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Abstract

In this paper we describe a method of modeling play styles as
deviations from approximations of game theoretically ratio-
nal actions. These deviations are interpreted as containing in-
formation about player skill and player decision making style.
We hypothesize that this information is useful for differentiat-
ing between players and for understanding why human player
behavior is attributed intentionality which we argue is a pre-
requisite for believability. To investigate these hypotheses we
describe an experiment comparing 400 games in the Mario
AI Benchmark testbed, played by humans, with equivalent
games played by an approximately game theoretically ratio-
nally playing AI agent. The player actions’ deviations from
the rational agent’s actions are subjected to feature extrac-
tion, and the resulting features are used to cluster play ses-
sions into expressions of different play styles. We discuss
how these styles differ, and how believable agent behavior
might be approached by using these styles as an outset for a
planning agent. Finally, we discuss the implications of mak-
ing assumptions about rational game play and the problematic
aspects of inferring player intentions from behavior.

Introduction
Recent work in Game AI research has seen an increas-
ing interest in the generation of believable bot behavior:
bots that not only challenge or interest humans, but play
like humans. For instance, the well known Mario AI
Championship (Karakovskiy and Togelius 2012; Shaker, To-
gelius, and Yannakakis 2013) recently added a Turing Track
to the competition and the 2K Botprize (Hingston 2013;
2010) has long been a successful recurring event. Both com-
petitions challenge researchers and developers to create bot
players whose behaviors are as indistinguishable from those
of human players as possible.

At the core of the pursuit lies evidence that the experi-
ence of playing against another sentient player brings en-
gagement and entertainment to most games (Togelius, Yan-
nakakis, and Shaker 2012). The phenomenon that believable
human-like interaction from a computer system will gener-
ally result in human emotional and behavioral reciprocation
has been documented for many kinds of human-computer-
interaction (Reeves and Nash 1997). Believability can be
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construed as a question of being able to attribute intention-
ality to a bot through inferring from observation that it is ex-
hibiting goal directed behavior and by interpreting and un-
derstanding this behavior. Dennett named this process of
ascribing agency to an object from assumptions about be-
liefs and desires the “Intentional Stance” (Dennett 1987). In
short, if we ascribe beliefs and desires to an artificial agent,
we are likely to also ascribe to it intentions and from the in-
tentionality comes the tendency toward treating the object as
sentient.

Our hypothesis is that the way humans deviate from
an optimal course of action in the game theoretical sense,
whether due to lack of skill or the pursuit of goals not for-
malized in the game’s rule structure, is useful in making be-
havior seem intentional. We further hypothesize that deci-
sions are a useful way of operationalizing the deviations.
We attempt such an operationalization by contextually an-
alyzing the observable actions that humans take within the
rule systems of games as collected in play traces.

Related Work
Modeling play styles is nothing new in general. Various sig-
nals from the player have been employed to enable differen-
tiation between and grouping of players, ranging from facial
expressions during game play (Asteriadis et al. 2012) over
spatial exploration and behavior overall (Drachen, Canossa,
and Yannakakis 2009; Asteriadis et al. 2012) to simply
player performance in terms of score (Asteriadis et al. 2012).

Additionally, the psychological literature contains a cor-
nucopia of models for describing how behavior is derived
from or influenced by unobservable, latent traits. Below,
we briefly visit and relate to previous work in generating
human-like behavior from latent trait models and exemplify
their application to play style modeling.

Latent Trait Models of Behavior
One approach for creating believable bots is to start out with
general models of human cognition and motivation and use
these models as generative systems for bot behavior. Cogni-
tive psychology concerned with personality and motivation
sees human behavior as the expression of latent tendencies
inherent in the individual that are stable over time.

Personality models are generally concerned with pref-
erence and appraisal tendencies. They are typically con-



structed by examining people’s preferences and appraisals
in response to general questions or specific situations, real
or imagined. There is evidence that such models can be used
to explain play styles to a certain extent. For instance, per-
sonality has been shown to significantly influence behavior
in on-line virtual worlds (Yee et al. 2011). Personality mod-
els rest on the idea of a cognitive-emotional system that re-
sponds to various situations in a predictable fashion because
the system – barring any life-altering experiences such as
physical or psychological trauma – is relatively stable over
time. Personality models are accepted as having explanatory
use and validity in cognitive psychology and have been used
for generating believable bot behavior (Rosenthal and Con-
gdon 2012). A similar, but less investigated and established
latent model, is humans having decision making styles as
traits. The general idea is analogue to that of personality pro-
files, but suggests that humans exhibit stable decision mak-
ing biases. There is evidence that humans possess such sta-
ble and predictable decision making styles (Scott and Bruce
1995). The question then becomes how to recognize such
decision making biases in game play.

Irrational Play
The idea that play is not purely rational, but is driven by mul-
tiple motivations aside from the wish to perform optimally
within the strict rules of the game, is well known. For in-
stance, agon is only one of Callois’ classic categories (Cail-
lois 2001) of play and the idea has also been expressed in
concepts such as a game-play continuum (Malaby 2007). In
the same vein, research has attempted to capture the devi-
ation from rational play by observing the interactions be-
tween players in multiplayer games (Smith 2006).

The Compliant-Constructive Continuum. It has been
proposed that the discrepancy between the individual
player’s intentions, and the ones strictly afforded by the
game rules, can be described as residing on a compliant-
constructive play style continuum (Caspersen, Jespersen,
and Pedersen 2006).

The completely compliant player only uses the rules of the
game to respond to the affordances presented by the game,
attempting to move closer to achieving the winning condi-
tion. An example would be a Counter-Strike (Valve 1999)
player who directs all her play efforts toward making her
own team win, disregarding any aesthetic preference in e.g.
distance to enemies or weapon choice in order to optimize
her contribution to her team’s coordinated efforts.

The completely constructive player uses the game rules
to enable intrinsically motivated actions and situations that
may or may not be related to the winning conditions, and
hence affordances, of the game. An example would be a
player using the game world to enact a protest against vi-
olence through inaction or graffiti (Antunes and Leymarie
2010).

These two examples represent positions of play styles on
opposite ends of the compliant-constructive continuum. Im-
portantly, the completely compliant and rational play style
can be thought of as apersonal and a matter of solving the
game: From a given state in a deterministic game of perfect

information, the compliant-rationally best action(s) will be
the same for any player. By extension, the style of a particu-
lar player should then be expected to be found in the part of
the play actions that are constructive, rather than compliant,
and thus suboptimal from a game theoretical perspective.

Taking previous work on play styles, latent traits, and ra-
tional play into consideration, the novelty of the approach
described here lies in the understanding of play styles as se-
ries of decisions leading to actions systematically deviating
from game theoretically rational actions.

Belief-Desire-Intention Agents
Key to investigating the usefulness of the analytical ap-
proach outlined above is having a clear mechanistic model
of the process leading from intention to decision to action
that can be reverse-inferred with some degree of precision
from observed actions.

The artificial intelligence literature provides a well-known
framework for describing and generating intentions and
plans from beliefs and desires: The Belief-Desire-Intention
(BDI) framework for agents (Rao and Georgeff 1997). The
framework is originally generative, but this work aims to use
the model analytically on empirical observations.

The use of BDI agents has a rather long history in sim-
ulations, but they have less commonly been found in com-
puter games, the most notable examples perhaps being the
Black & White series of god-games (Lionhead Studios,
2001, 2005) (Norling and Sonenberg 2004). The paradigm
is fundamentally a reasoning and planning approach that
uses three high level concepts, beliefs, desires, and inten-
tions, that together constitute an agent model.

Beliefs describe the agent’s current representation of its
own state and the state of its surrounding environment.

Desires describe all the current goals that the agent would
like to achieve at a given time.

Intention(s) describes the active goal(s) that the agent is
pursuing at any given time.

In addition to this, a typical approach is for the agent to have
a plan library, from which it selects courses of action to form
intentions (Norling and Sonenberg 2004).

Two main aspects of the BDI paradigm make it especially
useful for modeling human decision making: The psycholo-
gistic nature of the model maps well to a human introspec-
tive understanding of thought processes. Norling and So-
nenberg (2004) mention that the framework does not match
the actual way that human reasoning occurs, but by small
appropriations, the BDI paradigm can fit the typical model
of human reasoning from cognitive psychology: If beliefs
are understood as a common headline for perception and
evaluation of the state of an agent’s internals as well as its
environment it need not be a completely conscious repre-
sentation. We can take the beliefs as being the total sum
of the agent’s available information, including declarative,
non-declarative, procedural, and emotional knowledge. By
the same reasoning, desires can be understood as motiva-
tions widely, incorporating both conscious wishes as well as
unconscious drives, instincts and behavioral tendencies all



the way down to the conditioned level. Finally, intentions
can be understood as the selection basis for the current plan
under execution, regardless of whether this plan was moti-
vated by conscious determination or by partially or wholly
intuitive or procedural impulses. That means that the mo-
ment an intention is formed and followed, in the BDI frame-
work, it can be understood as a decision.

Decision Making Styles In this work we attempt to use
the BDI framework as a backdrop for understanding play
traces from the Mario AI Benchmark (MAIB) testbed
(Karakovskiy and Togelius 2012), assuming that the actions
observed during game play are decisions that in turn are real-
izations of intentions. We further assume that any variation
from the rationally optimal is grounded in intentions beyond
the scope of the game rules, and a realization of the player’s
play style as a a personal trait1, realized dynamically in in-
teraction with the context of the game rules. As such, the
complete chain of inference leads backwards from actions
to decisions to intentions to beliefs and desires and cannot
be understood without a deep understanding of the game’s
rule structure. We do not necessarily assume that beliefs or
desires are wholly conscious, and as such decisions may be
based partly or wholly on procedural knowledge and evalu-
ative processes at the subliminal level. This is especially rel-
evant to the MAIB framework, since it is a real-time game
where perceptual and motor skills are emphasized.

The key to the project outlined here then becomes the
question of how to approximate how a rational agent with
the perceptual and motor capabilities of a human player
would act while playing MAIB. If we assume that the player
is a rational agent, and that we know exactly what infor-
mation about the game state the player has access to and
is able to perceive, the decision space of the game player
narrows significantly, and we start becoming able to use
combinations of normative and descriptive game theory to
approximate what a perfectly playing rational agent would
have done. In the following, we treat some of the general
challenges to consider in collecting data on decision making
from human players and proceed to examine an attempt at
handling these challenges in a data set play traces from the
MAIB.

Decision Making in the MAIB
The MAIB testbed is a well established framework for work-
ing with procedural content generation, player modeling,
agent development and testing, and human imitation in plat-
form games. It is a replication of the game mechanics and
content of the classic 2D platform game Super Mario Broth-
ers. The testbed has the advantage of being immediately
familiar to most players in terms of content and mechanics.
This may offset learning effects in experimental conditions
and eases the administration of instructions during experi-
mental runs. The game has simple keyboard inputs consist-

1Considering the source of the play style tendency as a trait is
beyond the scope of this work, but as noted in the section on related
work, decision making style, cognitive and personality models may
be of use here.

ing of buttons mapped to six different actions: Down, Jump,
Left, Right, Speed, and Up.

The MAIB testbed offers several features that are of inter-
est to the study of decision making in games. Because the
game is played in a real-time (25 fps) simulation with an ex-
perientially continuous deterministic world with predictable
physics, it offers a well suited backdrop for studying eco-
logical decision making under well-known conditions. The
testbed allows for a practically infinite number of unique po-
sitions and action sequences, ensuring that any two sessions
played by humans are unlikely to ever be identical. Though
the game world offers an impressive expressive richness vis-
à-vis its limited reality, the game rules superimposed on top
of the game world that the player is afforded to comply with
are simple: Players should win levels as quickly as possible,
while avoiding or killing enemies in their way, and collect-
ing as many items as possible.

At every given moment during the course of a play
through, only a subset of the level is visible to the player,
providing no more information than can be assimilated at
any given moment by a perceptually and cognitively nor-
mally functioning individual. The game presents most rel-
evant information about the game state at any given time
and can, as such, be considered a game rich in information
(though not perfect, as blocks may contain various hidden
power-ups and enemies can be hidden from sight for vary-
ing amounts of time).

Together these features allow us to construct an agent
that plays the game as a completely rational, compliant hu-
man player would: By searching through the possible game
states from any given position and finding the temporal
path that best fulfills the above outlined affordances. One
well-performing method for constructing such an agent has
been provided by Baumgarten in previous work (Champan-
dard 2009; Togelius, Karakovskiy, and Baumgarten 2010;
Baumgarten 2013) in the form of a MAIB playing A*-agent.
This agent was used to approximate the actions of a perfectly
compliant, rational player during data collection2.

Method
The following method was developed for discovering player
decision making styles from actions performed in the MAIB
testbed: Human subjects are asked to play randomly gen-
erated levels in the MAIB. All human actions are logged
and from these a play trace is constructed, representing their
path through each particular level. An A*-agent solves each
level using a set of affordances determining what possible
actions are given priority and to which extent, and a corre-
sponding trace is constructed. In this particular case the only
affordances are to complete the level as quickly and safely
as possible. The difference between the two is determined
by comparing the maximal Y values of the human and the
agent traces for each tile in the level resulting in a deviation

2As the A*-algorithm itself is well known, we refer to Baum-
garten’s work (Champandard 2009; Togelius, Karakovskiy, and
Baumgarten 2010; Baumgarten 2013) for methods of appropriat-
ing the algorithm to the MAIB testbed. His description and code
formed the basis for the implementation used for this study.



trace. Additionally, an action deviation matrix is computed
between the normalized action frequencies of the player and
the normalized action frequencies of the agent. Features are
then extracted from the deviation trace, while the normal-
ized input differences for each session are used directly. The
set of observations is subjected to cluster analysis to dis-
cover play styles across individuals and their play sessions.
The prevalence of clusters for each individual is correlated
with measures of player skill as an indication of the relation
between the human play style and the agent play style. Fea-
tures are compared across clusters to determine how and to
which degree clusters exhibit different play styles. Finally,
the original traces of the discovered play style clusters are
visualized on selected levels for interpretation.

Feature Extraction and Clustering
The following features are extracted from the deviation trace
for every play through: The mean (Mean) of the deviation
trace in order to represent the player’s average deviation
from the agent trace. The maximum deviation (Max) from
the agent trace, in order to capture actions extremely dif-
ferent from the agent trace. The standard deviation of the
deviation trace (Sd) in order to represent the variation of the
deviation trace. The means of the first and second differ-
ences of the deviation trace (Diff1) and (Diff2), representing
local variation in the deviation trace, i.e. the tendency of the
player to move vertically in the level in a manner different
from the agent’s.

The action frequencies (Down, Jump, Left, Right, Speed,
Up) of each player/the agent across the play through of the
level are captured as control inputs from each frame of the
game. The frequencies are normalized to a range of 0 to 1,
relative to the number of frames from start to finish in the
play session. The difference matrix is then calculated as the
absolute value of the difference for each input type. In order
to avoid any direct convolution of skill with play style, no
measures of score or performance are used as features.

The total feature set is used as input for an agglomerative
hierarchical clustering process, applying Ward’s minimum
variance method (Kaufman and Rousseeuw 2005).

Data Collection
A data set was generated from 10 human players playing 40
different, short levels of the MAIB testbed, yielding a total
of 400 play sessions. All player inputs were recorded and re-
played to generate a trace of the players’ routes through the
levels. The levels were of varying difficulty, but all were ex-
actly 100 tiles long. On average players completed levels on
approximately 35% of the play throughs, though substantial
individual differences were observed (range 0-70%, std.dev.
24.7). For each human play through a deviation trace and an
action deviation matrix were calculated as described above.

Results
The clustering yielded 4 well defined clusters (C1, C2, C3,
and C4) depicted in Fig. 1. The selected cluster for each
session was mapped back onto its player, yielding 10 obser-
vations with cluster membership frequencies for each player,

Figure 1: Dendogram from the agglomerative hierarchical
clustering of the extracted features from 400 observations.
The tree was cut at the level of four clusters.

Figure 2: Players’ individual cluster expressions across all
play throughs. Each column represents a player and each
shading within each column represents how many of the in-
dividual player’s 40 play sessions were grouped into clusters
C1, C2, C3, and C4 respectively.

depicted in Fig. 2. Additionally, each player’s average score
and average win rate across all sessions were added to the
dataset as indications of player performance. A correlation
analysis was conducted in order to investigate the relation-
ship between deviation style predominance and in-game per-
formance. The results are reported in Table 1 and indicate
that the two play styles C1 and C2 are correlated positively
with performance while play styles C3 and C4 are corre-
lated negatively with performance. They also indicate that
C2 is characterized by a Jump frequency close to that of
the agent, while C4 is characterized by a Jump frequency
different from the agent’s, and that C1 and C2 have Speed
frequencies closer to the agent’s in contrast to C3 and C4.

A mapping of play style clusters to levels was conducted,
showing how often a given play style was expressed on each
particular level. The frequencies of the results were used to
identify levels that allow for the expression of all clusters
identified across the dataset. The results are presented in
Fig. 3 and indicate that most levels only enable the expres-
sion of some play styles.

To further investigate the differences between the clusters
across the features, the centrality of each cluster with respect
to each feature was established using the Hodges-Lehmann
Estimator of Location. To test for significant group differ-



Feature Wins Score C1 C2 C3 C4
Mean -0.06 -0.06 -0.04 -0.05 0.07 0.02
Max 0.15 0.16 0.04 0.17 -0.03 -0.21
Diff1 -0.09 -0.10 -0.06 -0.11 0.06 0.09
Diff2 -0.01 -0.03 -0.01 -0.01 -0.09 0.06
Down -0.06 -0.06 -0.07 -0.03 0.07 0.00
Jump -0.33 -0.33 -0.09 -0.35 0.02 0.44
Left 0.08 0.09 0.06 0.14 -0.12 -0.05
Right -0.13 -0.10 -0.02 -0.03 0.01 0.07
Speed -0.69 -0.68 -0.46 -0.67 0.72 0.39
Up -0.06 -0.08 -0.08 -0.05 0.09 -0.00
C1 0.57 0.59 - 0.37 -0.46 -0.16
C2 0.86 0.85 - - -0.72 -0.85
C3 -0.66 -0.62 - - - 0.27
C4 -0.73 -0.75 - - - -

Table 1: Spearman correlation between cluster membership
frequency, features, and performance measures. Values sig-
nificant at the p < 0.05 level are in bold. Significance val-
ues are subjected to Holm-Bonferroni correction for multi-
ple tests.

Feature C1 C2 C3 C4 H df Sig.
Mean 1.96 1.73 2.88 1.54 174.0 3 0.00
Max 6.00 7.50 7.50 4.50 309.3 3 0.00
Sd 1.70 1.91 2.22 1.43 152.4 3 0.00
Diff1 0.10 0.10 0.17 0.09 26.5 3 0.00
Diff2 -0.00 -0.04 -0.02 0.00 3.1 3 0.38
Down 0.00 0.00 0.00 0.00 5.8 3 0.12
Jump 0.08 0.08 0.09 0.23 15.8 3 0.00
Left 0.04 0.03 0.04 0.03 5.9 3 0.12
Right 0.44 0.34 0.38 0.42 25.7 3 0.00
Speed 0.60 0.53 0.78 0.91 16.2 3 0.00
Up 0.00 0.00 0.00 0.00 9.8 3 0.02

Table 2: Kruskal-Wallis H tests for differences between
clusters. C1-C4 contains the Hodges-Lehmann Estimator
of Location (Lehmann and D’Abrera 1975), as a measure of
centrality, for each cluster for each feature to allow for com-
parison. Note that for some features, e.g. Speed, all clusters
are differ from one another, while for others, e.g. Jump, one
cluster deviates.

ences, each feature was subjected to a Kruskal-Wallis anal-
ysis of variance (Lehmann and D’Abrera 1975). The results
are reported in Table 2 and indicate that most features sig-
nificantly differ across groups, with the exception of Diff2,
Down and Left. Overall, C4 resembles the agent the most
as expressed by the mean trace difference. Examining the
correlation between C4 and and performance measures, it
seems plausible that C4 resembles the agent because this
play style dies early, but acts like the agent in the early stages
of the level before dying. This interpretation is supported
by the fact that the Jump and Speed frequencies of C4 are
very different from the agent’s, while the Jump and Speed
frequencies of the high-performing C2 cluster are closer to
those of the agent.

Figure 3: Expressed play style clusters mapped to levels.
Each shading represents a cluster.

For exemplification, three levels enabling all play styles
were selected and visualized in Fig. 4. These graphs indi-
cate that C2 traces resemble agent traces. So do C4 traces,
but only for a short period of time before losing, cutting the
session short. The graphs show C1 and C3 diverging from
the agent in terms of trace path, with varying performance.
In terms of the compliant-constructive continuum relative to
the A*-agent, we suggest that C2 and C4 could be consid-
ered compliant and skilled/unskilled respectively, while C1
and C3 are acting more constructively and less stably. This
interpretation, of course, only holds to the extent that one
accepts the A*-agent as a relevant proxy for a rational, com-
pliant, skilled MAIB player.

Discussion
The results presented in this paper reveal a number of in-
sights about the play styles of the participants. The clus-
tering of the play styles and the correlations to performance
measures indicate that the applied approach might indeed be
able to differentiate between different kind of play styles,
and by extension that the operationalization of decision
making styles into deviation from rational behavior is ap-
plicable for a game of the scope of the MAIB. Further work
should be undertaken, however, to investigate and control
for the influence of the particular level as Fig. 3 suggests
that such an influence is present.

Also, multiple theoretical assumptions still stand unre-
solved. It is unclear from the results presented here to which
extent the assumptions of what constitutes rational behavior
are indeed appropriate and how this approach would trans-
fer to games of higher complexity than the MAIB. The A*-



Figure 4: Traces from three levels. Each graph represents a
trace of an individual player or the agent. Note that the high-
performing C2 traces bear resemblance to the agent traces.

agent is arguably a high-performing solution for the MAIB,
but different agents might perform equally well. With more
than one normative game theoretical solving approach to the
game, it becomes difficult to prescribe one over the other as
a perfect baseline. From a pragmatic perspective any high-
performing solution might be good enough, as long as it
serves as a baseline by which to differentiate players, but
it is an assumption that warrants further research. One ap-
proach to this problem could be the construction of multiple
baseline agents and characterizing players in terms of which
baseline agent they resemble the most or the least — gener-
ating procedural personas.

A first step for future work should be to include longer and
more varied levels, allowing for a greater expressive range in
the play throughs. This would also force an elaboration of
the assumptions of what rational behavior in the MAIB is,
and would necessitate a hierarchy of affordances or a sim-
ilar method for identifying the most plausible intentions of
the player from multiple options. Should the agent prefer en-
emy kills over bonus items or vice versa? In the scope of the

current study, this consideration is not necessary, as the only
affordances are reaching the end of the level as quickly and
safely as possible. While this limited scope benefits this first
tentative exploration of the approach, more complex game
situations will be needed to push the boundaries of decision
style identification from deviations from rational play. In the
same vein it is clear that any decision styles extracted from
player behavior will be dependent on the game in question
and that the extent to which decision making styles gener-
alize between games remains unknown. If decision making
styles in games are stable traits expressed across situations,
this should be detectable across different games, but it re-
mains to be seen if the contexts drown out any signal of the
individual player’s decision making style. A comparative
study of multiple games, preferably using the same sample
of players, would be necessary.

Also remaining is the answer to the question of how to
use the clusters identified as decision making styles for syn-
thesizing behavior in the BDI framework. The extension of
this method to a multiple-agent approach would enable this,
if each agent was characterized (even if not strictly imple-
mented) in the BDI framework, exhibiting different desire
hierarchies and and different plans for achieving these de-
sires. This could be achieved by using a battery of different
agents or by constructing an agent with dynamic affordance-
response preferences that could be weighted between or dur-
ing play-throughs.

Finally, the difference trace used in this limited study is
created with reference to an agent completing the whole
level. A more precise approach might be for the agent to
determine its preferred action for each frame of the player’s
play session, yielding a difference trace based on moment-
by-moment differences instead of session-based differences.

Conclusion
We have presented a framework for characterizing player
behavior in terms of deviations from rational actions. We
believe this framework could be used as a foundation to fur-
ther understanding of player behavior, which is often ana-
lyzed in a rather ad-hoc way using unsupervised learning.
This framework was demonstrated using an analysis of play
styles in the Mario AI Benchmark, with a high-performing
A*-based agent providing the ground against which human
play traces were contrasted. This analysis yielded features
that allowed players to cluster meaningfully with significant
differences between them. These clusters were also found to
correlate with playing performance. The current work pro-
vides ample opportunity for further investigation.
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