
AUDIOVERDRIVE: EXPLORING BIDIRECTIONAL COMMUNICATION
BETWEEN MUSIC AND GAMEPLAY

Nils Iver Holtar, Mark J. Nelson, Julian Togelius

Center for Computer Games Research
IT University of Copenhagen

nils@nilsih.com, {mjas, juto}@itu.dk

ABSTRACT

We describe a system for bidirectionally coupling the mu-
sic and gameplay of digital games, so gameplay proce-
durally varies the music, and music procedurally varies
the game. Our goal is to inject game music more closely
into the core of gameplay, rather than having the music
serve as an aesthetic layer on top; traditionally, music re-
sponds to game state, but not vice versa. Such a coupling
has compositional and design implications: composing
game music becomes a kind of composition of gameplay,
and furthermore, game-design decisions feed back into
the music-composition process. We discuss an arcade-
style 2d side-scrolling game, Audioverdrive, demonstrat-
ing this integrated music/game composition approach.

1. INTRODUCTION

Music is a key part of the culture and aesthetics of digital
games, so much so that it often spills out of games proper,
and into popular music culture. Games’ soundtracks form
a large part of their overall feel, and the cultural attach-
ment they engender is such that fans flock to see sym-
phonies perform the soundtracks [6]. Meanwhile, the par-
ticularized aesthetic sound signatures of the sound chips
in systems like the Atari VCS have inspired modern-day
chiptune and bitpop musicians to repurpose the hardware
for music-making outside the gameplay context [4].

Despite this rich cultural spillover outside of digital
games into a ferment of influences and cross-influences,
when we examine what digital game music does back at
home, in its original habitat of games, it usually plays a
strangely cautious role, with only selective involvement.
In games, we can locate the center of action, where the
ferment of influences and cross-influences happens in this
medium, in the closely-coupled mess made up of game-
play, interaction, and system dynamics, full of feedback,
emergence, and interlocking effects. But game music typ-
ically only tiptoes around the edges of that nexus, adding
an aesthetic layer to it but not getting caught in any dan-
gerous feedback.

1.1. Game-to-music communication

The traditional way game music is coupled with gameplay
is by receiving information from the core game system.

The core is complex and closely coupled, but its interface
with the music system is cleaner and one-way. The core
gameplay system sends signals to the music system as dis-
crete state-transition cues: The music transitions to “boss
music” when the player enters a boss battle, or to “hurry
up” music when a timer runs low (the states may of course
be more complex, and there are often substates as well).1

More recently, dynamic game music aims to make this
interaction more complex—but still one-way. Instead of
pre-composed scores that are cued by a finite set of state
transitions, gameplay events and changing game state feed
into parameters of a generative-music system [2]. Intrigu-
ingly, from the perspective of our current interests, in mu-
sic games such as Guitar Hero the influence is the other
way around. There, gameplay takes input from the music:
the music is in effect the “level design”, specifying what
the player will have to do to pass a level.

1.2. Bidirectional game–music communication

Why not throw music right into that vortex of multidi-
rectional close coupling and feedback that makes up the
heart of gameplay? That’s our long-term goal: game mu-
sic drilled into in the core of a game’s dynamics.

In this paper, we ask something closely related yet ar-
chitecturally simpler. We do maintain the nicely sealed
computational boundary between “the game system” and
“the music system”, in part so we can reuse existing tech-
nology on each side. However, we aim to break the com-
positional boundary: the two systems communicate in a
pervasively bidirectional manner, with neither layer treated
as subsidiary. This produces a closely coupled system
with complex interaction patterns and feedback between
gameplay and music. Our particular interest is in treating
this closely coupled system as a unified compositional sit-
uation. In a quite direct sense the composer of game music
becomes a composer of gameplay—and in the other direc-
tion, gameplay design becomes a kind of music design.

Our contributions to enable this integrated composi-
tion process are a framework for bidirectional gameplay–
music communication, and Audioverdrive, an arcade-style
game designed and composed using the framework. The
framework connects games programmed in Cocos2D, a

1This style of gameplay-driven, state-based music transition was pi-
oneered by the LucasArts iMuse system in the early 1990s [12], and
remains the dominant mode of game-to-music coupling [1, 3].

game engine for the iPhone and iPad platforms, with gen-
erative spaces of music composed in Ableton Live, a pop-
ular piece of digital audio workstation software aimed at
live performance, via a composer/designer-configurable
set of mappings. Audioverdrive’s aesthetics are loosely
based on the first author’s experiences—previously sepa-
rate ones—as composer/keyboardist for the game-music-
influenced synth band Ultra Sheriff, and designer of pro-
cedurally varying arcade games. One of the goals in that
regard is to produce an actually playable version of the
coupled gameplay–music experiences one often finds imag-
ined in music videos in this genre.

2. BACKGROUND

Our goal of architecting the gameplay–music coupling as
a bidirectional feedback loop will no doubt sound famil-
iar to audio installation artists. In contrast to games’ lim-
ited experimentation with such feedback loops, feedback
between audiences and generative music systems (often
conceptualized as a form of cybernetic coupling) is a com-
mon strategy deployed and explored by interactive sound
installations. Therefore, in a sense our work can be seen as
part of a recent trend in experimental digital games, which
canvasses electronic art for ideas and design elements to
selectively borrow [8].

Despite intriguing connections to audio installations
and interactive electronic art more broadly, we see our-
selves as situated primarily in game design as a starting
point. The distinction is admittedly not a clean one [10],
but we find it productive here to start with existing game-
design and game-music composition practices, and exper-
iment with adding bidirectional coupling between the two.
It’s possible the result may converge nearer to electronic
art, especially in particular designs using feedback loops
aesthetically modeled on those common in cybernetic art.
But so far, in our own use of these experimental tools (see
Section 4), the result still feels much like game design and
game-music composition, albeit in a weirdly coupled way.

2.1. The composition-instrument

The existing style of game design closest to our goal of
bidirectional coupling is probably the one theorized by
Herber [7] as a composition-instrument. In a composition-
instrument, the player can “play” or “compose” music in
real-time while playing the game. In contrast to music-
matching games such as Guitar Hero, the player generates
(part of the) music through gameplay rather than matching
gameplay to pre-defined music.

A particularly intriguing example from 1987 stands
out, Otocky.2 A sidescrolling arcade shooter for the Nin-
tendo Famicom Disk System, it places players in con-
trol of a flying avatar that fires a short-range ball pro-
jectile in order to deal with enemies. Each of the eight
possible shooting directions has a musical note attached

2Toshio Iwai, SEDIC/ASCII, 1987. We discuss only Otocky here, as
a pioneer of the style; additional games are discussed elsewhere [7, 11].

Figure 1. Otocky, in which notes and instruments are tied
to weapons.

to it, making the soundtrack directly player-influenced.
Otocky’s playable notes always map to a note belonging
to the mode and harmony in the current accompanying
layer, so that player-created melodies will never contain
notes that sound “wrong” or “off” from the perspective of
traditional harmonic structures. Furthermore, shooting is
quantized to the beat so that all notes played will fit the
rhythmic structure.

The mapping here is still mostly one-directional: mu-
sic is dynamically generated from player actions, but does
not then feed back into the gameplay. However, musical
considerations implicitly feed back into gameplay design
through the constraints that were added to make “playing”
produce the desired effect. This is seen most clearly in the
shooting quantization. Although implemented straightfor-
wardly in the gameplay domain as a quantization of shots,
which in turn results in the notes produced by the shots be-
ing quantized, clearly the purpose of the constraint is the
audio-domain quantization. It is therefore best thought of
conceptually as a constraint in the audio domain, which
travels “backwards” through the shot-to-note mapping to
produce a constraint in the gameplay domain. The con-
straint here is fairly simple to hand-code in either domain,
but with more complex musical constraints it is easy to
see how less obvious interplay may arise.

2.2. Bidirectional procedural content generation

In addition to the experiments with dynamic and genera-
tive game audio already discussed, there has also, since
the early 1980s, been work on procedurally generating
game levels and other content. For example, classic games
like Civilization, Rogue and Elite feature content that is
automatically generated rather than created by a human
designers. In some cases, levels are randomly generated,
while in other cases a human player or designer is given
some kind of control over the generated content [9]. In
other cases, content is generated based on external data.
In one example, Monopoly boards are generated based on
demographic data for a given geographical area, using cri-

teria for inclusion specified by the player [5]. An example
of procedural game level generation based on music is Au-
diosurf, where the player can supply MP3 files which are
automatically analyzed by the game’s software and turned
into tracks for a form of racing game.

We focus on a mapping framework for the composer
to manually link gameplay elements to musical elements
and vice versa, taking a composition-oriented approach
to the feedback loop. It is also possible to conceive of
a more artificial-intelligence-oriented version of the ap-
proach: two procedural-generation systems, one game-
to-music and the other music-to-game, hooked into each
other in a loop, each one’s output serving as the other’s
input. This would add a more substantial computational
layer to the mappings. Where ours are quite direct, if the
mappings were full-blown procedural generators, an addi-
tional algorithmic element arises, where it is not only the
mappings but the algorithmic processes by which they’re
computed that become aesthetically and experientially rel-
evant. On the other hand, complex mappings risk breaking
the aesthetic coupling by producing such a chaotic algo-
rithmic coupling that the player no longer sees or is able
to interpret the linkage.

2.3. Ableton Live

The audio side of our mapping framework is provided by
Ableton Live3 a popular digital audio workstation (DAW)
package, i.e. software that allows arranging and process-
ing of audio and MIDI, along with support for third-party
plugins. Live is commonly used by producers, DJs, and
engineers, and is particularly focused on live audio ma-
nipulation. Most notably, it features a workflow mode
called the session view, where the typical horizontal time-
line view is replaced by a matrix of cells, named clips.
Clips are grouped into scenes and spread across individual
tracks. A scene is a row, while a track is a column of clips.
Tracks function like in traditional DAW software, where it
is an output (stereo or mono) that can be assigned a chain
of DSP units. Clips host the actual content played back
to the track output, and only one clip can play per track
at a time. Clips can either be launched individually or in
groups, the most accessible way being through launching
entire scenes (Figure 2 shows an example session view).

Ableton Live’s setup suits us well when working with
dynamic game music, since a state change in the game
can be mapped to trigger a specific scene or clip: the
“live” part of the performance is here being played by
our mapping application rather than directly by a human
performer. Live also offers various quantization options,
meaning that one can ensure that every action will be quan-
tized to the next specified time unit. Out-of-the box, there
are many MIDI routing and mapping possibilities, enabling
external MIDI controllers to be configured to add a sub-
stantial amount of control. The possibility space is fur-
ther expanded when the official Max For Live extension
is included, as this enables the creation of custom instru-

3https://www.ableton.com/

Figure 2. An example of a clip matrix in Ableton Live.
The small play buttons are used to launch either clips or
scenes and the column to the far-right represents scenes.

ments and effects. Although we don’t explore it in our
current experiments, the support for live audio manipula-
tion/composition opens up the further possibility of a sec-
ond person “livecoding” the game as it’s being played, by
manipulating the musical composition and audio parame-
ters which are in turn mapped into gameplay.

3. THE MAPPING FRAMEWORK

Our mapping framework is an application that sits be-
tween Ableton Live and the game, communicating with
Ableton Live over the Open Sound Control (OSC) proto-
col and serving as the hub of gameplay–music coupling
(see Figure 3).4 Ableton Live will report and alter its state
based on received OSC messages, and the mapping appli-
cation uses this functionality to create a tree list mirroring
the structure of the current Live project. If the Live project
is set up to explicitly send MIDI output to the mapping ap-
plication (which will appear as a selectable MIDI output
destination), some basic MIDI messages such as note-on
and modulation will also be mappable.

Any program that exposes itself as an OSC node on
the same network as the application will be selectable as
a “game location”. Upon selecting a game location, the
mapping system will query the IP address for mappable
game parameters and if successful, all mappable game pa-
rameters will be registered in the application. The com-
poser selects which parameters to use in the current con-
figuration. The application will in turn inform the game

4OSC support is added to Ableton Live by the unofficial but
widely used LiveOSC plugin (http://livecontrol.q3f.org/
ableton-liveapi/liveosc/).

http://livecontrol.q3f.org/ableton-liveapi/liveosc/
http://livecontrol.q3f.org/ableton-liveapi/liveosc/

Figure 3. The mapping application and its current con-
figuration acts as a central hub between Ableton Live and
the game.

about which parameters are used, limiting the amount of
OSC traffic to the bare necessities.

3.1. The anatomy of a parameter

Each parameter is a floating-point number, though arbi-
trary semantics can be encoded into it. It might be a scal-
ing property only assuming values between 0.0 and 1.0, or
it could be a numerical representation of a color. We also
distinguish between two types of parameters from a tem-
poral perspective: continuous and discrete parameters. A
continuous parameter is one that updates very frequently,
and should be thought of as a continuous stream of values.
A discrete parameter is one that updates less frequently,
and would usually be linked to the initiation of a process
of some kind, or an event.

In Ableton Live, this distinction is very clear as con-
tinuous parameters are the equivalent of knobs or slid-
ers while discrete parameters are usually the triggering of
clips and scenes. In a game, the distinction can quickly
become a little more fuzzy. A parameter that reports the
amount of enemies on screen could be seen as a contin-
uous value, but the moment in time where an increase
or decrease of this number occurs could in some cases
also be viewed as a discrete parameter change, or event.
To simplify, we let the frequency of updates loosely dic-
tate the parameter type. In the actual source code, there
is no significant functional difference between these two;
the distinction is only made in the mapping interface as a
compositional aid for classifying parameters.

3.2. The anatomy of a mapping

A valid mapping consists of one or more input parameters
and one output parameter. The direction of the mapping
can either be from Ableton Live to the Game or vice versa.
Whenever one of the input parameters changes, a function
will execute, and its result will be transmitted to the out-
put parameter. The function is a user-written javascript

Figure 4. An example of a mapping setup.

function where the current input values are passed as ar-
guments. The javascript instance is shared across all map-
pings, allowing mappings to influence each other through
global variables created via the “Global Variables” button.
This basic set of building blocks opens up many possibil-
ities. The result of one mapping could for example scale
the results of another. An output parameter, however, will
only transmit its value when triggered by an input param-
eter, so it is not possible to directly trigger the calculation
of one mapping from another.

4. AUDIOVERDRIVE

Audioverdrive is an iPad game, using the Cocos2D game
engine. Ableton Live and the mapping software run on an
OS X computer, communicating with the iPad app using
OSC over a wireless network. The game is inspired by the
genre of space shooters that includes Gradius5 and Pix-
elJunk SideScroller.6 The player controls a side-scrolling
ship, attempting to avoid collision with enemies, enemy
bullets, and terrain. Also present in the world are weapon-
modifying orbs that the player can either absorb or acti-
vate through proximity. The orbs come in four varieties:
power, spread, homing, and bounce. When activated, an
orb’s property will be added to the ship’s weapon, com-
bining itself with any properties already added. Should
the player choose to absorb an orb by tapping it, that orb’s
property will be added to the ship permanently—or un-
til the player absorbs a different orb, the ship is hit by a
bullet, or the ship is destroyed.

4.1. The game parameters

When run without OSC communication, little happens.
The player can control the ship and pick up weapon orbs,
but since no enemies are spawned (the default enemy spawn
rate is zero), there is no incentive for the player to inter-
act. An analogy could be made in viewing this state of the
game as a synthesizer waiting to be played. Not surpris-
ingly, the game takes a turn for the more interesting once
the game parameters are put into use.

Table 1 lists all input game parameters that Audiover-
drive accepts over OSC from the mapping application.

5Konami, 1985
6Q-Games, 2011, http://pixeljunk.jp/library/

SideScroller/

http://pixeljunk.jp/library/SideScroller/
http://pixeljunk.jp/library/SideScroller/

Player speed Continuous
Enemy Speed Continuous
Terrain Speed Continuous
Player Shoot Discrete
Enemy Shoot Discrete
Enemy Mode Discrete
Enemy Spawn Rate Continuous
Spawn Enemy Discrete
Weapon Orb Type Discrete
Weapon Orb Spawn Rate Continuous
Spawn Weapon Orb Discrete
Terrain Top Height Continuous
Terrain Bottom Height Continuous
Color None Continuous
Color Spread Continuous
Color Homing Continuous
Color Power Continuous
Color Bounce Continuous
Color BG Continuous
Color Terrain Continuous
Game Victory Discrete
Game Defeat Discrete

Table 1. Available input parameters for the game.

Some instantiate objects in the world, while others affect
the behavior of the world and objects already in it. This
was done primarily with the intent of enabling the cre-
ation of gameplay curves in tandem with musical curves.
Changes in these parameters are also instantly perceivable
in the game. So while it is still up to the composer to de-
cide the degree of directness between the audio mappings
and the parameters that govern the game world, the pa-
rameters exposed were chosen so as to make for a high
chance that relations will be recognizable by the player, if
anything clearly audible is mapped to these parameters.

We have also chosen to expose the victory and defeat
actions, the consequence of this being that the composer
essentially controls what constitutes victory and defeat in
the game. Making the end conditions trigger in interesting
ways, however, is only achievable through clever utiliza-
tion of both these input parameters and the output param-
eters depicted in Table 2. These values, received from
the game and transmitted by the mapping framework to
Ableton Live, should be made to influence the music in
ways that change the way the music again influences the
game. This is where the composer can begin to really ex-
periment, as it is possible to effectively create new rules
of the game this way (illustrated in the next section).

While the novelty of our framework lies in its possi-
bility for creating system-altering mappings, some color
parameters are also manipulatable. This was done in an
attempt to provide composers with more freedom in re-
gards to which musical style to employ. It was our goal to
avoid the potential restrictions that a too-predefined aes-
thetic might introduce. Also, since there is no screen over-

Player X Position Continuous
Player Y Position Continuous
Player Deaths Discrete
Total onscreen enemies Discrete
Total destroyed enemies Discrete
Enemy1Shot Discrete
Number of spread Discrete
Number of homing Discrete
Number of power Discrete
Number of burst Discrete
Current modifier Discrete

Table 2. Available output parameters for the game.

lay showing points, lives remaining, ammunition, or other
features often included in a game’s heads-up display, the
color parameters are also the composer’s only tool for of-
fering other kinds of visual feedback that go beyond in-
stantiation of game objects.

While the parameters exposed here are a relatively
small set of those that can be imagined even for just this
style of game, our experience is that even these make for
a very configurable game, enabling a wide range of pos-
sible designs. We especially embrace the possibility that
this can yield very unusual results seen from a traditional
game design perspective, since composers may choose
to favor musical qualities, rather than designing from a
gameplay-first perspective at all times. A musically unique
bassline might be chosen in preference to a finely tuned
difficulty curve, for instance.

4.2. The game design

The game design is broken into three parts: the music-to-
game mappings, the game-to-music mappings, and finally,
an overall phase structure in which both the gameplay and
music progresses from an early phase through several in-
termediate phases, to the culmination of the level. This
phase structure can be seen as both the “level design” and
the “composition”, the composer’s choices guiding how
the coupled experience unfolds at the macro scale.

4.2.1. How music controls the game

The musical aesthetic is an electronic track inspired by
acts like Daft Punk and Lazerhawk and some elements
of soundtracks to 1980s space shooter games. The instru-
ment lineup is fairly basic, with relatively direct mappings
to game state. Enemy shots are triggered when a kick or a
snare drum plays, and all enemies currently on screen will
attempt to crash into the player when a clap sample plays.
A distorted sitar instrument is mapped to spawn enemies,
and this usually happens at the beginning of four-bar pe-
riods, backed up with a crash sound. A short plucking
instrument triggers player shots, usually in rapid succes-
sion, as this instrument mainly plays quick arpeggios. The
terrain height is controlled by the current note value of

Figure 5. The lower image shows the voice of deep pad
bass clip currently looping when the screenshot was taken.
The two last notes lead up to the first note in the loop (Ab-
Bb-C) which is what just happened in the screenshot, as
can be seen in how the bottom terrain rises in steps.

a deep pad sound (which will be referred to as the ter-
rain instrument for convenience), and this instrument is
played with two separate voices, where the lower voice
controls the bottom height and the upper voice controls
the top height of the terrain. Figure 5 illustrates how the
terrain and instrument can correlate. The mapping is made
so that smaller intervals between the voices result in nar-
rower passages in the game. Weapon orbs are spawned ev-
ery time a sonar-like instrument (made up of white noise
and several sine waves) plays, where the y position of the
spawned orb is decided by the note pitch.

4.2.2. How the game controls the music

The game controls the music mainly by triggering clips
and scenes in Ableton Live when events occur that re-
sulted from player actions (directly or indirectly). Since
the clips in turn instantiate and modify game elements
when played, this produces the bidirectional communica-
tion. For example, when enemies are destroyed, an explo-
sion clip is triggered along with a three-note chord played
by the sonar-like instrument. Due to its mapping, this
chord will also instantiate weapon orbs in the game state.
That demonstrates how bidirectional mappings can work
together to create new rules in game, since the instanti-
ation of weapon orbs becomes a direct cause of destroy-
ing enemies. Different clips will be launched in Able-
ton Live depending on the current set of orbs connected
to the player. The orbs have been split into two groups,
where the bounce orb is matched against the terrain in-
strument and the other orbs are matched against the arpeg-
gio instrument. Exactly which clip is launched differs
depending on the number and type of orbs linked to the
player. Picking up or connecting with different orbs there-
fore has different effects in the game; bouncing orbs will

Figure 6. Gameplay phases in Audioverdrive.

indirectly change the terrain, while other orbs will influ-
ence the player’s shot patterns.

4.2.3. Composition of the gameplay–music progression

The game is structured in four sequential phases (see Fig-
ure 6). Phases are programmed in the mapping framework
(in Javascript), and influence which clips and scenes in
Ableton Live, and therefore which gameplay sequences,
are triggered. The track is built around one short musical
motif, with phases driving the musical progression built
from this motif, roughly in ABAB form. The player’s goal
is to survive until the end, which can only be achieved by
completing the challenge in each phase.

The first phase starts with a simple two-note sonar clip
creating bounce weapon orbs. Upon connecting with an
orb, a terrain instrument clip is triggered. Connecting with
more than one orb replaces the clip with more lively ver-
sions, resulting in more jagged terrain. The goal in this
phase is to succeed in maintaining a connection of two
or more orbs for a period of four bars each time. With
each success, a crash sound will play while new instru-
ments are gradually added and existing clips are replaced.
This phase is meant to offer some exploration of the ter-
rain generation, while also gradually introducing the main
musical motif. The two final crash cymbals in this phase
are also accompanied by the enemy-spawning sound. At
this point in the track, neither the arpeggio nor the drums
play, so no enemy or player shots are fired. However, a
clap appears at the end of each four-bar period whenever

an enemy is present, causing the enemy to charge towards
the player. When the player has succeeded in maintain-
ing sufficiently long connections, the track automatically
builds up and transitions into the next phase.

In phase two, the player needs to survive for 32 bars.
At this point, the track has the full set of drum clips play-
ing, resulting in enemies shooting regularly. Since the en-
emy spawn sound plays every fourth bar, the player must
actively dodge enemy bullets while trying to connect with
weapon orbs that activate the arpeggio clips, which in turn
cause the player to fire shots back. Musically, this is where
the track has really begun in full, with a steady bass pat-
tern and drum beat being the main focus. Bounce orbs
are omitted from the possible spawned orb types, so no
terrain generation occurs in this phase, in order to create
a clear contrast with the previous phase by making this
phase more spatially open and focused on combat.

After 32 bars, the player will enter phase three. Sim-
ilar to the second phase, the music here will not advance
unless the player completes a series of goals. Here, the
player needs to destroy each incoming wave of enemies,
and new waves will not present themselves until the cur-
rent one has been dealt with. Each enemy wave is spawned
with an increasingly elaborate melody being played by the
enemy-spawning instrument. Musically, this phase is a
slightly more intense version of the motif played in the
intro, with the terrain instrument being in the foreground.
Bounce orbs are also spawned, offering the player the pos-
sibility to influence the terrain generation again. This of-
fers a strategy for dealing with some enemies, as more
jagged terrain increases the likelihood of them colliding
with it. When the final wave of enemies is dealt with, the
track transitions into the last phase.

Musically, the final phase is a full realization of the
second phase, and is intended to be the peak of the game
experience. As in the second phase, the player must sur-
vive for 32 bars. A main difference is that the sonar in-
strument plays much more elaborately, making the screen
home to many more weapon orbs. This was done in an
attempt to make the actual game experience match the cli-
matic nature of the music, as the screen is likely to be
filled with elaborate player and enemy bullets. As in the
second phase, no bounce orbs are spawned, and therefore
there is no terrain.

5. DISCUSSION

In our experience using this mapping framework to de-
sign/compose Audioverdrive, the music-composition and
gameplay-design processes are indeed intertwined (as in-
tended), though the unified composition situation often
ends up posing rather challenging constraints. Some mu-
sical choices are restricted by gameplay considerations
when in the context of particular mapping choices, and in
the other direction, some gameplay ideas must be scrapped
because of their musical effects. On the other hand, cer-
tain combinations have a synergy where gameplay pat-
terns suggest development of a musical theme and vice

Figure 7. Screenshot from phase four, where the player
must simply survive for 32 bars. The sonar instrument
plays a full melody here, resulting in many weapon orbs;
the player is shown connected to four of them.

versa. For example, the terrain instrument played a much
more minor part in our initial design, but was expanded
to use more elaborate melodies because of how well the
coupling with terrain generation worked.

A main challenge with our current approach to game–
music mapping is the lack of structure given by this very
open-ended space of possible mappings. Our framework
currently gives maximum flexibility, simply exposing in-
put and output parameters and allowing the composer to
build a coupled experience out of them by overlaying any
kind of coupling structure they wish. This constitutes
a fairly low-level interface, however. The higher-level
structure that a composer can build on top of the frame-
work can take many forms, which are not reified in the
interface or architecture. Therefore, to achieve coherent
and interpretable results, the composer/designer needs to
develop a concept or method, more specific than the space
of all possible couplings, with which they’ll organize the
game–music mapping in their particular piece.

The particular method we used for Audioverdrive was
to begin with a musical idea, which we used as a point
of departure for organizing the complete gameplay expe-
rience. This led to a macro-level composition oriented
around movements or phases, with transitions between
them triggered in a fairly conventional fashion by com-
pletion of gameplay objectives. Therefore these musi-
cal phases correspond one-to-one with gameplay phases.
More complex bidirectional feedback is then instantiated
within each phase, with game–music mappings depending
on the particular phase. The development of the mappings
within each phase took place in a more iterative fashion,
experimenting until we eventually reached a fixed point
where both the gameplay and the music “worked”.

The approach we took with Audioverdrive is only one
way of approaching the composition/design of these cou-
pled experiences. But, it may be worth focusing on and
developing a few such specific approaches in more depth,
to understand the composition/design of these coupled ex-

periences in a more structured context. In addition to al-
lowing us to gain further compositional/design experience
with specific idioms, a narrowed focus can also lead to op-
portunities for better computational and interface support
for mappings. For example, we are considering building
interface modes around reified mapping patterns, such as
including the concept of a “phase” in the mapping inter-
face.

6. CONCLUSION

Our goal is to push game music into the core of game-
play through strong bidirectional coupling, where music
procedurally varies gameplay, and gameplay procedurally
varies music. With such a feedback loop, music composi-
tion can no longer be treated as a separate aesthetic layer
accompanying game-design, but is instead unified into a
single compositional/design situation: composing game
music composes gameplay, and designing gameplay de-
signs game music.

In our initial work to realize coupled gameplay–music
composition, we built a mapping framework that allows
a composer to link gameplay parameters with Ableton
Live elements in both directions. We designed a space-
shooter game, Audioverdrive, using this framework, ex-
ploring a particular compositional style oriented around a
linear progression of “phases”, with coupled interaction,
through fairly direct mappings, within each phase.

On the experiential side, our goal is to produce an
experience that is somewhere between the composition-
instrument of Herber [7] on the one hand, where the player
feels they are producing music; and the music-following
experience of games such as Guitar Hero, on the other,
where the player feels they are following along with pre-
written music. One of our touchstones in aiming at a
coupled experience beween those two is the frequently
imagined—but not actually playable—interaction between
gameplay and music depicted in the music videos of some
electronic-music groups.

On the composition side, our main interest has been
in exploring the results of constraints in each direction,
ensuring as much as possible that we are not simply layer-
ing gameplay on top of music or the reverse, but tackling
their coupling. Though the game is fairly simple, we think
that is the case in Audioverdrive. From a strictly techni-
cal perspective, in fact, the game cannot operate without
both sides of the equation. The Ableton Live setup and
Audioverdrive run on physically separated devices, con-
nected through a wireless network. When the connection
is interrupted, the game and music both clearly flounder
as their animating counterpart disappears, leaving a ship
floating aimlessly through space, accompanied by some
monotonous synth pads.

7. ACKNOWLEDGEMENTS

Thanks the makers of modular software we strung together:
Ableton Live, VVOSC, LiveOSC, Cocos2D, and Box2D.

8. REFERENCES

[1] K. Collins, Game Sound: An Introduction to the His-
tory, Theory, and Practice of Video Game Music and
Sound Design. MIT Press, 2008.

[2] ——, “An introduction to procedural music in video
games,” Contemporary Music Review, vol. 28, no. 1,
pp. 5–15, 2009.

[3] P. J. Crathorne, “Video game genres and their mu-
sic,” Master’s thesis, University of Stellenbosch,
2010, http://hdl.handle.net/10019.1/4355.

[4] K. Driscoll and J. Diaz, “Endless loop: A brief his-
tory of chiptunes,” Transformative Works and Cul-
tures, vol. 2, 2009, http://dx.doi.org/10.3983/twc.
2009.0096.

[5] M. G. Friberger and J. Togelius, “Generating inter-
esting monopoly boards from open data,” in Pro-
ceedings of the 2012 IEEE Conference on Computa-
tional Intelligence and Games, 2012, pp. 288–295.

[6] C. Furlong, “Computer game music: A
multifunctional medium,” Master’s the-
sis, University College Dublin, 2006,
http://www.cianfurlongmusic.net/Music/Computer
Game Music - A Multifunctional Medium.pdf.

[7] N. Herber, “The composition-instrument: Musical
emergence and interaction,” Hz, vol. 9, 2007, http:
//www.hz-journal.org/n9/herber.html.

[8] A. Hieronymi, “Playtime in the white cube: Game
art, between interactive art and video games,” Mas-
ter’s thesis, University of California, Los An-
geles, 2005, http://ahieronymi.net/pdfs/ahieronymi
playtime.pdf.

[9] R. Khaled, M. J. Nelson, and P. Barr, “Design
metaphors for procedural content generation in
games,” in Proceedings of the 2013 ACM SIGCHI
Conference on Human Factors in Computing Sys-
tems, 2013, pp. 1509–1518.

[10] O. Leino, “Re-conceptualising the play-element
in electronic art,” in Proceedings of the 17th
International Symposium on Electronic Art,
2011, http://isea2011.sabanciuniv.edu/paper/
re-conceptualising-play-element-electronic-art.

[11] M. Pichlmair and F. Kayali, “Levels of sound: On
the principles of interactivity in music video games,”
in Proceedings of the 2007 Digital Games Research
Association Conference, 2007, pp. 424–430.

[12] W. Stranck, “The legacy of iMuse: Interactive video
game music in the 1990s,” in Music and Game: Per-
spectives on a Popular Alliance, P. Moormann, Ed.
Springer, 2013, pp. 81–91.

http://hdl.handle.net/10019.1/4355
http://dx.doi.org/10.3983/twc.2009.0096
http://dx.doi.org/10.3983/twc.2009.0096
http://www.cianfurlongmusic.net/Music/Computer_Game_Music_-_A_Multifunctional_Medium.pdf
http://www.cianfurlongmusic.net/Music/Computer_Game_Music_-_A_Multifunctional_Medium.pdf
http://www.hz-journal.org/n9/herber.html
http://www.hz-journal.org/n9/herber.html
http://ahieronymi.net/pdfs/ahieronymi_playtime.pdf
http://ahieronymi.net/pdfs/ahieronymi_playtime.pdf
http://isea2011.sabanciuniv.edu/paper/re-conceptualising-play-element-electronic-art
http://isea2011.sabanciuniv.edu/paper/re-conceptualising-play-element-electronic-art

	1 Introduction
	1.1 Game-to-music communication
	1.2 Bidirectional game–music communication

	2 Background
	2.1 The composition-instrument
	2.2 Bidirectional procedural content generation
	2.3 Ableton Live

	3 The Mapping Framework
	3.1 The anatomy of a parameter
	3.2 The anatomy of a mapping

	4 Audioverdrive
	4.1 The game parameters
	4.2 The game design
	4.2.1 How music controls the game
	4.2.2 How the game controls the music
	4.2.3 Composition of the gameplay–music progression

	5 Discussion
	6 Conclusion
	7 Acknowledgements
	8 References

