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ABSTRACT
Evaluation is an open problem in procedural content gen-
eration research. The field is now in a state where there
is a glut of content generators, each serving different pur-
poses and using a variety of techniques. It is difficult to
understand, quantitatively or qualitatively, what makes one
generator different from another in terms of its output. To
remedy this, we have conducted a large-scale comparative
evaluation of level generators for the Mario AI Benchmark,
a research-friendly clone of the classic platform game Super
Mario Bros. In all, we compare the output of seven differ-
ent level generators from the literature, based on different
algorithmic methods, plus the levels from the original Super
Mario Bros game. To compare them, we have defined six
expressivity metrics, of which two are novel contributions in
this paper. These metrics are shown to provide interestingly
different characterizations of the level generators. The re-
sults presented in this paper, and the accompanying source
code, is meant to become a benchmark against which to test
new level generators and expressivity metrics.

1. INTRODUCTION
Procedural Content Generation (PCG) research is con-

cerned with creating methods for generating game content
with limited human involvement, automatically or semi au-
tomatically [27, 19]. “Content” is a broad term that involves
things such as items, quests, rules and textures, but one
of the most commonly generated types of content is levels.
Runtime level generation has existed in published games at
least since Rogue [1], and is important for thriving game

genres as different as roguelikes, endless runners (e.g. Can-
abalt [3]) and epic strategy games (e.g. Civilization [9]).
In recent years, many academic researchers have been in-
spired to work on the problems of level generation, and the
academic literature now contains dozens of papers on the
topic. These papers are methodologically very diverse, in-
cluding approaches using agents, grammars, constraint solv-
ing, cellular automata, evolutionary computation, exhaus-
tive search, and answer set programming [30, 10].

A question that naturally comes to mind is how to choose
which of these methods to use. Are some methods best for
different purposes? Is one generator capable of creating dif-
ferent kinds of content than another? Different games, and
even different stages or modes of the same game, pose dif-
ferent content generation problems. For some games, the
connectivity and reachability of the levels might be difficult
to attain and the most important problem, for others the
lifelikeness of certain structures such as walls or vegetation
might be most important, or the rhythm of the level, or the
fine-tuned challenge of the level. On top of that, PCG so-
lutions have numerous tradeoffs. For example, a common
tradeoff is the speed of the solution versus the possibility
to guarantee certain properties of the level (such as reacha-
bility). The degree to which the character of the generated
level can be controlled via parameters might also be in op-
position to the diversity of the generated content. In order
to obtain meaningful solutions to these questions and prob-
lems, a method must first be created to evaluate individual
content generators and compare generators to each other.

The current state of evaluation for content generators is
largely ad hoc. Some generators are evaluated implicitly,
via an evaluation of the game that they are situated in.
This form of evaluation is not helpful to understand the
qualities of the generator itself, and how to compare it to
other generators. Frequently, generators are evaluated via a
small sample of their output being shown as representative
of the generator’s capabilities; this form of evaluation-by-
example lacks rigor (how do we know the small sample is
representative?) and cannot help with an understanding of
the space of potential content that can be created, as well



as any biases in the generator. (A critical reader of such
papers tend to suspect that either the shown example is
the one good-looking level generated by the generator after
many attempts, or that all levels look pretty much like the
shown example.) For the PCG research community, it is
difficult to make progress without a thorough understanding
of the strengths and weaknesses of current approaches, how
they compare, and whether a new generator is capable of
producing novel results.

In order to make informed decisions about which content
generation method would be best suited for a particular type
of content generation problem, we need a way to character-
ize the performance of the content generator in the context
of game design concerns. A promising approach to this takes
the form of a set of metrics that can be applied to the output
of the generator, to characterize the generator’s expressive
range. This paper is meant to make progress towards a com-
mon framework for evaluating content generators through
the presentation of several metrics, and evaluating these can-
didate metrics on a collection of content generators.

We focus on levels for platform games, and in particular
we investigate level generators for the Mario AI Benchmark,
based on Infinite Mario Bros [2], an open-source game in-
spired by the platform game Super Mario Bros [16]. This
is done partly because the Mario platforming games are
archetypical, their design influencing countless other games.
This means that the level generation problems posed by that
game are likely to be similar to the level generation problems
posed by many other platform games and related games.
Another reason is the popularity of the Mario AI Benchmark
among academic Game AI and PCG researchers, meaning
that this is probably the game for which the largest num-
ber of level generators have been made. This paper com-
pares level generators developed by ourselves and by other
researchers, in particular the participants in the Level Gen-
eration Track of the Mario AI Competition.

The main contribution of this paper is a thorough eval-
uation and comparative study of several existing level gen-
erators that have never been compared before. Several of
these metrics have been used before (though some have been
newly ported to the Mario AI framework); however, we also
provide some new metrics, in particular the pattern-based
metrics, and levels which have not been analysed before, in
particular the original SMB levels. The result of this work is
a baseline against which researchers can compare both new
metrics and new generators, including an ability to easily
visualize the results. The source code for the metrics and
the evaluated levels has been publicly released, to make this
evaluation framework available for all interested parties.1

2. RELATED WORK
There is a relatively large body of work aimed at under-

standing game design in general and level design in par-
ticular. For example, Koster’s Theory of Fun [13] focuses
on the progression of challenges and learnability of games,
while others prefer to understand games as systems of inter-
locking feedback loops [4]. Recently there has been a push
towards understanding and describing games using a pat-
tern language. Björk and Holopainen [5] catalog recurring
patterns that can be found across many games, while others
have examined level design-specific patterns in domains such

1http://sokath.com/fdg2014_pcg_evaluation/

as first-person shooters [11], 2D platforming games [24, 8],
and role-playing games [15, 23]. While some of these pat-
terns are largely intended as qualitative descriptions of game
properties, others take the view that design patterns can be
solutions to specific design problems.

Most of the aforementioned work in understanding game
and level design is based in qualitative analysis and theo-
ries. Several of the metrics in this paper form a step to-
wards building upon such theories, including the new design
pattern metrics described in Section 3.2. Further opera-
tionalization of these theories to develop more sophisticated
metrics is an interesting potential area for future work.

Recently, there has been some work in trying to automat-
ically and quantitatively measure aspects of game quality.
Within search-based procedural content generation there is
a need for evaluation functions, and for this reason sev-
eral researchers have tried to quantitatively capture what
they deem to be crucial aspects of game quality. This in-
cludes Browne’s various metrics for board games, such as
drawishness, length, drama and outcome uncertainty [6],
and Togelius and Schmidhuber’s learning-based metric [28].
There has also been some work on trying to measure the
quality of platform game metrics specifically. For example,
Smith and Whitehead defined two key metrics—linearity
and leniency—as well as introducing a method for visual-
izing the expressive range of a generator [25]. Shaker et al.
followed up this work by introducing further metrics, some
of them based on theories of player experience and others
based on data mining [18].

Finally, more broadly than PCG for games, there is some
work in evaluating computationally creative systems; Jor-
danous provides a survey of current evaluation methods [12].
It is important to note that these evaluation criteria are
being used to answer a different, though related, question:
computational creativity evaluation asks the extent to which
a system is creative, while PCG evaluation asks how expres-
sive and controllable the system is. For example, Pease et
al. incorporate an evaluation of the process that the gener-
ative system follows as well as rating the product produced
by the system [17]. Similar evaluations have been performed
on platform game level generators [7]. While we recognize
the importance of process in understanding creativity, and
feel that such discussions would be of great value to PCG
researchers, it lies outside the scope of this paper.

3. EXPERIMENTAL TESTBED
For our experiments, we use the Mario AI Benchmark [29],

built on top of Infinite Mario Bros. The world representa-
tion in this framework is not 100% faithful to the original
Super Mario Bros., and some of the graphical elements re-
semble elements from later games in the series. In particu-
lar, not all of the items and creatures found in Super Mario
Bros, can be found in Infinite Mario Bros, but the missing
features tend to be infrequently used in the original game.

3.1 Generators
In this section we describe the different generators that

are compared in this paper. The generators were chosen
because they have been the subject of academic papers or
have taken part in the level generator track of the Mario
AI Championship, and so as to maximize the number of
different approaches to level generation represented.

The Notch generator is the default level generator that



comes with Infinite Mario Bros. It writes levels from left to
right, adding components according to probabilities. Basic
checks are performed to make sure the levels are playable.

The Parameterized Notch generator is a version of the
Notch generator that takes parameters, which bias how lev-
els are generated. These parameters are the number of gaps,
width of gaps, number of enemies, enemy placement, num-
ber of powerups and number of boxes. The test explores
all possible combinations of high and low values for these
parameters. See [21] for more information.

Hopper was written for the Level Generation track of
the 2010 Mario AI Championship. Like Notch and Parame-
terized Notch, it generates levels through writing them from
left to right and placing features with specific probabilities.
It was built with adaptability in mind, so that the prob-
abilities could easily be altered depending on the player’s
prior performance. The generated parts are alternated with
pre-designed parts. See [20] for more information.

Launchpad is a rhythm-based level generator that uses
design grammars for creating levels that obey rhythmical
constraints. The original version of Launchpad incorporated
several level elements that are not present in the frame-
work (e.g. springs); this ported version has attempted to
remain as faithful as possible to the original grammar-based
implementation, substituting level components as needed.
See [25] for information on the original Launchpad.

The Occupancy-Regulated Extension (ORE) gener-
ator was also an entry for the Level Generation track of the
2010 Mario AI championship [20]. It works by piecing to-
gether small, hand-authored chunks of levels. Each chunk
has an “anchor point” used to determine how the chunks can
be pieced together. It can create quite complex levels that
are stylistically quite different from the original Mario levels.

The Pattern-based generator uses evolutionary compu-
tation to generate levels. Levels are represented as sequences
of“slices”, or“micro-patterns”which are taken from the orig-
inal Mario. Each micro-pattern is one block wide and has
the same height as the level. The fitness function counts
the number of occurrences of specified sections of slices, or
“meso-patterns”. The objective is to find levels with as many
meso-patterns as possible. See [8] for more information.

The Grammatical Evolution (GE) generator uses evo-
lutionary computation together with design grammars. Lev-
els are represented as instructions for expanding design pat-
terns, and the fitness function measures the number of items
in the level and the number of conflicts between the place-
ment of these items. See [18] for more information.

Finally, the original levels from Super Mario Bros 1 [16]
are included. They have been reproduced as faithfully as
possible by manual translation from the ROM code of the
original game. The exceptions are those elements which are
not part of the design vocabulary of Infinite Mario Bros (and
thus of the Mario AI benchmark), and the water-based lev-
els which cannot be simulated in the current version of the
framework and for which completely different design prin-
ciples are likely to hold. Levels were between 148 and 377
blocks in length, with an average length of 200 blocks.

3.2 Metrics
To compare the levels produced by our various levels, we

have used a number of metrics, most of which come from
previous literature but the two pattern-based metrics are
introduced in this paper. The metrics are meant to cap-

(a) leniency = 1

(b) leniency = 0.23

Figure 1: Example levels from (a) the parameter-
ized notch randomized and (b) the pattern-based
weighted count generators with very low and high
leniency values.

ture relevant aspects of the levels including player experi-
ence (e.g. leniency) and level composition, but as there are
many potentially relevant aspects, the current set of metrics
should not be seen as exhaustive.

3.2.1 Individual level metrics
Most of our metrics work on a single level, and return a

single real number as its evaluation of that level. All of our
metrics are normalized by level length as appropriate, and
are further normalized by the total of output of that metric.

The leniency metric is an attempt to capture how dif-
ficult a level is for a player. Leniency was calculated by
finding all points in the level where an action by the player
is needed, e.g. the edge of a platform or the end of a string
of blocks, and then determining how lenient that particu-
lar challenge would be to the player. Gaps where a player
dies are given a 0 weight for leniency and other enemies and
jump lengths are weighted based on the challenge and death
possibility given to a player. When a jump is detected, it
looks ahead to see if any other obstacles would be in the way
while landing. These other obstacles lower the leniency of
the first challenge by a factor equal to their assumed harm
level. Areas with no threat of harm are given a score of 1.
Once all obstacle weights were calculated, they were then
normalized based on the length of the level and how many
possible paths were available at each point in the level. Two
example levels from the parameterized notch randomized
and the pattern-based weighted count generators with very
low and high leniency values are presented in Figure 1. Note
that this description of leniency is different from those used
in previous work by Smith et al. [25] and Shaker et al. [18].

The linearity metric is calculated by finding the R2 good-
ness-of-fit measure for a line that has been fit to the end
points for each platform in the level. This means that levels
with many height differences will have low linearity, while
levels that follow a straight line (flat or otherwise) will have
maximum linearity. Linearity is originally defined in [25].
Figure 2 presents two examples from different generators
having extreme linearity values.

Density is a measure of how many platforms are stacked
on top of each other. The density calculator assigns a den-
sity value to each position depending on how many different
heights Mario could possibly stand on. The density value for
a level is simply the average density value for all positions
on the level. Density is defined in [18] and two example fig-
ures for levels from two different generators with comparable
density score are presented in 3.

Pattern density measures how many meso-patterns from
the original Super Mario Bros game can be found in the level.
This metric is the same calculation as the evaluation func-



generator leniency linearity density pattern density pattern variation compression distance
GE 0.84 (0.06) 0.02 (0.03) 0.47 (0.16) 0.1 (0.03) 0.27 (0.06) 0.56 (0.04)
hopper 0.72 (0.04) 0.15 (0.16) 0.6 (0.15) 0.1 (0.02) 0.29 (0.05) 0.65 (0.05)
launchpad 0.7 (0.05) 0.66 (0.31) 0.24 (0.04) 0.11 (0.03) 0.17 (0.05) 0.8 (0.07)
launchpad-rhythm 0.74 (0.07) 0.49 (0.32) 0.11 (0.04) 0.09 (0.03) 0.13 (0.06) 0.81 (0.09)
notch 0.67 (0.06) 0.1 (0.11) 0.4 (0.16) 0.13 (0.02) 0.27 (0.08) 0.53 (0.03)
notch param 0.85 (0.06) 0.04 (0.05) 0.81 (0.08) 0.08 (0.03) 0.24 (0.07) 0.36 (0.08)
notch param rand 0.86 (0.08) 0.08 (0.06) 0.8 (0.1) 0.08 (0.03) 0.17 (0.09) 0.47 (0.08)
ORE 0.51 (0.08) 0.05 (0.06) 0.43 (0.15) 0.16 (0.03) 0.35 (0.05) 0.73 (0.04)
original 0.61 (0.18) 0.02 (0.02) 0.35 (0.37) 0.14 (0.06) 0.3 (0.1) 0.76 (0.11)
pb count 0.63 (0.1) 0.07 (0.09) 0.08 (0.05) 0.39 (0.17) 0.41 (0.07) 0.85 (0.04)
pb occurence 0.6 (0.08) 0.04 (0.06) 0.06 (0.09) 0.08 (0.02) 0.64 (0.11) 0.79 (0.08)
pb weighted count 0.61 (0.12) 0.06 (0.08) 0.09 (0.08) 0.08 (0.03) 0.24 (0.07) 0.86 (0.05)

Table 1: Overview comparison of level generators: mean value (standard deviation) of each metric on the
output of each generator.

(a) linearity = 1

(b) linearity = 0

Figure 2: Example levels from (a) the parameterized
notch randomized and (b) the ORE generators with
very low and high linearity values.

(a) density = 0.81

(b) density = 0.88

Figure 3: Example levels from (a) the notch and
(b) the hopper generators with comparable density
values.

tion for the evolutionary algorithm in the pattern-based level
generator, and is described in [8]. The metric is normalized
according to level length. Figure 4 presents two illustrative
levels for this measure.

Pattern variation, on the other hand, measures only
unique occurrences of patterns and gives higher values to
levels with diverse meso-patterns instead of many reoccur-
ring meso-patterns. The metric is also normalized according
to level length.

3.2.2 Level distance metrics
The other category of metrics are those that do not work

on individual levels, but on pairs of levels by measuring how
different they are, or in other words their distance in some
space.

In the comparison performed for this paper we only have
one level distance metric: compression distance is a domain-
general metric based on the principle that if two strings are
similar, you save more space when compressing them to-
gether. In this implementation, we use the standard gzip
algorithm and compare the length of the resulting string

(a) pattern density = 0.17

(b) pattern density = 0.172

Figure 4: Example levels from (a) the launchpad
and (b) the GE generators with comparable pattern
density values.

(a)

(b)

Figure 5: Examples from the original levels that
are dissimilar according to the compression distance,
ncd = 0.9.

when compressing each of two levels individually and when
compressing them together. Compression distance is de-
scribed in [14] and applied to platform game levels in [18].
Figure 5 presents two example levels transcribed from the
original game that are found to be very dissimilar to each
other according to this measure.

Another example of a metric that would fit this category
is the edit distance metric used in clustering Launchpad ’s
rhythm groups [25].

4. GENERATOR COMPARISON
All level generators were instructed to output levels of ap-

proximately 200 blocks in length, which on average would
be about a minute of playing time for a proficient player,
and which is close to the median length of the original SMB
levels. All level generators were used to produce 1000 unique
levels; from the original game, we have 22 unique levels
(omitting 10 levels from the original, since 2 levels are “un-
der water” and 8 levels are “boss-fight levels”) We never ana-
lyzed the bonus areas since they primarily are “warp zones”



or filled with coins.
There are seven generators included in the analysis, as

described in Section 3.1. Of these, there are two level sets
produced by the Parameterized Notch generator, and two
level sets produced by the Launchpad generator, with differ-
ent parameter settings. The Parameterized Notch Random-
ized level set comes from the Parameterized Notch generator,
with the values of the controllable parameters chosen at ran-
dom. The Launchpad-Rhythm levels come from the Launch-
pad generator, by varying only the rhythm parameters while
holding the length of rhythm groups and component prob-
abilities constant. The pattern-based generator has three
major variants, arising from three different fitness functions
being used: pattern occurrence (counting each meso-pattern
only once), pattern count (counting each occurence of a
meso-pattern) and weighted pattern count, where the pat-
terns are weighted by their rarity. Remaining generators
each had a single set of levels generated for them. The result
is 12 different sets of levels to be analyzed and compared.

The remainder of this section describes the results of these
experiments, including providing visualizations of expressive
range for several generator/metric combinations, and a brief
description of the controllability for each generator.

4.1 All Metrics
Table 1 presents a high-level comparison of all genera-

tors. For each generator, we present the average value of
its levels on all metrics, and the standard deviation of the
that value. A number of observations can be made based
on this table. To start with, there is a lot more variance
between generators (as compared to levels generated by the
same generator) on some metrics than others. For pattern
density, the variation between generators is comparable to
the variance “within” generators (on levels generated by the
same generator), whereas for lenience, linearity and density
it is much higher. Therefore, it seems that the latter three
metrics are better for telling level generators apart; a com-
plementary interpretation is that all generators are bad at
providing variance in those three dimensions.

Studying each metric in detail, we can see a number of pat-
terns. The lowest leniency value can be found for occupancy-
regulated extension. Looking at the levels, it is clear that
they feature more gaps than other levels. This doesn’t nec-
essarily make them more difficult, as there are often many
different jumping-off point for each gap. For the linearity
metric, the outlier is instead the two versions of the Launch-
pad generator, which have much higher linearity (and larger
variety with respect to linearity) than the other generators.
It is here very clear that Launchpad was originally designed
with another kind of platform game in mind, more akin to
rhythm-based games such as Sonic the Hedgehog [26] which
feature more or less constant forward motion.

For the density metric, the real outlier is the pattern-
based level generator. As described above, the density met-
ric counts the number of platforms at different heights at
each tile. The original levels have a relatively low density
as well, but not at all as low as the levels generated by the
pattern-based generator. This points to that level segments
with multiple level platforms are for some reason not re-
produced very well by the pattern-based generator (accord-
ing to its design criteria, an ideal pattern-based generator
should have values similar to those of the original levels on
all metrics). Several other generators, including the Notch

generators, generate far too many overlapping platforms of
different height as compared to the original levels.

The two pattern-based metrics are dominated by two dif-
ferent versions of the pattern-based generator, as would be
expected given that these metrics are fitness functions for
these two versions of the generator. The highest value on
pattern density is thus scored by the pattern count genera-
tor, and the highest score on pattern variation by the pattern
occurence generator. Both ORE and the original levels have
very high scores on both pattern variation and pattern den-
sity, which is logical given that the pattern that the metric
looks for are based on the original levels, and on that the
ORE generator manages to cram a lot of structure into a
short level space. The two versions of Launchpad scores
low on pattern variation, pointing to the relatively sparse
character of their levels; the Notch levels also scores low on
this metric. Interestingly, pattern density and pattern vari-
ation appear highly correlated except when it comes to the
pattern-based generator, where they diverge sharply.

The compression distance metric, being fundamentally
different in that it is a between-level metric, must be dis-
cussed separately. One thing that stands out here is that
the various versions of the Notch generator have the lowest
compression distance. This indicates that the levels, from an
information-theoretic viewpoint, are all very similar. Inter-
estingly, this corresponds very well with qualitative obser-
vations that the levels in Infinite Mario Bros appear quite
similar to each other. On the other end of the scale, the
pattern-based levels have the highest compression distance,
meaning that very little is gained by compressing two such
levels together. This could be explained by the way that
generator assembles levels out single slices, micro-patterns
with length 1 block. As there are no fixed orders of slices
(a given meso-pattern could be implemented through many
different slice combinations), this means that a compression
algorithm based on finding commonly occurring substrings
would not find much to build on.

Figure 6 shows a visualization of every metric and gen-
erator using a boxplot graph. Each of the six metrics is
clustered together per generator. This visualization shows
that each generator has its own unique profile for the sets of
metrics, not only in mean and standard deviation (as shown
in Table 1), but also in the overall range of each metric.

4.2 Expressive Range Visualization
The evaluation framework thus far has viewed each metric

largely independently from the others. While this provides a
good high-level view on the properties of a particular gener-
ator, it does not indicate any relationships between metrics
or show the shape of a generator’s expressive range. For
example, viewing all metrics at a high level can show that
a particular generator might be pre-disposed towards cre-
ating a medium range of levels in terms of both linearity
and density, but it would not be able to show any correla-
tion between levels according to those metrics. Visualizing
the expressive range of generators allows such biases to be
easily seen [25]. This visualization involves plotting a 2D
histogram as a heatmap, where each axis on the plot is one
of the metrics, and each bucket in the histogram is assigned
a color based on how many levels are in the bucket.

For more than two metrics, there is no clear way to pro-
duce a multi-dimensional histogram. While there are several
potential uniform visualizations that show metric values for



Figure 6: A visual comparison of all generators included in this analysis using all of the metrics. Each
generator is evaluated using six metrics, denoted in different colors. The boxplot for each generator-metric
pair shows the median, and upper and lower quartiles. The whiskers extend to data points that fall within
1.9 IQR of the upper and lower quartile, and outliers from this range are depicted as small dots.

each individual level (e.g. a circular heatmap, or a stacked
bar chart), the crucial insight gained from expressive range
evaluation is identifying dense areas in a plot resulting from
many levels sharing similar metric values. Thus, in this pa-
per, we have chosen to compare expressive range by generat-
ing several graphs per generator for pairwise combinations of
metrics. For space reasons, not all expressive range graphs
are shown here; we have selected one of these sets of graphs
with particularly interesting features to show in this paper.

In each of the graphs corresponding to metric pair shown
in Figure 7, the warmest area of the heatmap is red (corre-
sponding to 40 or more levels in that bin), while the coolest
area of the heatmap is dark blue. Expressive range for
the original SMB levels uses a different scale, however, as
there are considerably fewer levels available to measure; the
warmest area of the Original SMB level heatmaps corre-
sponds to 5 levels being in that bin.

Figure 7 shows several subtleties of the generative space
for each generator formed by the density and leniency met-
rics. The rough shapes of the expressive range correspond
to what would be expected, given the range of each metric
shown in Figure 6. However, the version of Launchpad that
varies its rhythm parameters (row 1, column 4) shows an
unexpected correlation between density and leniency, which
is not mirrored in the fixed-rhythm version. The Parameter-
ized Notch generator (row 1, column 6) shows that it biases
two distinct clusters of levels, again with a slight correlation
between the two metrics. From all of the graphs side by
side, it is clear that the expressive ranges of each of these
generators are overall quite different, though there are some
similarities. Overall character and shape of the generators
is somewhat easier to interpret in these graphs than using a
boxes and whiskers diagram.

4.3 Controllability
As discussed in the introduction, there is a potential and

sometimes perceived partial conflict between expressivity
and controllability in procedural level generation. While
this paper is chiefly about the expressive range of the vari-
ous generators involved, an important aspect of evaluating
content generators is evaluating how they can be controlled.
Here we discuss the ways in which each level generator can
be controlled, to help us in gaining an initial understanding
of the relationship between controllability and expressivity
in this domain. Table 2 summarizes how each generator
can be controlled by a designer; note that the table con-
tains only the main generators, and does not list different
configurations of the same generator.

The compression distance metric can be useful for un-
derstanding the impact of parameters in a parameterized
generator. By illustrating the compression distance as a
2D matrix with a heatmap applied to it (with cooler colors
representing low distance), it is possible to see patterns with
sets of levels that have low distance between each other. For
example, Figure 8(a) shows the compression distance matrix
for the Parameterized Notch generator. The checkerboard
pattern corresponds to common combinations of parame-
ters: those that share the same parameters are more simi-
lar to each other than those that do not. When examining
the compression distance matrix for Launchpad with varied
rhythm parameters (Figure 8(b)), a different effect is seen;
variety is overall higher (as reflected by higher compres-
sion distance scores), with particularly high variety when
the rhythm beat type is regular.

5. FUTURE WORK
There are many possible metrics that we have not in-



Figure 7: Heatmaps visualizing the expressive range of each generator according to the Density (x-axis)
and Leniency (y-axis) metrics. The order of generators (left to right, top to bottom) is: GE, hopper,
launchpad, launchpad-rhythm, notch, parameterized notch, parameterized notch-randomized, ORE, original
levels, pattern-based-count, pattern-based-occurrence, pattern-based-weighted-count.

generator control type
GE indirect, via changing evolution

parameters
hopper parameterized, for implicitly de-

fined difficulty levels
launchpad parameterized, for component

appearance and rhythm
notch none
notch (param.) parameterized, for component

appearance
ORE knowledge representation, can

change input chunks
pattern-based indirect, via changing evolution

parameters; and knowledge rep-
resentation, can change input
patterns

Table 2: Controllability of the main generators
tested in this paper, using vocabulary from [22].

(a) (b)

Figure 8: Heatmaps visualizing the compression dis-
tance matrix, showing the impact of varying pa-
rameters. (a) Parameterized Notch generator. (b)
Launchpad with varied rhythm parameters.

cluded in this study. These include metrics that measure
macro-scale progression and repetition in the level. They
also include simulation-based metrics, which would use an
artifical agent to play the level and analyse its playing style.
Further, we could use metrics that try to judge the shape of
the level, for example through computer vision methods. Or
we could associate individual level patterns and situations
with player experience through machine learning, and build
level metrics on top of the output of such models. Lack-
ing any previous comparative PCG evaluation, we focused
primarily on existing research metrics.

A question that becomes more pressing the more metrics
we accumulate is how to choose between them, or perhaps
combine them. One way would be to use principal com-
ponent analysis, or some similar dimensionality reduction
technique. This could give us a smaller number of joint met-
rics that still capture the essential variance between levels.
Or simpler, we could cross-correlate the various metrics and
only keep the least correlated ones. However, we also need to
weigh the importance of having human-interpretable metrics
and results; it is important for designers and AI researchers
to understand how generators differ from each other in a
design-relevant context.

This assumes all metrics are somehow equally important.
Clearly, that is not true for most specific intendend usages,
e.g. to design an intriguing, fun or challenging level. We
would therefore need to complement our computational in-
vestigation with user studies, where we associate metrics
with their effects on player experience. The level distance
metrics could also be validated by investigating how differ-
ent to each other various levels are perceived to be.

Finally, the comparison of generators performed here is
only possible because each generator shares a common con-
text and framework. Evaluating within a common frame-
work is helpful; however, it also obscures the importance of
creating a content generator to meet a specific game’s con-
text. Clearly, some metrics can be easily applied to multi-
ple level generation contexts (such as compression distance)
while others may need to be fine-tuned for a new context.

6. CONCLUSIONS
We have defined a framework for evaluating and com-

paring the expressivity of level generators, and quantita-



tively compared seven different platform game level genera-
tors (and several variations of them), along with the origi-
nal Super Mario Bros levels, using six different metrics. We
have also discussed the role of controllability in level gener-
ation and its relation to expressivity. Our results constitute
the first quantitative comparison of multiple level genera-
tors, and contain both expected and unexpected outcomes.
Among the expected outcomes are that the differences be-
tween generators on most metrical dimensions correspond
to the qualitatively observed differences between levels gen-
erated by them. Among the unexpected outcomes is that
parameterization plays a very large role in changing the na-
ture of generated levels by some generators (e.g. Notch,
Launchpad) but not others (e.g. pattern-based). Metrics
that correlate for one generator might not correlate for an-
other version of the same generator. We believe the informa-
tion contained in this paper provides a good baseline against
which to characterize new generators and metrics, and have
made freely available level samples and source code.
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