Composing Video Game Levels with
Music Metaphors through Functional Scaffolding

Amy K. Hoover
Institute of Digital Games
University of Malta
Msida, Malta
amy.hoover @gmail.com

Abstract

Artists and other creators naturally draw inspiration for new
works based on previous artifacts in their own fields. Some
of the most profound examples of creativity, however, also
transform the field by redefining and combining rules from
other domains. In procedural content generation for games,
representations and constraints are typically modeled on the
target domain. In contrast, this paper examines represent-
ing and generating video game levels through a represen-
tation called functional scaffolding for musical composition
originally designed to procedurally compose music. View-
ing music as a means to re-frame the way we think about,
represent and computationally design video game levels, this
paper presents a method for deconstructing game levels into
multiple “instruments” or “voices,” wherein each voice rep-
resents a tile type. We then use functional scaffolding to au-
tomatically generate “accompaniment” to individual voices.
Complete new levels are subsequently synthesized from gen-
erated voices. Our proof-of-concept experiments showcase
that music is a rich metaphor for representing naturalistic, yet
unconventional and playable, levels in the classic platform
game Super Mario Bros, demonstrating the capacity of our
approach for potential applications in computational creativ-
ity and game design.

Introduction

In what way is a game level like a musical composition? In
several ways, as it turns out. To begin with, let us make an
assumption that we are talking about linear levels, where the
player characters freely traverse forward or backward, but
little variation exists in other dimensions of player move-
ment (path changes are rare or inconsequential). Such levels
are common, for example in platform games such as Super
Mario Bros, racing games such as Need for Speed, and fight-
ing games such as God of War. Interestingly, while many
games at first appear to allow players to choose where to
go and feature intricate 3D graphics representing seemingly
expansive worlds, often they are in fact linear experiences at
their core. This goes particularly for the campaign modes of
first-person shooter games such as Halo and Call of Duty,
where the player’s three-dimensional movements are care-
fully funneled into an effectively one-dimensional corridor.
While certain types of games feature completely non-linear
levels, in particular open world games such as Grand Theft
Auto and Skyrim have fairly linear levels.

Julian Togelius
Dept. Computer Science and Engineering
New York University
New York, NY, USA
julian@togelius.com

Georgios N. Yannakis
Institute of Digital Games
University of Malta
Msida, Malta
georgios.yannakakis @um.edu.mt

Like these game levels, musical pieces are compositions
that proceed linearly over time. They have beginnings and
ends, and the musical ideas or content in between is experi-
enced in a particular order. Several other concepts in music
have analogues in level design. Take for example intensity,
where intensity in music (typically expressed by frequency
of notes, layering of instruments etc.) can be more or less
directly translated to intensity in a (part of a) level (typi-
cally expressed by number of opponents, frequency of com-
plicated jumps etc). Themes and other repeating melodic
structures, i.e. short segments that can be repeated with
variations, are the equivalent of patterns in level design as
defined by Bjork and Holopainen (2004). Music is almost
always represented as a discrete time series of notes; it is
rare that music time windows are near-continuous (such as
in the case of a glissando) or a note lies outside the standard-
defined note pitches (e.g. an indefinite pitch). Likewise most
game levels adopt discrete space and time scales and use
standardized and pre-defined pieces of content placed ap-
propriately in the level (as standard notes placed within a
discrete time scale).

Similarities between linear levels and musical composi-
tions is perhaps most apparent in games where the player is
moved through the level structure at a set pace; this includes
classic scrolling arcade games such as R-Type and newer “in-
finite runners” such as Canabalt or Flappy Bird. Here, the
forced movement of the screen and player character mirrors
the forced progression when listening to music.

Assuming that levels are linear structures, methods for al-
gorithmically analyzing and generating music can also an-
alyze and generate game levels. For example, a common
technique for analysis and generation is n-grams. This sim-
ple method essentially counts the occurrences of sequences
of length n within a sequence, and creates a table of sub-
sequence frequencies that can then be used to statistically
generate new sequences that are similar to the original se-
quences. If an n-gram is trained on one or many melodies, it
can then produce any number of new melodies that embody
regularities in the melodies on which it has been trained.
N-grams and similar sequence mining methods can success-
fully capture and reproduce local structure in musical com-
position, but typically face difficulties capturing long-term
dependencies and other global structures (Ames (1989)).
The very same methods can be used for games. For ex-

ample, Dahlskog, Togelius, and Nelson (2014) trained n-
grams on Super Mario Bros levels, and showed that they
could generate levels in the same style as those the n-grams
were trained on.

Another feature of most musical compositions is that they
feature multiple voices, typically played by different instru-
ments or sung by different humans. Most Beatles songs fea-
ture one drum track, one bass track, two guitar tracks, and
one voice track. These voices are highly dependent on each
other; if they fail to take each other into account, the mu-
sic will sound disharmonious or out of sync. But when well
executed the interplay of different voices adds richness and
depth to a composition beyond what a single melody could.

We can use the same analysis model for game levels. A
game level could be seen as consisting of several different
structures that depend on each other. The interplay of open
areas, walls, items, NPCs, start and exit locations and so on
is what creates the dynamics of a level together; only walls
will not make a level, and the placement of items has no
meaning except in the context of the placement of walls. The
effectiveness of the placement of one type of in-level content
depends crucially on the other content in the level; for ex-
ample, if the power-up is placed before or after an end boss
radically changes its meaning, and some modes of relative
placement are clearly superior to others given reasonable as-
sumptions of playing styles. We can therefore talk about a
game level as a composition of several voices, where each
voice is a sequence of positions for a type of object.

The list of trans-medial analogues could be made much
longer but the presented analogies already make the core
message of this paper rather clear: music can be used as a
metaphor for efficiently representing game levels (and possi-
bly vice versa) and that such a trans-medial way of refram-
ing game level representation might afford new expressive
possibilities to computational game level designers.

An Example: Super Mario Bros

Let us develop the idea suggested above in the context of
a concrete example. We choose the classic platform game
Super Mario Bros (SMB), as SMB levels are highly linear
and well-studied within procedural content generation. An
SMB level could be seen as a matrix with a given length and
height, where each cell corresponds to a tile, which could
be a brick, air, an enemy etc. In the following, we will as-
sume that we traverse the level from left to right in steps of
a single tile (Mario himself is one tile wide). The first voice,
analogous to a bass or drum track, would be the height of
the ground. As remarked on by other authors (e.g. Smith,
Whitehead, and Mateas (2011)), the interplay of ground and
gaps in the ground (which the player must jump over in or-
der to progress) defines a basic rhythm of the level. When
extracting voices from an SMB level, the first voice could
therefore be the height of the ground at each x-position in
the level, with O signifying a gap. (The mapping of a bass
tone to the height of the ground has previously been sug-
gested in the context of a side-scrolling shooter by Holtar,
Nelson, and Togelius (2013).) A good choice for the second
voice would be the height of the highest non-ground plat-
form at each position, with 0 indicating no platform. We

could continue this way until we have one voice for each tile
type; the particular representation we use is detailed in .

Overview of the Paper

This paper describes a proof-of-concept experiment in
which levels for Infinite Mario Bros, a clone of Super Mario
Bros, are generated through a process of analyzing levels
into ‘voices’, learning the relationship between voices, gen-
erating accompanying voices based on a new voice and syn-
thesizing new levels based on the generated voices. To put
this work into context, the next section will describe re-
lated work on automatic and computer-assisted composition,
functional scaffolding, and procedural content generation in
games. The section after that describes our methods: how
the Infinite Mario Bros level format was split into voices,
and the functional scaffolding method was adapted to learn
relations between these. The results section describes sev-
eral different attempts to generate levels using this method
and showcases generated levels. We finally discuss the ap-
plicability of this method across game genres and use cases.

Background
Automatic Composition and Functional Scaffolding

Like many approaches for procedurally generating arti-
facts, methods for representing and generating music are
often inspired by domain-specific knowledge.For instance,
for a more natural melodic feeling, Holtzman (1981) fo-
cuses on the physical limitations of harpists when develop-
ing rules for constraining harp melodies. Similarly, Keller
and Morrison (2007) restrict potential melodies through
grammars designed to replicate the styles of different jazz
artists (Keller and Morrison, 2007).Likewise, another ap-
proach called functional scaffolding for musical composi-
tion (FSMC) generates music by proposing and exploit-
ing two deeper musical principles: 1) music can be repre-
sented as a function of time and 2) the musical voices in a
given piece can be represented as functions of each other
(Hoover and Stanley, 2009; Hoover, Szerlip, and Stanley,
2014).By inputting as little as a single monophonic voice or
human scaffold, complete polyphonic pieces can be gener-
ated through the functional transformation of the scaffold.
Inspired by FSMC, this paper presents a method for com-
posing complete video game levels based on an initial, hu-
man composed scaffold or in-game items. Levels are first
conceived as a combination of voices, each representing an
in-game item. Then, to generate a completely new level sev-
eral of the voices are selected to scaffold the generation of
additional assets (e.g. the tubes, enemies, bricks, etc.).

Procedural Content Generation

Procedural content generation (PCG) in games refers to the
algorithmic creation of game content with no or limited hu-
man input. Shaker, Togelius, and Nelson (2014) survey the
field, discussing both methods for generating content and
types of content that can be generated. While game content
can refer to a large variety of classes or artifacts, including
quests, characters, game rules, items and texture, this paper
concentrates on the procedural generation of game levels.

PCG has existed in games since the early eighties, with
games such as Rogue pioneering runtime generation of lev-
els. Reasons for generating game levels include reducing de-
signer effort, reducing required storage space, and providing
infinite replayability. In recent years, many games have built
aesthetics around particular methods of content generation,
such as highly acclaimed platformer Spelunky, blockbusters
Diablo III and Borderlands, and much anticipated space ex-
ploration game No Man’s Sky.

At the same time, there has been intense research ac-
tivity in PCG within academia. This has taken the form
of exploring new methods for PCG, such as the search-
based paradigm where evolutionary algorithms are used (To-
gelius et al., 2011), the solver-based paradigm where PCG
problems are formulated as constraint satisfaction prob-
lems (Smith and Mateas, 2011) and the experience-driven
paradigm where content is generated to optimize models of
player experience (Yannakakis and Togelius, 2011). Further,
the role of PCG within the game development process or as
a part of the game has been explored. In particular, mixed-
initiative methods have been proposed where PCG methods
augment human editing of game levels. One example of this
is the Tanagra platform game level editor (Smith, White-
head, and Mateas, 2011), which uses PCG to accompany
human editing.

Relatedly, the challenge of generating multiple types of
game content in a unified manner using multiple disparate
generative methods has been posed as a grand challenge in
computational creativity (Liapis, Yannakakis, and Togelius,
2014a). While in the current study we are focusing only
on levels for a platform game, we are exploring something
analogous to multifaceted content generation in that we are
breaking down the challenge of generating a particular ar-
tifact into the challenges of generating a set of constituent
content types, namely, the individual “voices”.

Methods and Experiments

This section describes the approach for representing game
levels as FSMC voices and the artificial neural network
(ANN) training method for predicting appropriate voices for
a given human input, or scaffold.

Level Representation and Voice Extraction

We used 8 of 23 available levels from the original Super
Mario Bros game, which had been encoded into the Infinite
Mario Bros level format as training data (Horn et al., 2014).
The encoding was done by Dahlskog and Togelius (2014).
Infinite Mario Bros levels are represented as matrices of
height 14 and lengths of a few hundred (most common level
length is 200). Each cell in the matrix represents a single
block/tile, such as a goomba, brick block, or pipe. Almost
everything in the game has an extension of a single tile, ex-
cept Mario in large mode who is two tiles tall. In this repre-
sentation, each cell contains a single character, which is then
converted by the IMB game engine to the corresponding tile

[TPl]

when a level is loaded. Thus, space means an empty tile, “g

means a ground tile, “p” a platform, “k” a red koopa etc.
To convert a level into voices the following procedure was

Outputs

M.\C&

Bias | | Ground (t) | |Ground (t- 1)| |Ground (t- 2)| |Output (t-1) | |Output (t-2) | Output(t-3)

Inputs

Figure 1: ANN Representation. Each ANN takes as in-
put voices from one or several levels Super Mario Bros.
Through NEAT, these ANNs are evolved to predict actual
in-game tiles (in this example, the brick placements in a
level). To best capture the regularities in a level, the inputs
and outputs are fed back into the ANN at each subsequent
tick. Once trained, ANNs can potentially suggest reasonable
placements for new human composed in-game tiles.

followed. One voice was created for each of the follow-
ing eight tile types: ground, platform, question mark block,
brick block, stone, goomba, pipe, and koopa. A voice is a
one-dimensional array with the same length as the level’s
width. For each voice, each column of the level matrix is
inspected to see whether there is a tile of the specified type.
If the column contains a tile of right type, then the value of
the voice at that position will be the height (y-position) of
the tile; otherwise it will be zero.

The set of voices extracted from each level faithfully and
completely represents the level, provided that there is maxi-
mally one tile of each type in each column. If there are sev-
eral tiles of the same types at different heights in a column,
the lower tile(s) will be disregarded. In the original Super
Mario Bros levels used for training data in this paper such
situations are relatively rare, and mostly concern situations
when multiple platforms overlap at different levels. These
situations could in the future be addressed by adding extra
voices or something akin to overtones, but for the current
paper we simply disregard them.

Translating from a set of voices back to a level is straight-
forward. Starting from an empty level, voices are added one
at a time. A voice is added through simply drawing tiles at
the given height at each position (or not drawing a tile if the
value of the voice is zero). For tubes and stones, positions
below the given position are filled in as well.

Training Artificial Neural Networks

Once a set of levels has been analyzed into voices, neural
networks were trained to predict a “target” voice based on
the value of one or several “given voices” (as shown in figure
1). In each case, what was predicted was the value of one
voice at position (“time”, following the music metaphor) ¢
based on the value of the given voice at time ¢ as well as
earlier times, and optionally the output of the predictor itself
attime ¢t — 1 or earlier.

For prediction we use neuroevolution, i.e. neural net-
works trained through evolutionary algorithms. In partic-
ular, we use NeuroEvolution of Augmenting Topologies
(NEAT), a state-of-the-art neuroevolution algorithm capa-
ble of evolving both the structure and connection weights
of neural networks (Stanley and Miikkulainen, 2002). Ex-
periments in this paper are implemented in Colin Green’s
NEAT framework, SharpNEAT version 2.2 1.

Several different sets of inputs to the networks were in-
vestigated. In the most common combination, the value of
the input voice at time ¢ is used, as well as the value of the
same voice at t — 1 and ¢t — 2, the output of the network at
time ¢ — 1 and a bias input with the constant value 1. This
gives a total of 5 inputs for a single voice. When several
voices are used, commensurately more inputs are used. It
should be pointed out that the NEAT algorithm is capable
of selecting which inputs to use for training, and so adding
inputs should not have adverse effects on learning capability
(within reason).

In the network configuration, each network predicts a sin-
gle voice. The output o, which is constrained to the range
0..1 is interpreted as the predicted value of the target voice
at time ¢ thus: if o < 0.5 then the voice value is 0, otherwise
itis (o — 0.5) * 28 so that all 14 possible height values can
be represented by the single network output.

The fitness function was designed to reward correct re-
production of the target voice(s). It steps through the given
voices from ¢ = 0 until the end of the voices (t = 199 for
many of the example levels). At each step, it compares the
predicted voice value (v,,) with the actual value of the target
voice (v;). If p, is zero and p; non-zero, or vice versa, the
reward at this point is zero; if both p, and p; values are zero
the reward is one. If both the predicted and the target value
function is non-zero, the reward is 1 — abs(v, —v;)/14. This
scheme rewards networks in proportion to how close the pre-
dicted height of a voice is to the actual voice. To obtain the
fitness of the network, all rewards are summed and normal-
ized by the length of the voice, so that perfect reproduction
yields a fitness of 1.

Five different networks were trained on the first level of
each of the eight worlds of Super Mario Bros, i.e. levels 1-1,
2-1, 3-1, 4-1, 5-1, 6-1, 7-1, and 8-1. Each network is trained
on all eight levels, but only predicts one voice. The first net-
work predicts goombas based on the voices ground, bricks
and qguestion marks. The second network predicts powerups
based on the four previous voices. The three subsequent net-
works predict platforms, tubes and stones in that order. Each
of the five networks considered inputs all the previous voices
including those voices generated by the previous networks.
Figure 2 shows the fitness growth in an example training
session.

Results

This section describes a set of example results from train-
ing networks to reproduce missing voices in existing Super
Mario Bros levels, and then using these trained networks
both to reproduce the missing voices and then to create new

"http://sharpneat.sourceforge.net/

Tubes and Goombas

0.50
1
| _———]
0.46
«
wv
(]
=]
=
0.44
0.42
— Goombas
- - Tubes
0.40 . L . !
0 200 400 600 800 1000

Generations

Figure 2: Example Training Session for Goombas and
Tubes Showing a Fitness Increase.

voices for partial levels we created ourselves specifically for
this project. We find that while our networks will not repro-
duce existing levels precisely — which is not the aim of the
paper as that would result to unnecessary overfitting limita-
tions — they will, however, produce reasonable accompani-
ment to given voices, regardless of whether these voices are
part of levels they have been trained on or freshly created.

First of all, Figure 3a shows level 1-1 from Super Mario
Bros. Figure 3b shows the three voices ground, bricks and
question marks from level 1-1 merged into one level. This
level was produced through analyzing the initial level into
all its component voices, and then reassembling a new level
based on three of these voices.

Figure 3c shows level 1-1 “reassembled” through using
trained networks to reproduce the voices that were removed,
thus completing the level. As can be seen, it is not identical
to the original level — few of the reproduced tiles are in the
right place. In particular, the stair-like stone formations are
missing entirely, instead the stones are placed in columns
in unexpected places. However, the reproduced voices rep-
resent interesting accompaniment to the existing voices and
together they constitute a playable level.

Next, Figure 3d shows a three-voice partial level created
by the authors, designed to make ample use of bricks and
question marks. Figure 3e shows the same level with the
missing voices produced by neural networks. The generated
voices produce a relatively sparse but appropriate accompa-
niment, and a playable level.

Discussion

While there may be several reasons that the ANNs have diffi-
culty precisely reproducing voices on which they have been
trained including potential limitations of the neural network
architecture or training regime, the most likely reason is that
some of the regularities are difficult to discover. However,
because fitness increases over generations on the trained net-
works, at least some of these regularities can be represented

(b) The Ground, Brick, and Question Mark Voices in World One Level One

(e) Additional voices generated by trained networks for the author-created level.

Figure 3: Visual overview of example results.

through the training method and representation. Although
perfectly trained ANNs could potentially create more plau-
sible generated voices, the results indicate that enough is
learned to enable complete level construction.

The underlying idea of this paper can be said to be an-
alyzing a linear artifact into various linear bands or chan-
nels, and then synthesizing the artifact from such bands or
channels again after some manipulation. It is interesting to
note various analogies with methods from other engineering
fields. One analogy is to frequency domain analysis, such
as using Fourier transform to analyze a complex sound into
component tones of different frequencies. (A similar idea
is implemented in the Jpeg algorithm that analyzes images
into channels.) Such transformations can be done in order to
apply particular effects to the source content, such as remov-
ing, changing or adding frequencies; it could also be done in
order to compress the source content with or without loss
of information. Perhaps these ideas could carry over to the

analysis we perform here. Another intriguing analogy is to
multiobjectivization, the practice in optimization to trans-
form a single-objective problem into a multi-objective one.
In combination with multiobjective evolutionary algorithms,
this has been shown to increase optimization performance by
avoiding local optima (Knowles, Watson, and Corne, 2001).
It is unclear whether a similar effect could be observed and
utilized in the current domain.

A natural extension of the method and experiments de-
scribed in this paper is to use this method as part of an Al-
assisted authoring tool for game levels. It would allow the
player to draw one or several voices (e.g. ground and ene-
mies), and have the other voices automatically generated to
accompany the drawn voices. This tool could allow the de-
signer to “lock” certain voices in certain parts of the level, so
that they become given voices and the basis for generation of
other voices. It could incorporate user feedback and retrain
its networks through interactive evolution to learn the user’s

designer preferences, similar to what is suggested in (Liapis,
Yannakakis, and Togelius, 2014b). With an addition such as
of our system in mixed-initiative level design we envision
the generation of naturalistic, nevertheless, unconventional
levels for designers to consider in the hope that their creativ-
ity is fostered.

As discussed in the introduction, many games have
mostly linear levels, suggesting that the method presented
in this paper could potentially generate assets for many
other games. It is interesting to consider what the other
voices would mean in such cases. For a side-scrolling
space shooter, a mapping between musical voices and dif-
ferent types of level content can be found in Audioverdrive
by Holtar, Nelson, and Togelius (2013). For a first-person
shooter game, one could imagine that different voices were
associated with the width of the path taken, the existence
and position of cover points, power-ups, enemies, doors
and other checkpoints and so on. It is highly likely that at
least some “musical” structures would exist here, with cover
points alternating between left and right of the level path, en-
emies congregating in “waves” and power-ups being placed
before such waves.

Ultimately, we wonder how far we can take the central
metaphor of game levels as music which underlies the work
described in this paper. Would it be possible to find a good
game level interpretation of concepts such as tempo, har-
mony and dissonance? For instance, how closely associated
are the principles of tempo and rhythm-based level genera-
tion (Smith, Whitehead, and Mateas, 2011)? Perhaps certain
types of content coexist harmoniously in some games but
other combinations are dissonant. For example in Halo sev-
eral Grunts frequently occur together with Elites, whereas
different types of Elites rarely occur together, and enemies
from different factions are very rarely encountered in the
same level segment. Thus, there appears to be an analogy
between frequent subsequences of events within a level and
amusical chord. Game tension which is a carefully designed
experience element rather common in FPS games such as
Left for Dead can be seen as analogous to both rhythm and
the musical scale. There are many other concepts in sound
and music, beyond the above, that could be investigated,
such as timbre and loudness.

Conclusions

This paper has presented a method for modeling and gener-
ating linear video game levels based on a musical metaphor.
Levels are analyzed into separate voices, where each voice
represents the existence and height of a different tile type.
Conversely, levels can be synthesized by “drawing” voices
onto a level canvas. Core to the method is that we see the
various voices as accompanying each other, or perhaps some
voices as accompanying and others leading. We used an ex-
isting neuroevolution-based method for learning and gener-
ating musical accompaniment and a corpus of Super Mario
Bros levels to learn a model of accompaniment. This model
could then generate complete levels based on freeform draw-
ing of one or two voices. While results show that the trained
models can generate playable levels with some interesting
features based on a few given voices, capturing even more

regularities is a future goal. Future work also includes build-
ing an Al-assisted level design tool based on the method
demonstrated here, and extending the idea to other types of
games.

Acknowledgments

This research is supported, in part, by the FP7 ICT project
C2Learn (project no: 318480) and by the FP7 Marie Curie
CIG project AutoGameDesign (project no: 630665).

References

Ames, C. 1989. The markov process as a compositional
model: a survey and tutorial. Leonardo 175-187.

Bjork, S., and Holopainen, J. 2004. Patterns in game design
(game development series).

Dahlskog, S., and Togelius, J. 2014. Procedural content
generation using patterns as objectives. In Applications of
Evolutionary Computation. Springer. 325-336.

Dahlskog, S.; Togelius, J.; and Nelson, M. J. 2014. Linear
levels through n-grams. Proceedings of the 18th Interna-
tional Academic MindTrek.

Holtar, N. I.; Nelson, M. J.; and Togelius, J. 2013. Au-
dioverdrive: Exploring bidirectional communication be-
tween music and gameplay. In Proceedings of the 2013
International Computer Music Conference.

Holtzman, S. 1981. Using generative grammars for music
composition. Computer Music Journal 51-64.

Hoover, A. K., and Stanley, K. O. 2009. Exploiting func-
tional relationships in musical composition. Connec-
tion Science Special Issue on Music, Brain, & Cognition
21(2):227-251. This paper is accompanied with a set of
musical samples at http://eplex.cs.ucf.edu/neatmusic.

Hoover, A. K.; Szerlip, P. A.; and Stanley, K. O. 2014.
Functional scaffolding for composing additional musical
voices. Computer Music Journal 38(4):80-99.

Horn, B.; Dahlskog, S.; Shaker, N.; Smith, G.; and Togelius,
J. 2014. A comparative evaluation of procedural level
generators in the mario ai framework. In Proceedings of
Foundations of Digital Games (FDG).

Keller, R. M., and Morrison, D. R. 2007. A grammati-
cal approach to automatic improvisation. In Proceedings,
Fourth Sound and Music Conference, Lefkada, Greece,
July.Most of the soloists at Birdland had to wait for Park-
ers next record in order to find out what to play next. What
will they do now.

Knowles, J. D.; Watson, R. A.; and Corne, D. W. 2001.
Reducing local optima in single-objective problems by
multi-objectivization. In Evolutionary multi-criterion op-
timization, 269-283. Springer.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014a. Com-
putational game creativity. In Proceedings of the Fifth

International Conference on Computational Creativity,
285-292.

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2014b. De-
signer modeling for sentient sketchbook. In Computa-
tional Intelligence and Games (CIG), 2014 IEEE Confer-
ence on, 1-8. IEEE.

Shaker, N.; Togelius, J.; and Nelson, M. J. 2014. Proce-
dural Content Generation in Games: A Textbook and an
Overview of Current Research. Springer.

Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space
approach. IEEE Transactions on Computational Intelli-
gence and Al in Games 3(3):187-200.

Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tana-
gra: Reactive planning and constraint solving for mixed-
initiative level design. IEEE Transactions on Computa-
tional Intelligence and Al in Games (99).

Stanley, K. O., and Miikkulainen, R. 2002. Evolving neural
networks through augmenting topologies. Evolutionary
computation 10(2):99—-127.

Togelius, J.; Yannakakis, G.; Stanley, K.; and Browne, C.
2011. Search-based procedural content generation: A tax-
onomy and survey. IEEE Transactions on Computational
Intelligence and Al in Games (99).

Yannakakis, G. N., and Togelius, J. 2011. Experience-driven
procedural content generation. IEEE Transactions on Af-
fective Computing 2(3):147-161.

