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ABSTRACT
Monte Carlo Tree Search (MCTS) is applied to control the
player character in a clone of the popular platform game Su-
per Mario Bros. Standard MCTS is applied through search
in state space with the goal of moving the furthest to the
right as quickly as possible. Despite parameter tuning, only
moderate success is reached. Several modifications to the al-
gorithm are then introduced specifically to deal with the be-
havioural pathologies that were observed. Two of the modi-
fications are to our best knowledge novel. A combination of
these modifications is found to lead to almost perfect play
on linear levels. Furthermore, when adding noise to the
benchmark, MCTS outperforms the best known algorithm
for these levels. The analysis and algorithmic innovations in
this paper are likely to be useful when applying MCTS to
other video games.

1. INTRODUCTION
Monte Carlo Tree Search (MCTS) is a relatively recently

devised statistical tree search method [2] that has proven to
be remarkably good at playing classic board games such as
Go [8]. MCTS has also shown promise when it comes to
playing unseen games such as those in the General Game
Playing Competition [6], partly due to not relying on a state
evaluation function. In both of these domains, MCTS is
arguably the best method available, as variations of this al-
gorithm tops the leagues for computer players. Naturally, it
has therefore been suggested that MCTS has much broader
applicability than this, presenting a viable approach to all
of game AI or perhaps even all of AI. However, in domains
such as Go and general game playing1 games are played in
a relatively small number of discrete turns and the state
of the game is discrete and can be described using a rela-

1With “general game playing”, we are here referring to the
type of games used in the existing GGP competition and
expressible in that language, elsewhere referred to as “Stan-
ford GDL”; other types are certainly possible and even pro-
posed [5].
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tively small number of variables. In other words, not only
are they discrete-time and discrete-state, both the time and
state space are highly constrained.

Most games that we think of as “video games” are com-
pletely different from this. It is very common to emu-
late some of the physical aspects of the “real world”, which
at a human scale is continuous-time and continuous-space.
While digital computers are by their nature discrete state
machines, the state space of a computer is vast, and con-
tinuous state and time in a game world can be approxi-
mated using floating point numbers and multiple frames per
second. Thus, first-person shooter games such as Halo or
Bioshock, real-time strategy games such as StarCraft or Age
of Empires and action adventure games such as Tomb Raider
and Skyrim typically have game states that update 30 or 60
times per second, and where the position of each object or
character is denoted by a 32 or 64 bit floating point value
per dimension. These circumstances would seem to pose
significant obstacles for any method based on evaluating all
possible actions (moves) at each time step (turn). There-
fore, we feel it is an open question whether MCTS can be
made to perform well in pseudo-continuous game domains,
and how.

There have been a few recent attempts to apply MCTS
to such domains. In particular, there has been considerable
work on applying MCTS to the Physical Travelling Sales-
man Problem (PTSP), which can be described as a mix be-
tween the classic TSP problem and a racing game. This
game has pseudo-continuous space, but very few actions
available per time step and a static game world. It was
found that MCTS-based agents exhibit human-competitive
performance, but only after several modifications, includ-
ing macro-actions that constitute several smaller actions [10,
11]. MCTS has also been applied to small-scale combat sce-
narios in StarCraft with moderate success [4]. Multiple at-
tempts has been made at applying MCTS to Ms. Pac-Man
both for controlling the Pac-Man agent as well as for ghost
enemy control with great success [12], [9].

In this paper, we consider the problem of playing Super
Mario Bros, or more accurately the Mario AI Benchmark,
which is based on a clone of that game, using MCTS. This
is not only an important game representative of a very pop-
ular genre, but also provides a different kind of challenge
than anything that has been attempted with MCTS so far.
Though it shares some properties with Ms. Pac-Man as
both games require realtime decision making and give the
player the option of allowing the agent to “procrastinate” by
not making any progress towards an end state. In the next



two sections we give a brief background on both MCTS and
the Mario AI Benchmark. We then describe the particular
way in which we applied MCTS to the Mario AI Bench-
mark, and describe the unsatisfactory behaviour of “vanilla”
MCTS. The next section describes a number of modifications
to the algorithm that we developed specifically to counter
the identified failures of MCTS on this problem. The re-
sults section details the quantitative performance of MCTS
with and without the modifications, and compares it to A*
search in state space, which has performed well on these
levels. The results analysis section qualitatively discusses
the behaviour of the algorithm for selected combinations of
modifications. After noting that the deterministic nature of
the benchmark does not exploit the strength of MCTS in
handling unpredictable behaviour, we produce a noisy ver-
sion of the benchmark, and again compare its performance
to A*.

In the result tables in this paper, we compare each re-
sult with a specified other result and show how statistically
significantly different they are. Statistical significance lev-
els are denoted by stars (*) or daggers (†) and the levels
are: * means p ≤ 0.05, ** means p ≤ 0.01 and *** means
p ≤ 0.0005,

2. MONTE CARLO TREE SEARCH
MCTS is a tree search algorithm in which evaluation of a

node is done by performing random actions from the deci-
sion space until an outcome can be determined. MCTS is
an anytime algorithm, meaning that it can be halted when
a time limit expires and give the result that looks the most
promising at the given time. Furthermore it often requires
little, if any, domain knowledge because a basic implemen-
tation only requires knowledge of the action space and a
means of simulating the outcome of an action.

Searching using MCTS is done by iteratively building a
search tree where the nodes are different game states, and
the edges are the actions leading to one state from another.
A node is added to the tree during each iteration and re-
cursively, based on the reward of the new node, the reward
values of parent nodes are updated. A single iteration of the
MCTS building process consists of these four steps:

1. Tree Policy (A node to be expanded is chosen)

2. Expansion (The node is expanded by simulating the
associated action)

3. Default Policy (The game is simulated following a ran-
dom path until a terminal node is reached)

4. Backpropagation (The result propagates up through
the tree)

Upper Confidence Bound for Trees (UCT) is a bandit
based approach to choosing the most urgent node to expand.
The benefit from UCT is that it allows for prioritizing be-
tween exploitation of seemingly promising nodes (first term)
and exploration of less tried nodes (second term).

UCBj = Xj + Cp ·

√
2 · ln (n)

nj
(1)

Equation 1 is used for calculating the Upper Confidence
Bound for node j. Here Xj is the average (i.e. expected)

reward over the times (nj) node j has been visited and Cp is
a constant for adjusting the weight of the exploration term.
n is the total number of expansions and nj is the number of
times node j was selected. Since the exploration term of the
equation depends on how explored the node is compared to
the parent, the confidence in a node will increase steadily
until the node is eventually explored. The exploitation term
will, however, make sure that good nodes will be explored
more frequently than less promising ones.

3. THE MARIO AI BENCHMARK
Super Mario Bros (SMB), published by Nintendo in 1985,

is one of the world’s best-selling games and certainly one
of the most influential. It introduced the canonical form
of side-scrolling platform games, and its design has inspired
countless games since. Infinite Mario Bros (IMB) is a Java-
based clone of SMB by Notch. IMB is the basis for the Mario
AI Benchmark, a benchmark for artificial intelligence that
has been used in a series of international competitions [7].

In IMB, the player controls Mario, who can be made to
walk or run left or right, jump, and can be upgraded to jump
through bricks and spit fire. The main objective in each
level is to reach the end (the rightmost point) of the level,
which involves dodging or killing enemies and not falling into
gaps. The original game is controlled with a joypad and two
buttons; in the Mario AI Benchmark, an action is defined as
5 bits (buttons: left, right, down, a, b), yielding 32 possible
actions. 25 times per second, the controller is presented with
a representation of the area surrounding Mario (one screen)
and asked to return what action to take.

The first Mario AI competition, which ran in 2009, was
won by Robin Baumgarten who implemented an agent based
on A* search in state space [14]. At every time step, the
agent tried to find the shortest path towards the right edge of
the current screen (that is, in the direction of the end of the
level) using a simple heuristic based on horizontal position.
This agent managed to consistenly clear the linear levels that
was used in the 2009 competition, but lost its top position
when levels that require backtracking were introduced in the
2010 competition [1].

4. MCTS IN MARIO
When searching the action space using MCTS we found

the heaviest computation to be the simulation of actions on a
given state. This makes it practically impossible to perform
the rollout to termination and even in that case it would
practically always be a death.

This led us to experiment with several different evalu-
ation functions for calculating the reward value of a non-
terminal state. The first logical solution would be to use the
x-distance to the right edge of the screen (as far as Mario
can see) and let the value be the fraction between the initial
position (for this tick) and the edge of the screen. This, how-
ever, gave very bad results with Mario unable to clear even
small obstacles and consistently running backwards when
facing Bullet Bills flying towards him.

Another approach was to make the value relative to only
the position of the parent node and let the maximum reward
be the furthest you could potentially go by running directly
to the right. This evaluation function shows much better
performance and is what we have chosen to use.



rewardj =
1

2
+

1

2
· xj − xp

11 · (1 + nR)
(2)

In Equation 2 xj is the current node’s final x-coordinate
and xp is the parent’s. The denominator of the right term
is the maximum x-distance Mario can run in one tick where
nR is the chosen rollout length cap. This value is always
within the range of 0 to 1.

Since the levels generated in this version of Super Mario
did not require the use of the “down” key, and including it
among the possible actions degraded performance greatly,
we removed that key from the action set.

For the simulation of future game states we use the Lev-
elScene model by Robin Baumgarten [14] which was origi-
nally extracted from the game engine itself in order to ob-
tain the correct behaviour of monsters and objects. This
model is provided with the environment information given
to the agent to start the simulation from the current game
state. Each node in the search tree therefore contains the
LevelScene as its state and the different childrens’ states
are the result of performing a specific action on the current
node’s state. Each node has capacity for a child correspond-
ing to each possible action for the possibility to explore in
all possible directions.

4.1 Parameters
Since we had to decide how long the roll out phase could

continue for we had to determine the best rollout depth cap
for our basic MCTS implementation. To do this we have
performed a series of benchmarks. The results can be seen
in Table 1 where we have highlighted the most promising
value. The mean score in our benchmarking is the mean of
x-distance traveled in each of the 100 levels. Due to how the
levels are randomly generated their length can vary slightly
but are generally around 4300 pixels.

The roll out depth cap we chose did not give the highest
value, but has a low average completion time and has a score
very close to the highest valued one.

We have done the same kind of parameter tuning for the
Cp value (for UCB calculation). The results can be found in
table 2. We chose the value of 0.25 for Cp since it has shown
good results and behaviour on manual tests and the highest
score is not significantly different. The rollout cap and Cp

values chosen here have been used in all further tests and
modifications.

5. MODIFICATIONS TO MCTS
The performance of the MCTS-based agent was not dread-

fully bad, but not satisfactory, and far from the elegance of
Baumgarten’s A* agent. There were several failures: Mario
was sometimes unable to jump over tall cannons, was very
reluctant to jump over gaps, sometimes fell into gaps and
ran straight into enemies. Mario seemed shortsighted and
cowardly. Based on this qualitative analysis, we suggested
the following improvements.

5.1 Mixmax rewards
When calculating the confidence of a node by the average

value of its children, the resulting behaviour of Super Mario
will be quite defensive. This is because a single good path
among many dangerous ones will only increase the average
value slightly.

Rollout Cap Mean Score Avg. Time Left
0 1220*** -
1 1430*** 116
2 1790*** 138
4 2684*** 134
6 3861 134
8 3843 120
10 2930*** 93
12 1724*** 71
16 922*** 11

1 ∗ 106 248*** -

Table 1: Results of vanilla MCTS with various roll-
out depth cap. These calculations are performed
with a Cp-value of 0.25 on 100 levels. The results are
the mean score of all levels and the average time left
from completed levels. The stars denote the statis-
tical significance of difference from the results of all
measurements and the result from using a rollout
cap of 6.

Cp-value Mean Score Avg. Time Left
0 3319*** 131
0.188 (1.5/8) 3993 134
0.25 3950 131
0.333 3868 132
0.5 3859 132

0.707 (1/
√

2) 3815 129
2 3886 132
5 3791 130
10 3868 130

Table 2: Results of vanilla MCTS with various Cp

values with rollout depth cap of 6. These calcula-
tions are performed with a rollout depth cap of 6
on 100 levels. The results are the mean score of all
levels and the average left over time from completed
levels. The stars denote the statistical significance
of difference from the results of all measurements
and the result from using a Cp value of 0.25.



Mixmax Q-value Mean Score Avg. Time Left
0 (Avg.) 4029 131
0.125 4103 146
0.25 4093 149
0.375 3846** 151
0.5 4007 152
0.75 3753** 153
1 (Max) 2098*** 153

Table 3: Results of using Mixmax backup with dif-
ferent Q values on 100 levels. The results are the
mean score of all levels and the average time left
from completed levels. The stars denote the statis-
tical significance of the difference from each mea-
surement to the result of using Q = 0.125

This can be alleviated by calculating the total reward as a
mix between the average value and the maximum value be-
tween the children. Equation 3 show the use of the constant
Q as a factor between the two values. This value will then
be used for the UCB calculation (in Equation 1 replacing
Xj).

exploitation = Q ·max + (1−Q) ·Xj (3)

Through experiments (See table 3) we have observed that
a Q-value of 0.125 yields the best results and is better than
both average (Q = 0) and maximum (Q = 1) while having
a much better average completion time.

5.2 Macro-actions
In Super Mario, the pace at which new moves are to be

decided is so fast that the search tree rarely gets deeper
than 4-5 levels. This results in Mario making decisions based
purely on the very nearest surroundings, and possibly taking
a bad route on the macroscopic level. (E.g. choosing to jump
into a pack of monsters instead of taking a peaceful route
above them on another path). Because Macro Actions have
been previously shown to be a good enhancement for MCTS
allowing a tradeoff between precision and strategic quality
in a realtime continous domain [11], it is interesting to see
how it changes the performance of MCTS in Super Mario.

Macro Actions allows us to make better use of the limited
search depth by simulating further into the level via a coarse
path. This is achieved by modifying the expansion process
such that instead of performing the action just once, it is
repeated a predefined number of times before a child node
is created. After an action has been decided upon, it is per-
formed this same number of repetitions, thus leaving more
time to expand on the same search tree.

In some cases the coarse route and the commitment to
repeating an action a certain number of times is, however,
not optimal. In particular, close to monsters or gaps there
is a need for micro-planning where every action taken can
be different. When close to monsters, the monsters must
be avoided or hit correctly in order to stay alive, and when
close to gaps, the best way to jump over them is to move
close to the edge before jumping. Consequently our imple-
mentation switches to the normal action size of 1 when in
danger, which is determined by being either close to a mon-
ster or a gap. The distance thresholds for being close have
been determined by just a few loose experiments as this en-
hancement alone is not the focus of the study. This does

include some domain-knowledge into the implementation of
macro-actions.

5.3 Partial Expansion
Simulating a move in Super Mario has proven to be a

relatively time consuming operation. Since about half the
possible actions lead in the wrong direction with respect to
where the finish line is, it seems superfluous to simulate them
if it can be avoided.

The strategy “progressive unpruning” deals with the issue
of having a large branching factor and little time, by first
reducing the branching factor artificially, and then unprune
actions when more time is available [3]. In Partial Expan-
sion we follow this idea, but instead of reducing the branch-
ing factor, we simply add the option of traversing partially
expanded nodes. In the tree policy step of MCTS the ur-
gency of expanding a new child is calculated and compared
to the confidences for each existing child. Only if the ur-
gency for creating a new child exceeds any of the childrens’
confidences a new child is created. With this change UCT
can either choose to exploit a promising path, or expand
another unexplored action.

UCBc = k + Cp ·
√

2 · ln (n)

1 + cn
(4)

Equation 4 calculates the urgency of creating a new child
and is quite similar to Equation 1, but with some differ-
ences, since the non-existent nodes don’t have a calculated
reward and have never been visited. The k-value is the stan-
dard reward for non-existent children, we set this constant
to 0.5. cn is the number of expanded children on the cur-
rent node. This way nodes will be gradually expanded with
nodes higher in the tree being expanded more than lower
ones.

This results in a deeper tree since the average branching
factor of the nodes is significantly reduced, but when select-
ing the child to expand randomly you risk missing promising
paths. The higher branches of the tree will, however, be ex-
panded more than the lower, and since the deeper levels of
the tree have less immediate effect on the state this risk isn’t
very high.

5.4 Roulette wheel selection
Our implementation of MCTS expand nodes through mul-

tiple iterations, and not all children at once. This requires
that we decide an order in which children are to be gener-
ated. Normally this is chosen at random, but by introduc-
ing some domain knowledge, the generally most beneficial
actions can be chosen for expansion first. Expanding some
actions before others does not have a great impact on its
own, but it does skew the search tree in a desirable direction,
and is interesting in combination with other enhancements.

The method of Roulette Wheel Selection is implemented
by associating a weight with each possible action. These
weights are determined from prior observations of the algo-
rithm playing Super Mario levels by recording which actions
where used the most in successful playthroughs. When se-
lecting which child to create while expanding a node, the
weights are used in the random selection as tickets in a lot-
tery, making actions with high weights more likely to be
selected than actions with low weights - this without remov-
ing the possibility of any action, good or bad, being selected
first.



Using Roulette Wheel Selection with MCTS has previ-
ously shown good results in determining what child to ex-
pand next [13].

5.5 Domain knowledge
Although MCTS can get a long way in Super Mario with-

out introducing much domain knowledge, some challenges
of the game are better tackled with some knowledge of the
game. Since we had to ignore the down key, the action space
consist of 16 actions. By removing actions that either don’t
add any new options (e.g. left + right + jump is equal to
just jump) or that we deemed unnecessary we managed to
reduce the set of actions to 10. This decreased the branching
factor which lead to increasing the possible search depth in
the same amount of time.

A relatively frequent challenge in Super Mario levels is
gaps. Gaps can be of varying depth and if Mario touches
the bottom he dies. The challenge with gaps is that their
deadly property is only discovered if the algorithm is able
to simulate steps all they way to the bottom. Deep gaps
pose a problem as the shortsightedness of unmodified MCTS
(Figure 1, yellow line) results in Mario going down the gap
and ending up walljumping back and forth near the bottom
of the gap if not dying straight away. By detecting when
a position is inside a gap we can avoid them by drastically
reducing the reward of positions inside gaps.

6. RESULTS

6.1 Individual modifications

Figure 1: Illustrates the different search depths for
three individual modifications. Red: Macro Ac-
tions, Yellow: Vanilla MCTS, Blue: Best Combi-
nation

Our experiment consist of 6 different enhancements, all of
which are tested in combination with each other giving 64
different agents to test.

The agents are tested on the same 100 randomly gener-
ated levels on the hardest difficulty the Mario AI Framework
allows. We use the “Wilcoxon signed-ranks test” to calculate
p, and require p < 0.05 for the difference to be significant.

The calculated final x-position of mario in each level is
the level score, and the mean of all levels is the score that

Modification Mean Score Avg. T Left
Vanilla MCTS (Avg.) 3918 131
Vanilla MCTS (Max) 2098*** 153
Mixmax (0.125) 4093 147
Macro Actions 3869 142
Partial Expansion 3928 134
Roulette Wheel Selection 4032 139
Hole Detection 4196** 134
Limited Actions 4141* 137
(Robin Baumgarten’s A*) 4289*** 169

Table 4: Results of each individual modification on
100 levels. The stars denote the statistical signif-
icance in difference from each result to unmodi-
fied MCTS. We include results from running Baum-
garten’s A* implementation as reference.

the combination receives. Table 5 show the results of these
tests.

In this section the behaviour of the individual and the
most interesting combinations is described. Results from
testing the individual enhancements can be found in table
4.

6.2 Vanilla MCTS
When adjusted with the optimal values for the constants

Cp and rollout depth cap, the basic MCTS algorithm actu-
ally performs rather well. It completes 80 out of 100 levels.
The main problems with this agent is the very limited search
depth which is never more than 5 actions, constituting only
200ms ahead (See Figure 1, yellow line). This makes the
agent vulnerable towards monsters falling from above and
makes it hard to scale the tall cannon towers.

6.2.1 Mixmax
The higher weight of the largest reward beneath each node

reduces the cowardness of Mario greatly. This change can,
however, also in some cases result in reckless and dangerous
behaviour, sometimes resulting in certain death. That is
alleviated by only letting the maximum reward have a rela-
tively low influence ( 1

8
) compared to the average reward ( 7

8
).

This skews the simulation tree further towards the larger
values exploring those nodes further while making it more
certain that they are safe.

The Mixmax modification on its own doesn’t show a sig-
nificant difference from Vanilla MCTS as can be seen in table
4.

6.2.2 Macro Actions
The increased action size of Macro Actions enables the

search to go further into the level without having more it-
erations (Figure 1, red line). This not only makes Mario
take routes with less monsters, but also enables the agent
to quickly scale tall cannons, which seems to be a challenge.
This reduces the wasted time (and reduce timeout related
losses), but since Mario is exposed to monsters when trying
to find a way over the canon it also reduces the risk of dying
from monsters.

6.2.3 Partial Expansion
Like the Macro Actions enhancement, using Partial Ex-

pansion enables the agent to search to a greater depth. This



Method Score T Method Score T
---- 3918 † 131 ---L 4141* † 137
X--- 4093 † 147 X---L 4152* † 147
-M--- 3869 † 142 -M--L 4025 † 143
XM--- 3922 † 146 XM--L 4043 † 147
-P-- 3928 † 146 -P-L 4214* † 146
X-P-- 4109* † 140 X-P-L 4278* 150
-MP-- 3997 † 134 -MP-L 4156* † 135
XMP-- 4166* † 139 XMP-L 4220* † 143
--R- 4032 † 139 --R-L 4132* † 142
X-R- 3786 † 149 X-R-L 4134* † 150
-M-R- 3956 † 145 -M-R-L 4063 † 145
XM-R- 4088 † 146 XM-R-L 4031 † 150
-PR- 4271* 149 -PR-L 4275* 153
X-PR- 4281* 154 X-PR-L 4260* 156
-MPR- 4165* † 135 -MPR-L 3955 † 136
XMPR- 4182* † 141 XMPR-L 4145* † 140
---H- 4196* † 134 ---HL 4161* † 139
X--H- 4221* † 145 X--HL 4281* 147
-M-H- 4182* † 142 -M-HL 4251* 141
XM-H- 4197* † 146 XM-HL 4260* 146
-P-H- 2679*† 96 -P-HL 4277* † 138
X-P-H- 3656* † 105 X-P-HL 4277* 147
-MP-H- 2692*† 112 -MP-HL 3970 † 125
XMP-H- 3583* † 105 XMP-HL 4237* † 138
--RH- 4212* † 139 --RHL 4211* † 142
X-RH- 4206* † 148 X-RHL 4195* † 150
-M-RH- 4189* † 143 -M-RHL 4204* † 141
XM-RH- 4240*† 145 XM-RHL 4248*† 147
-PRH- 4268* 148 -PRHL 4284* 152
X-PRH- 4274* 153 X-PRHL 4272* 155
-MPRH- 4071 † 126 -MPRHL 3692 † 126
XMPRH- 4189* † 132 XMPRHL 4061 † 131

Table 5: Results of all enhancement combinations.
X: Mixmax, M: Macro Actions, P: Partial Expan-
sion, R: Roulette Wheel Selection, H: Hole Detec-
tion, L: Limited Actions. The results are the mean
score of all levels and the T value is the average time
left on completed levels. Stars denote statistical sig-
nificance in difference from unmodified MCTS. Dag-
gers denote statistical significance in difference from
a perfect score of 4289.

enables Mario to quickly and safely jump over gaps, and
choose safer routes. The greater depth is obtained when
some actions are clearly better than others (in terms of how
much to the right Mario gets). This unfortunately means
that Partial Expansion doesn’t help in the case where Mario
gets stuck in front of cannons, as none of the immediate
moves give a high reward and thus exploration evens out
the tree.

6.2.4 Roulette Wheel Selection
On its own Roulette Wheel selection doesn’t make much

of a difference to the behaviour. This is because all children
of a node must be simulated before the next depth can be
searched, thus the order in which children are created only
makes a difference in the last level of expansion where not
all children are created. Unless the values of the roulette are
chosen badly this modification should give atleast the same
results as without, since exploring more promising actions
earlier should seem safer.

6.2.5 Hole Detection
This enhancement very clearly has a great effect on the

ability to avoid going into gaps, which in turn reduces the
number of gap-related deaths.

6.2.6 Limited Actions
Limiting the action space reduces the branching factor

which increases the search depth. Since we had to remove
the down key in our base algorithm the reduction isn’t that
big, and the effect of limited actions isn’t very noticeable on
its own.

6.3 No domain knowledge
A particularly interesting combination is Mixmax and

Partial Expansion. This combination is the best agent con-
sisting only of enhancements that do not add any domain
knowledge to the agent. It performs better than Vanilla
MCTS with a significant difference, but is still some way
from a winning score. It seems that some domain knowl-
edge is needed in order to really improve the performance of
MCTS.

6.4 Partial Expansion + Roulette Wheel Se-
lection

The combination of Partial Expansion with Roulette
Wheel Selection has shown very good performance. The two
enhancements separately only shows decent results, but in
conjunction the algorithm is able to search a great distance
into the level, which allows for planning on the macroscopic
level, but with great detail in movement when need be. This
combination in able to detect and avoid gaps by searching
far enough to reach the opposite edge. They complement
each other well since Roulette Wheel Selection is a solution
the the problem that Partial Expansion wants to explore the
most promising actions first and leave the rest for later.

6.5 Best combination
The combination that gave the best results was the one

using all enhancements except Macro Actions. It is not the
combination with the highest score in the benchmarking but
was fast and more robust than other candidates. The feature
that Macro Actions would give is the ability to search far
into the level at the cost of presicion, but when using Partial



Expansion and Roulette Wheel Selection in conjunction this
is achieved, even without losing the precision as is the case
with Macro Actions (Figure 1, blue line). Hole Detection
makes the search more focused on actions not leading into
gaps, Limited Actions reduces the action space and Mixmax
reduces the cowardly behaviour. This combination enables
the agent to often search to the end of the screen. It is
evident that this combination still can fail in certain difficult
levels, but even here it rarely happens.

The variation observed is due to the fact that MCTS is not
deterministic in that the chosen action can vary depending
on what order the actions of a state are explored. Addi-
tionally the scheduling of the agentâĂŹs thread can vary,
possibly yielding a different number of iterations of the al-
gorithm, and thus possibly changing the choice of actions.

7. ANALYSIS OF RESULTS
The cowardly behaviour of Mario when using unaug-

mented MCTS is very interesting, as it points to a problem
that is likely to recur in other video game domains. Essen-
tially, the agent became very risk-averse: it refused to take
actions that might lead to positive rewards (e.g. jumping
over a gap) because most of the random rollouts would lead
to substantial negative rewards (e.g. falling into the gap).
To our best knowledge and mild surprise, this has not been
identified as a problem with MCTS before. To understand
why, it is instructive to look at the differences between the
types of games to which MCTS is commonly applied and to
games like SMB. In SMB, it is possible to “procrastinate” by
standing still or moving back and forth. This is because no
forward movement is enforced (the screen follows the player
character) and there’s no adversary to race or combat. The
negative consequences of procrastinating – running out of
time – only show up hundreds of seconds (tens of thousands
of time steps) later, which is beyond the rollout depth of any
MCTS agent. In contrast, board games such as Go neces-
sarily approach the end of the game with every move, and
a rollout of a manageable length will always reach an end
state.

Given that many video games have more in common with
Super Mario Bros than with Go, it stands to reason that
the same modifications to MCTS that helped overcome the
pathological behaviour of unaugmented MCTS on this prob-
lem would improve the efficiency of this algorithm on other
problems. While it is always possible to incorporate do-
main knowledge in various forms, it is interesting to note
that it was possible to achieve near-perfect play with only
knowledge-free modifications. It is entirely plausible that
Mixmax backups, partial expansion or roulette wheel selec-
tion would make MCTS work well in a first-person shooter
or an open-world racing game.

The most surprising thing about the Mixmax backup
modification is that we have not seen it described in the
literature before. It is a very simple idea, which essentially
gives us a “testosterone gauge” for Mario: the more of the
max reward we mix in, the more risks Mario takes. It is
possible that such a modification would never be useful in
a game such s Go or Chess, which points to the influence
and importance of the choice of benchmark problem when
developing an algorithm.

Note that the modified MCTS agent still does not play
better than the A* agent. The most likely reason for this is
that it is not possible to play that set of levels better. As

stated above, the main objective of the paper is not to de-
velop a better-playing Mario agent, but rather to understand
and improve the behaviour of the very promising MCTS
algorithm on continuous-state continuous-time videogames
without mandatory progress, a large category of games of
which Mario is a good example. For clarity, it should be
pointed out that a best-first search algorithm like A* would
not perform well on playing any game which did not have a
very fine-grained heuristic function or which was adversarial.

Still, it would be interesting to see if there was some ver-
sion of the Mario AI benchmark where our improved MCTS
algorithms would outperform A*. The stochastic nature of
MCTS would seem to make it more adept at handling un-
predictability, not only due to an opposing player but also
due to the environment. A study of the paths the A* agent
reveals that they depend on the environment being absolute
predictable: Mario, as controlled by A*, jumps at the very
last pixel before falling into a gap, and passes enemies with
absolutely no margin. Such solutions would be very brit-
tle in the face of any unreliability in the agent-environment
coupling. We therefore undertook to investigate the effects
of introducing such unreliability.

8. SECOND TEST: NOISY MARIO
In order to test our implementationâĂŹs rigidity against

noise, we created a test scenario where 20% of an agen-
tâĂŹs moves would be random regardless of what it actually
wanted to do. This was implemented as a wrapper around
the agent code, where in every interaction cycle there was
a 0.2 chance that the command from the agent would be
replaced with a random command. With these settings our
best combination (all enhancements except macro actions)
was benchmarked against the A* implementation on the
same 100 levels as previously and the results are compared.
During testing the A* implementation crashed occasionally
in some levels, these two levels have been removed from both
samples for fairness yielding a basis of 98 levels.

The results from the noisy action test reveals that our
MCTS implementation performs significantly better than
A* under these conditions. MCTS cleared three levels while
A* died in all. Across the 98 levels MCTS achieved a mean
of 1770 points while A* reached 1342 (see table 6). This
difference suggests that the MCTS implementation is cop-
ing much better with the uncertainty under these conditions
than A*. Both controllers performed much worse than ei-
ther controller did in the noiseless case, which is because the
noisy version of the problem is much more challenging.

AI Mean Score
MCTS (X-PRHL) 1770
A* agent 1342**

Table 6: Results of evaluating the MCTS and A*
agents with a 20% chance of a random action being
performed instead of the selected one. The stars
denote the statistical significance in difference from
the selected variant of MCTS (X-PRHL)

It is interesting to note that the characteristics of the noisy
version of the Mario AI Benchmark are almost diametrically
opposed to those of the game which MCTS has had most
pronounced success on, namely Go. Whereas Go has a high
branching factor, relatively short average and maximum



game length and is deterministic, the Mario AI Benchmark
has very low branching factor, long average game length and
very long maximum game length (if you do nothing, you
have to wait tens of thousands of ticks to time out). Fur-
ther, the noisy version of the benchmark is nondeterministic.
The relative success of MCTS under these conditions points
to that the core algorithm, with suitably chosen extensions,
can provide good performance in conditions which are very
different from those which it was originally designed for and
tested on. It should be investigated further and more sys-
tematically which kinds of games MCTS can work well on.

9. CONCLUSION
In this paper, we investigated the performance and be-

haviour of MCTS on the Mario AI benchmark, and found
that standard MCTS performed relatively badly. Based on
the problems we identified with MCTS’ behaviour on this
benchmark, we then proposed a number of modifications,
and tested all combinations of those. It was found that a
judicious combination of these modifications yields an agent
that plays near optimally. Two of the modifications are
novel in the sense that we invented them and have not found
them in the literature: mixmax backups and partial expan-
sion. We then produced a noisy version of the Mario AI
benchmark, and tested the algorithms on this benchmark.
It was found that the improved MCTS controller clearly out-
performs A* on this version of the benchmark. We hope to
have helped clarify the role MCTS can play in video games,
and suggested a few useful techniques for conquering con-
tinuous time and space.
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