, each followed by a HardTanh transfer function. The
final output is of the same size as the input, and we use a loss
function that measures the error between the denoised output
and the original input without noise.

Dataset and Training

Since autoencoders are an unsupervised learning technique,
the input data is not required to be labeled. Since autoen-
coders use the same data as both input and for error back
propagation we are able to use windows constructed from
the maps as our training set without any labeling. The maps
used for the training set were the 22 overground as well as
the underground levels from the original Mario world maps.

¢+ random noise

noisy input
denoising output

[input from previous hidden |

Figure 2: Our denoising autoencoder with 5 levels tries to
replicate the values from the hidden layers of the original
network. We add noise during the training process so that the
network is forced to avoid overfitting.

When designing an autoencoder to be trained on map data,
we structure the training data in such a way that training and
reconstruction is logically and computationally feasible. To
make extraction of map characteristics easier and non redun-
dant we encode the map with a unique character representing
each kind of tile (LeCun 2012). We use this encoding, in-
stead of e.g. the images representing the tiles in the game,
to enable the autoencoder to learn the properties of the map
without having to understand actual appearance of the tiles
themselves - which would be included in the image format
of the map. This ensures we only include relevant data and
reduces the size of the network to something easier to train.

For initial analysis of the map we used a binary encoding
where blank space, perceived as empty to a user, as 0 while
obstacles are encoded as a 1. The resulting encoded maps
are binary interpretations of the original maps, as shown in
Figure 3.

Although we did not do so in this paper, it would be possi-
ble to represent the different types of objects (e.g. enemies,
coin boxes, pipes) instead of just conflating them into ter-
rain/obstacles. The accepted approach is to use additional
channels for each type of object (including empty), and to
still use a binary encoding. This is similar to representing
colors in an image using 3 channels instead of using a 1 chan-
nel palette. The reason this is preferred is that it allows the
network to learn better than using different values in a single
channel. In a palette based approach, where for example 0
represents empty space, 1 represents a block, and 2 represents
an enemy, etc. the mathematical average of an enemy (2)
and empty space (0) is then a block ((2 4+ 0)/2 = 1) which
obviously misrepresents the relations between the encoded
values, since a block is not the average of an empty space
and an enemy. Instead, with the multichannel approach, the
channel with the highest value after using a softmax would
be selected for the output, ensuring that all possible content
types can be learnt.

Because of the sliding window nature of gameplay of
Mario, where the player can only see 16x14 tiles at a time,
we used a window striding over the horizontally aligned
map for training samples. For example the World 1-1 of
Mario displayed in Figure 3. The level map is encoded into a

Figure 3: Mario World 1-1 and its corresponding encoding.

199x14 tensor representing the tiles from which we sample
with sliding windows, overlapping to maintain the spatial
relationship among the entities.

To construct a tensor which comprises of windows, we set
a window size and extracted the first window from the map.
We then took strides of one tile horizontally and concatenated
the result to the tensor until the end of the map. Hence for
each map we obtained a number of windows n = M —W +1,
where M is the horizontal size of the map in tiles and W is
the horizontal size of the window to construct in tiles.

Once we had an encoded form of all the maps from the
original Super Mario Bros, we sampled different windows
sizes from the concatenated tensor. The window sizes that
we obtained satisfactory results from were 1x14, 2x14, 3x14
and 4x14. We started out with window size 16x14 match-
ing the player’s view on the screen (and assuming that a
squarish window would yield acceptable reconstruction due
to symmetric reconstruction), however, the reconstruction
tended towards a local minimum generating a heavily av-
eraged reconstructed image. This lead to the intuition that
smaller a window size would lead to a smaller hidden state
as well as establish stronger spatial relationships. Another
source of inspiration for the windows sizes is the fact that
the average horizontal entity is less than 4 horizontal blocks
in the encoded maps which would lead to continuity in the
reconstruction of the map after the stitching process. The
process of windows together into a map is described in the
Level Reconstruction section.

After splitting 22 maps from the original Mario into win-
dows we were able to generate a substantial input dataset of
4432, 4410, 4388, and 4366 windows respectively for win-
dow sizes 1x14, 2x14, 3x14, and 4x14. We use the entire
training set for training purposes as we would cross validate
the results for classification, repair and generation separately.
We can however, observe the training accuracy of each ar-
chitecture to check for convergence. We also notice that a
trivial autoencoder (with a hidden layer larger or equal to the
input) reconstructs with no error per tile which reinforces our
assumption of characteristic learning by the autoencoders.

For training each of the autoencoders for the purpose of our
experiments we used the training dataset and experimented
with the loss criterion, network architecture and training
parameters like learning rate, momentum and decay rate.
During the experiments we found that the convergence for
Stochastic Gradient Descent works best with a learning rate
in the range of 0.05-0.175 and with a momentum of le — 4.
This however would vary with different network architecture.
RMSprop and Adadelta with the Keras framework (Chollet

2015) default settings are also acceptable for good conver-
gence.

We trained simple autoencoders with a single hidden layer
but experimented with varying sizes of the layer, each for
500 epochs. On using mean squared error, L2 error, and abso-
lute difference criterion, we obtained the best reconstruction
from absolute difference. We also found that the activation
function most suited for map reconstruction to be HardTanh
because of the behavioral pattern of the gradient as well as the
activation function limit. All the experiments were performed
either using the Torch framework, a Lua based scientific
computing language for Neural Network based experiments
(Collobert, Bengio, and Marithoz 2002), or the Keras frame-
work, a Python-based neural network library (Chollet 2015).
Both frameworks provide efficient processing of complex
matrix computations attributed to its underlying GPU-based
implementation for hardware accelerated parallel processing.

Level Reconstruction

To visualize the features learned by the autoencoder by train-
ing it is essential to reconstruct and determine the training
quality. We could reconstruct single windows using the sim-
ple autoencoder and determine the reconstruction quality of
the trained networks. However a better test of learning would
be to try to generate the entire map over the windows to see
how well each network configuration works.

In our experiments we were able to determine the differ-
ence in learning with each of the network configuration and
by changing the window sizes. We observed that trivial au-
toencoders with the hidden layer of a single node was able to
successfully learn the placement of the ground including the
pits. However, the ground height was not reconstructed well
by the trivial autoencoder. With increasing number of nodes
more characteristics were learned by the simple autoencoder
with a complete autoencoder being able to perfectly replicate
the input map.

As expected, adding a node to the hidden layer and retrain-
ing makes the neural network capable of gathering knowledge
of the spatial placement of an increasing number of elements,
as shown in Figure 4. Increasing the hidden layer size to just
2 nodes increased the learning to incorporate knowledge of
pipe placements in the map reconstruction as well as partially
reconstruct the staircases which was visible distinctly with
hidden layer of size 4 nodes. Hidden layer size 7 and 14
(perfect reconstruction) are almost the same quality. We can
understand the learning capability of the network configura-
tions by observing the average reconstruction error.

Size 1

Size 2

Size 4

Size 7

Size 14

Figure 4: Autoencoder reconstruction with different hidden layer sizes on windows of 1x14

input windows input windows

l 4 >

P S—

Autoencoder Autoencoder

Dependent Reconstruction

14

|

Figure 5: Reconstruction models used for generating maps
from windows

Independent Reconstruction

output windows output windows

To reconstruct the complete map from individual windows
we used two different strategies, shown in Figure 5:

Independent Reconstruction In this strategy, instead
of using the input samples from training, we used adjacent
windows from the map with no overlap and concatenated the
output from the autoencoder in the same way as we sample,
i.e. take outputs of adjacent non-overlapping windows and
concatenate to observe the reconstruction.

Dependent Reconstruction In this strategy we use
the overlapping input from the sample we constructed during
the training phase. In the input two adjacent windows have
an overlapping area along with a slice of the map belonging
to each of the windows uniquely. Hence after generating a
new window from the autoencoder we only concatenate the
unique overflowing slice from the generated window to the
reconstructed map. This way, apart from the first window,

the contribution of each window to the final reconstruction is
a single slice irrespective of the window size.

For all reconstruction referred to later in the paper
we use dependent reconstruction because of its superior
performance in minimizing reconstruction as well to
maintain associative flow between frames. This comes from
the intuition that a new generated window should have
continuity propagated from previous windows.

Level Style Recognition

The objective of training on the simple autoencoder is to learn
the parameters which determine the characteristics of the map.
The low level embedding of the hidden layer should be able
to determine the reconstruction of the individual windows.
By understanding the dynamics of the map we expect that the
compressed state vector would be an accurate descriptor of
the map type, which in turn affects the game play experience
of the map. We should also be able to determine the windows
of each map which are more indicative of each style.

With the same intuition, we trained the simple autoencoder
on the Super Mario Bros maps from our dataset of 4366
windows of size 14x4. After training, we use the the lower
level embedding matrix from forward propagated maps to be
used for classification.

We trained the simple autoencoder with various hidden
layer configurations and found that we could use the autoen-
coder with a compression ratio of 0.5535 for classification
because of its stable reconstruction and low absolute error of
0.29 per tile. We observed the classification for three types
of levels namely the underground level World-1-2, above
ground level World-1-1, and an above ground level generated
by the Parameterized Notch algorithm (Horn et al. 2014).
Due to the distinct style variation in the maps, we assume
that the classification should be deterministic.

We calculated the hidden layer embedding from the three
maps resulting in 154, 194 and 198 vectors for each map
respectively. To classify this data, we construct a neural net-

= s ® oea]
e B Q .4
a® ®m g m -
<Y]] [o]
0.8] E"C P - = ol |
Do gne ™ L
0.6 o Ea - ® O |
o % - (o
B @y ® ° o
0.4 0‘ m). jo ® o ° |
e 5’4&0‘ 0o a
02} O .8 °, 4 . S @0 @
} e{ L] & o eO 80 ® J 8;..0», o |
0o o mimal® - e
00 02 04 06 08 10

Figure 6: Autoencoder with 2 nodes on the hidden layer for
segmenting styles. Orange Triangles: Above Ground Levels
(Solid: World 1-1, Hollow: 2-1). Black Circles: Underground
Levels (Solid: World 1-2, Hollow: 4-2). Red Squares: Tree
Levels (Solid: World 1-3, Hollow: 3-3). Example windows
give a sense of what is located in each section of the graph.

work classifier with 31 input nodes and 3 output classes and
2 fully-connected hidden layers. We then perform training
with this dataset using 80% for training and 20% for cross
validation. Upon 20 epochs of training we were able to get
a classification accuracy of 82%. The loss criterion that we
used was negative log likelihood. We do however note that
since the windows are overlapping, there would be a bias in-
troduced towards lower loss due to similar data in the training
set since adjacent windows have common data.

In Figure 6 we create a 2D visualization by using an au-
toencoder with 2 values in the middle hidden layer. Training
on the entire data set, we can then visualize the 2D value of
the hidden layer using windows from two above ground, two
underground, and two tree levels. We can see that there are
regions in the 2D map that are unique for each type of level:
e.g. the lower left corner has almost exclusively windows
from underground levels, indicated by these levels having
overhead blocks; the upper left corner has windows with no
ground, indicative of tree levels. This shows the effectiveness
of autoencoders at finding unique style traits in the level data
without human guidance.

Level Repair

The simple autoencoder is able to learn the style character-
istics of windows in the map. It is thus expected to learn
the essentials of a playable map. Since the integrity of the
map is an essential part of the design, we assume that the
autoencoder is able to mold an unplayable map or window to
a more realistic playable map by enforcing style rules learned
from the training data.

To implement an unplayable section of map we sampled
a window from one of the maps (Figure 7a) and added fea-
tures which are presumed to be unplayable. Here we used a
window which included a staircase often found in Mario and
added an impassable wall expanding the entire height of the
window as seen in Figure 7b.

We show in Figure 7c that the simple autoencoder was

(a) Original (b) Unplayable (c) Repaired
Figure 7: The original window is overwritten with a vertical
wall making the game unplayable. The autoencoder is able

to repair the window to make it playable again, although it
chooses a different solution to the problem.

(a) Simulated window with
impassable pit

(b) Unsuccessfully repaired
window

Figure 8: Unsuccessful Repairs — due to the window size, the
algorithm is unable to bridge the gap.

able to construct a window given the unusable input which
is playable as well as embraces the style of the training data.
We obtain a window which is nontrivial and with element
placement features consistent with subsequent windows.

However we also found that not all irregularities in the map
integrity could be repaired. We experimented on windows
which contained large trenches, in one experiment spanning
about 24 pixels, and found that the repair was not able to
affect the visible playability of the windows as shown in
Figure 8. We expect an approach that incorporates a simple
Al path into the map data before learning will help with this
problem (Summerville and Mateas 2016).

With this result, we believe that spatial association is lim-
ited by the individual windows of reconstruction which de-
termines the extent of repair. To be able to repair such large
valued irregularities it would take larger windows for the map
to learn the patterns in construction associated with larger
sections of the map.

Level Generation through Transformation

Autoencoders can also be used to generate new content, by
injecting randomness into the hidden layer. We will use this
general approach to generate new levels from the autoen-
coders trained on existing map data, something we can call
data-driven procedural content generation.

To generate playable Mario levels we will first study the
distribution of values in the middle hidden layer when passing
through the original map data. We then create new levels by
generating random values from a similar distribution as the
observed values from the original maps. For the purpose of
experiments with generation we used the autoencoder with
31 hidden layer nodes trained on 14x4 windows because of
visibly better performance on independent reconstruction.

The hidden layer vector is a 31 element vector with each
element between -1 and 1 due to the hardTanh activation used
in the previous layers in the simple autoencoder. We observed

* add random noise

noisy input

original hidden]
ouput vector

hidden 3
denoising output
output window

noise drawn from original hidden |

Figure 9: Our complete generation pipeline combines the
two networks to generate new content. The input is noise
generated from a similar distribution to the original levels.

the distribution of each of the element of the vector obtained
by forward propagating the windows of World-1-1 to obtain
a 31x50 matrix. The simple autoencoder learns the lower
level embedding of the map properties, however the nodes
in the hidden layer are not expected to be independent of
each other. Therefore only some configurations of parameter
values result in a map-like window (Kingma and Welling
2013). This was corroborated by reconstructing a map by
feeding random noise into the hidden layer, which resulted
in an image which does not look like a map.

One problem is that the autoencoder has not been trained to
be robust to small variations, so we train a denoising autoen-
coder to observe the hidden layer and reproduce its values
in an output layer (Poultney et al. 2006). The denoising
autoencoder is expected to reconstruct a vector from input
noise post-training which is then decoded by the original au-
toencoder to a valid playable map. We used several different
configurations on the denoising autoencoder with different
levels of compression and noise distribution, each resulting
in different characteristics on the reconstructed levels. With
a small set of training samples we are able to generate any
number of maps because of the noisy source of creativity.

The two most effective denoising encoders that we formu-
lated consisted of 31 inputs and outputs as well as 13 and 15
hidden layer nodes respectively. Apparently, the lower num-
ber of hidden layers results in a more conservative approach
to map regeneration with more sparse objects; this can be
attributed to higher loss during compression.

Observing the denoising encoder dataset we gathered that
each of the elements of the hidden layer activation follows
a sampling distribution which we fit each element to a nor-
mal distribution with mean and standard deviation. We used
this property in the generation of new data from the denois-
ing autoencoder using random values that follow this same
distribution. After training the denoising autoencoder using
the hidden layer activation dataset from World-1-1, we con-

structed a complete generative neural network consisting of
the decoder module from the simple autoencoder appended
to the denoising autoencoder, as shown in Figure 9. This
neural network can generate levels from modeled noise. Al-
though we can now theoretically generate new map windows
with noise input, we found that the results were better when
we calculated the element-wise normal distribution from the
matrix generated from the autoencoder’s hidden layer. We
can then perform element-wise addition of noise to samples
from the element wise distribution to generate newer win-
dows (Ozair and Bengio 2014). This way we ensure that the
noise loosely adheres to a certain range yet involves enough
randomness to generate interesting windows.

We were able to use this method of generation to generate
different types of maps, as shown in Figure 10, each with
varying characteristics which changed over the course over
the map. The generated maps were able to retain some essen-
tial characteristics of Mario maps. Properties of the map like
the density of element placement, holes, etc. can be adjusted
by a change in the noise distribution in the input. This can
also be a time-varying function leading to different sections
of the level possessing different characteristics.

Conclusion

The work included in this paper uses autoencoders to per-
form style recognition and also proposes a novel method for
content generation using multiple autoencoders. We also
experimented with the level repair abilities of autoencoders
and their limitations. While most of the proposals in this
work as well as the experiments are promising, this work
functions mainly as an initial study in using autoencoders for
platformer level content generation and analysis. We believe
that these methods can be used to generate more complex
content, especially when combined with multi-channel maps.
We plan to use the generator to more deeply examine creation
of different styles of content in this and other games.

References

Boden, M. A. 2004. The Creative Mind: Myths and Mecha-
nisms. Psychology Press.

Chollet, F. 2015. keras. https://github.com/fchollet/keras.

Collobert, R.; Bengio, S.; and Marithoz, J. 2002. Torch: A
modular machine learning software library.

Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. In International Academic MindTrek

Conference: Media Business, Management, Content & Ser-
vices, 200-206. ACM.

Denton, E. L.; Chintala, S.; Fergus, R.; et al. 2015. Deep gen-
erative image models using a laplacian pyramid of adversarial
networks. In Advances in Neural Information Processing
Systems, 1486—1494.

Erhan, D.; Courville, A.; and Bengio, Y. 2010. Understand-
ing representations learned in deep architectures. Department
d’Informatique et Recherche Operationnelle, University of
Montreal, QC, Canada, Tech. Rep 1355.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
learning. Book in preparation for MIT Press.

Figure 10: Map generation with noise variance = 0.01, 0.1, 0.3, and 0.6

Guzdial, M., and Riedl, M. O. 2015. Toward game level
generation from gameplay videos. In Proceedings of the FDG
workshop on Procedural Content Generation in Games.

Hinton, G. E., and Salakhutdinov, R. R. 2006. Reducing
the dimensionality of data with neural networks. Science
313(5786):504-507.

Hoover, A. K.; Togelius, J.; and Yannakis, G. N. 2015.
Composing video game levels with music metaphors through
functional scaffolding. ICCC Workshop on Computational
Creativity and Games.

Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius,
J. 2014. A comparative evaluation of procedural level gener-
ators in the mario ai framework. Proceedings of Foundations
of Digital Games.

Isaksen, A.; Gopstein, D.; and Nealen, A. 2015. Exploring
game space using survival analysis. In Foundations of Digital
Games.

Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; and LeCun, Y.
2009. What is the best multi-stage architecture for object
recognition? In Computer Vision, 2009 IEEE 12th Interna-
tional Conference on, 2146-2153. 1EEE.

Johnson, J. 2015. Neural-style github repository.
https://github.com/jcjohnson/neural-style.

Kingma, D. P., and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.

LeCun, Y. 2012. Learning invariant feature hierarchies. In
Computer vision—ECCV 2012. Workshops and demonstra-
tions, 496-505. Springer.

Liapis, A.; Martinez, H. P.; Togelius, J.; and Yannakakis,
G. N. 2013. Transforming exploratory creativity with de-

lenox. In International Conference on Computational Cre-
ativity, 56—-63. AAAI Press.

Mordvintsev, A.; Olah, C.; and Tyka, M. 2015. Inceptionism:
Going deeper into neural networks. Google Research Blog.
Retrieved June 20.

Ozair, S., and Bengio, Y. 2014. Deep directed generative
autoencoders. arXiv preprint arXiv:1410.0630.

Poultney, C.; Chopra, S.; Cun, Y. L.; et al. 2006. Effi-
cient learning of sparse representations with an energy-based
model. In Advances in neural information processing systems,
1137-1144.

Shaker, N.; Togelius, J.; Yannakakis, G. N.; Weber, B.;
Shimizu, T.; Hashiyama, T.; Sorenson, N.; Pasquier, P.;
Mawhorter, P.; Takahashi, G.; et al. 2011. The 2010 mario ai
championship: Level generation track. Computational Intelli-
gence and Al in Games, IEEE Transactions on 3(4):332-347.

Shaker, N.; Nicolau, M.; Yannakakis, G. N.; Togelius, J.; and
Neill, M. O. 2012. Evolving levels for super mario bros using
grammatical evolution. In Computational Intelligence and
Games (CIG), 2012 IEEE Conference on, 304-311. IEEE.

Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based level generation for 2d platformers. In Foun-
dations of Digital Games, 175-182. ACM.

Snodgrass, S., and Ontanén, S. 2013. Generating maps
using markov chains. In Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference.

Summerville, A., and Mateas, M. 2016. Super mario as a
string: Platformer level generation via LSTMs. 7o appear in
DiGRA/FDG.

Summerville, A.; Snodgrass, S.; Mateas, M.; and Ontanén, S.
2016. The vglc: The video game level corpus. In Procedural
Content Generation Workshop at DiGRA/FDG.

Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A
taxonomy and survey. Computational Intelligence and Al in
Games, IEEE Transactions on 3(3):172-186.

Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 mario ai competition. In Evolutionary Computation
(CEC), 2010 IEEE Congress on, 1-8. IEEE.

Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-
A. 2008. Extracting and composing robust features with
denoising autoencoders. In Intl. Conf. on Machine Learning,
1096-1103. ACM.

Wiggins, G. A. 2006. A preliminary framework for

description, analysis and comparison of creative systems.
Knowledge-Based Systems 19(7):449—-458.

