
Concurrent Activity Recognition For Clinical Work

Afsaneh Doryab and Julian Togelius

Abstract— We present an approach to learning to recognize
concurrent activities based on multiple data streams. One exam-
ple is recognition of concurrent activities in hospital operating
rooms based on multiple wearable and embedded sensors.
This problem differs from standard time series classification
in that there is no natural single target dimension, as multiple
activities are performed at the same time. Hence, most existing
approaches fail. The key innovations that allow us to tackle
this problem is (1) learning to recognize base activities from
raw sensor data, (2) creating artificial joint activities from
base activities using frequent pattern mining and (3) handling
temporal dependency using virtual evidence boosting.

I. INTRODUCTION

Recent technological development in computing artifacts
allow people to obtain and interact with information in a
more social and situated manner by moving computation
beyond personal devices and into publicly available devices
and displays. Key technologies include portable computers,
large public displays and wireless network and sensing
technologies. With these technologies it is also possible to
support collaborative work among people in shared physical
locations. Pervasive or ubiquitous technologies computing
research is concerned with technologies that allow people to
work in a more flexible way, having supporting tools avail-
able anywhere rather than being tied to a specific desktop
device or location. This capability requires systems being
aware of their context, i.e., the physical and social situation
in which they are embedded.

The context of a system may change as the system is
moved to a new execution environment (mobile device) or the
physical context of an embedded system changes because,
for example, new people and devices enter a room [1]. As
activities occurring in the physical environment play a central
role in understanding the situation, there is an increasing
need and intention to detect and recognize such activities
using different sensing technologies, such as vision-based
or embedded and body worn sensors. Recognition of daily
routines and basic physical actions such as running, walking,
climbing stairs, etc. have been widely studied in recent years.
These studies have mostly focused on individual users in an
environment such as home [2, 3] or outdoors [4, 5].

Although recognition techniques addressing individual
user’s activity on e.g., mobile devices have got much atten-
tion and obtained promising results, the problem of multi-
user activities in shared physical environments has remained
challenging and rarely studied. As most real world settings
involve several people, recognition of multi-user activities in
the same context becomes necessary and worth being inves-
tigated. Examples of such situations are collaborative work
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Fig. 1. Medical information relevant to a surgical operation is shown on
wall displays in an operating room. The information provided is adapted
based on clinical activities during the operation.

environments, where the activities and tasks are distributed
and shared among several people, e.g., when two people
repair different parts of a car or device. Each part of the task
is done by one or more participants working concurrently
towards the same goal. In order to build an awareness of
the situation, a system should recognize activities being
performed by different participants in the same situation.

The particular focus of this research is on clinical work
and finding context-aware solutions to help clinicians manage
access to the extensive amount of data as an integrated
part of their tasks. By taking context into consideration,
more relevant information are presented to clinicians on
public displays in different situations. For example, by using
our approach inside an operating room (OR), the surgical
activities of clinicians are recognized from the sensor inputs.
These activities are then used as context to which the wall
display in the OR adapts. The adaptation is in form of
showing medical resources that are relevant to that ongoing
operation (see e.g., figure 1).

II. ACTIVITY RECOGNITION

Activity recognition can be defined as a sequential classi-
fication problem where at each time step, the state of the
activity, which depends on previous and future states, is
predicted. It can be solved by structured prediction methods
which combine the ability of graphical methods to model
multivariate data with the ability of classification techniques
to perform prediction using large sets of input features [6] . In
other words, we wish to predict a vector y = {y0, y1, ..., yT }
of random variables given an observed feature vector x,
where each variable yt is the activity at time t, and the input



x is divided into {x0, x1, xT }. Each xt contains a set of
different feature attributes, e.g., location and identity. The
traditional classification approach to maximize the number
of yts that are correctly labeled is to learn an independent
per-position classifier that maps x → yt for each t. The
difficulty, however, is that the output variables or activities
often have dependencies. For example, for dish washing, one
should first put the dishes in the dish washer before starting
the machine.

A natural way to represent the manner in which output
variables depend on each other is provided by graphical mod-
els. Two of the most popular structured models for sequen-
tial classification are Hidden Markov Models (HMMs) [7]
which have long been applied to the activity recognition
problem and Conditional Random Fields (CRF) [8]. The
following describes the background of these two frameworks
as well as their strengths and weaknesses in addressing the
activity recognition problem. We discuss the reasons why
CRF framework is a more appropriate choice to address the
problem of sequential multiple activity recognition.

A. Hidden Markov Models

HMMs are generative models that explicitly attempt to
model a joint probability distribution p(y, x) over observed
features x (e.g., sensor inputs) and hidden state y (activi-
ties). An HMM requires two independence assumptions for
tractable inference. The first assumption is that the future
state depends only on the current state, not on past states
– i.e., the hidden state at time t, yt depends only on the
previous hidden state yt−1, or in other words,

P (yt|y1, ..., yt−1) = P (yt|yt−1)

The second assumption is conditional independence of
observation parameters, i.e.,

P (xt|yt, x1, ..., xt−1, y1, ..., yt−1) = P (xt|yt).

To define the most probable hidden state sequence from
an observed input sequence, the HMM finds a state sequence
that maximizes the joint probability p(x, y) of the transi-
tion probability p(yt−1|yt) and the observation probability
p(xt|yt) – that is, the probability that xt is observed in state
yt [9]:

p(x, y) =
∏T

t=1 p(yt|yt−1)p(xt|yt)

Although there are advantages to the HMM approach,
it also has its limitations; the dimensionality of x can be
very large and the features can have complex dependencies,
so constructing a probability distribution over them can
be difficult [8]. Modelling the dependencies among input
features can lead to intractable models, but ignoring them
can lead to reduced performance.

B. Conditional Random Fields

CRFs are a solution to the mentioned problem in HMMs
by modeling the conditional distribution p(y|x) directly,
which is all that is needed for classification. CRFs combine
the ability to compactly model multivariate data with the

ability to leverage a large number of input features for
prediction. The advantage to a conditional model is that
dependencies that involve only variables in x play no role
in the conditional model, so that an accurate conditional
model can have much simpler structure than a joint model
[8]. Conditioning on the observations vastly expands the set
of features that can be incorporated into the model without
violating its assumptions.

Achieving high classification accuracy in complex tasks,
such as activity recognition, often requires the use of domain
knowledge to construct sophisticated features of the input
observations. Such features typically incorporate information
from more than a single time step. Features that span time
steps violate the independence assumptions of the HMM,
but not those of the CRF [6]. A CRF allows for arbitrary,
dependent relationships among the observation sequences,
and the hidden state probabilities can depend on past and
even future observations. A CRF is modeled as an undirected
graph, flexibly capturing any relation between an observation
variable and a hidden state. They are thus especially suitable
for classification tasks with complex and overlapped features.
Figure 2 shows a CRF model.

· · · l1 l2 l3 · · ·
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Fig. 2. An example of CRF where li represents the label of the hidden
state and oi is the observations such as sensor inputs.

After a CRF is specified, there are two essential tasks to
do: training and inference. In training, the parameters of the
model are learned from the labelled data instances. The goal
is to determine the optimal weights of feature attributes such
as observations and pairwise features.

The task of inference is to infer the hidden values (activity
labels) from the observations (e.g., time stamp, location
of people, etc.) Given a model of CRF including the set
of features and their weights (the learned model), we first
instantiate the CRF from the data instance, then we do
inference over the instantiated CRF.

In the rest of this paper, we focus on CRFs for our activity
recognition problem. We now illustrate a general approach
called Virtual Evidence Boosting (VEB) proposed in [10]
for training CRFs which addresses the issues of growing
complexity in the CRF models. Later in this paper, we
explain how we extend the VEB in modeling sequential
multiple concurrent activities.

C. Training CRFs Using Virtual Evidence Boosting

Despite flexibility, training CRFs with large numbers of
features is challenging [10]. Standard training algorithms
based on Maximum Likelihood (ML) require running infer-
ence at each iteration of the optimization, which can be very
expensive. Moreover, because the exact inference in general



Markov network including CRF is NP-hard, the approximate
inference is often used.

An alternative method called Maximum Psuedo-
Likelyhood (MPL) [11] suggests to convert a CRF into a
set of independent patches; each patch consists of a hidden
node and the true values of its direct neighbours (figure 3).

l1 l2 l3
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Fig. 3. Converted CRF for MPL learning by copying the true labels of
neighbours as local evidence.

The ML estimation made on this simplified model works
efficiently and has been successful in several domains, how-
ever, it has been observed to overestimate the dependency
parameters in some experiments [12]. To overcome the limi-
tation in MPL, a suggested solution is to treat the neighbour
labels as virtual evidence or beliefs instead of observed.
This is the main idea of Virtual Evidence Boosting (VEB)
approach proposed in [10] which extends the standard boost-
ing algorithm to handle input features that are either virtual
evidences in the form of likelihood values or deterministic
quantities. The extended boosting algorithm performs feature
selection and parameter estimation in a unified manner and
thus learns dependency structures in the relational data.

The algorithm extends Additive Logistic Regression (Log-
itBoost) [13] to handle virtual evidences or beliefs. That
is, for each feature in the feature vector xi, the input
to boosting could be a probabilistic distribution over that
feature’s domain, as opposed to a single observed value.

D. Human Activity Recognition

Few studies have investigated the inference of concurrent
and interleaved activities. Gu et al. [3] propose a data mining
method using emerging patterns to extract unique patterns
in activities of daily living in a home setting and tries to
infer parallel activities of one person [3] or shared activities
of multiple people [14] . An emerging pattern (EP) is
a feature vector of each activity that describes significant
changes between two classes of data. For instance, a feature
vector {location is kitchen, object is burner} is an EP of
a cooking activity and {object is cleanser, object is plate,
location is kitchen} is an EP of a cleaning a dining table
activity. A pattern is frequent if its support is no less than
a predefined minimum support threshold. Coupled HMMs is
another attempt by Wang et al. [2] to infer shared activities
of multiple users in a home setting.

Dynamic CRFs and HMMs have been used for labelling
multiple activities of an individual user. One study [15]
has tried to recognize multiple activities by creating a fully
connected Factorial CRF where each activity creates a chain
and all hidden states share the same observations. This
solution suffers from scalability problem. The complexity of
this model increases dramatically as the number of activities

and accordingly the number of chains increases. Another
study [16] has built a skip chain CRF to recognize the
interleaved activities combined with a correlation graph for
recognition of concurrent activities. As the focus of the work
is on a single user, it is assumed that a person’s goals or
activities are usually related, and based on how similar the
activities are, they are more likely to appear together.

In all this research, parallel and interleaved activities of
one or at most two people have been studied. In case of
multiple people, only their shared activities such as watching
TV together is recognized. The focus of these studies has
mainly been activities of daily routines, often simplified to
a few number of high level activities. Although some of
them have mentioned targeting the problem of several people
engaged in different activities as their future steps, to our
knowledge no experimental results have been presented. The
rest of this paper is focused on our proposed approach in
sequential multiple concurrent activity recognition in shared
settings.

E. Other methods for sequence classification

Several other methods have been proposed within the
computational intelligence community for sequence classi-
fication, most prominently recurrent neural networks trained
with backpropagation through time [17, 18], but also e.g.
finite state machines evolved with genetic programming. A
comparison with such non-structured techniques would be
interesting future work, but is out of scope for the current
paper.

III. MODELING MULTIPLE CONCURRENT ACTIVITIES

In the previous section, we formulated the activity recog-
nition problem as a supervised learning approach. In this
section, we present our model of activities that will be used
in the classification.

Definition III.1. A predefined set A of actions in form of
{a0, a1, a2, ..., ak} is defined as base-actions which are not
mutually exclusive, as each instance can belong to more than
one class.

The classification [19] is a two step process: First, the
classification algorithm builds the classifier from a training
set. Then, the model is used to classify and label the unseen
data into categories or classes in which instances most likely
belong. In other words, a classification task is defined as
follows: Let X be the set of instances to be classified, Y be
the set of labels, and H be the set of classifiers for X → Y .
The goal is to find the classifier h ∈ H maximizing the
probability of h(x) = y, where y ∈ Y is the ground truth
label of x, i.e.,

y = argmaxiP (yi|x)

Each instance is only assigned to one class and therefore
classification errors occur when the classes overlap in the
selected features, i.e., the same instance can belong to more
than one class. This is the problem in case of concurrency
where different actions are performed at the same time. For



example, in a surgical procedure if the action of ‘intubation’
(labelled e.g., a7) occurs simultaneously with the action of
‘surgical instrument preparation’ (labelled e.g., a5), then the
corresponding data stream in the data set can be labelled as
both a7 and a5. We address this issue by introducing joint
actions.

Definition III.2. Given the set A = {a0, a1, a2, ..., ak}
of base-actions, the set of joint-actions is of form
{ja0, ja1, ja2, ..., jam} where jai ∈ ∅

⋃
A
⋃
A×A

⋃
A×

A×A
⋃
A×A×A×A

⋃
...

In the mentioned example, a joint action (e.g., ja1) is
built by combining a5 and a7 if these two base-actions are
observed together in a sequence.

Transforming multi-labelled data to single-labelled gives
possibility to a more computationally efficient classification.
In addition, more algorithms can be used for prediction.
The important issue with joint classification is that the data
belonging to joint-activity classes can be too sparse to build
usable models. In our datasets, however, the joint-activities
comprise over 70% of the dataset. We apply the Apriori
algorithm [20] on our total data to find the pattern of joint
actions. Apriori is a well-known mining algorithm to find
frequent patterns in the data. Given a set of items, the
algorithm attempts to find subsets with a minimum support.
It uses a join and a prune step, where frequent subsets are
extended one item at a time and any (k-1)-itemset that is
infrequent cannot be a subset of a frequent k-itemset. The
algorithm terminates when no further successful extensions
are found.

IV. MODELING TEMPORAL DEPENDENCY

Traditional classification methods assume independence
between labels and can be considered insufficient in time
series problems. Therefore, we need to extend the feature
model to address temporal dependencies. We solve this issue
by presenting additional types of information as evidence to
the classifier.

Before going into details, we define the notion of observ-
able feature in order to distinguish between this type and
evidential types.

Definition IV.1. A feature is observable if it can be sensed
or obtained directly from the environment.

Observable features include sensor inputs about e.g., tools
and people.

A. Virtual Evidence

The value of a virtual evidence feature (ve) is computed
using belief propagation (BP) which works by sending local
messages through the graph structure. A message mij(yj)
for each pair of neighbors yi and yj is a distribution sent
from node i to its neighbor j about which state variable yj
should be in. The messages propagate through the CRF graph
until they (possibly) converge, and the marginal distributions
can be estimated from the stable messages. A complete BP
algorithm defines how to initialize messages, how to update

messages, how to schedule the order of updating messages,
and when to stop passing messages. We explain the steps in
sum-product algorithm [21]:

1) Message initialization: Usually all messages mij(yj)
are initialized as uniform distributions over yj .

2) Message update rule: The message mij(yj) sent from
node i to its neighbor j is updated based on local
potentials φ(yi), the pairwise potential φ(yi, yj), and
all the messages to i received from i’s neighbors other
than j (denoted as n(i)\j). More specifically, for sum-
product, we have
mij(yj) =

∑
yi
φ(yi)φ(yi, yj)

∏
k∈n(i)\j mki(yi)

3) Message update order: The algorithm iterates the mes-
sage update rule until it (possibly) converges. Usually
at each iteration, it updates each message once, and
the specific order is not important (although it might
affect the convergence speed).

4) Convergence conditions: To test whether the algorithm
converges at an iteration, for each message, BP mea-
sures the difference between the old message and the
updated one, and the convergence condition is met
when all the differences are below a given threshold ε.
More formally, the condition is
||mij(yj)

k −mij(yj)
k−1|| < ε,∀i, and ∀j ∈ n(i)

where mij(yj)
k and mij(yj)

k−1 are the messages after
and before iteration k, respectively.

A) · · · st−1 st st+1 · · ·

ot−1 ot+1 ot+1

B) · · · st−1 st st+1 · · ·

vet−1 ot−1 vet ot+1 vet+1 ot+1

Fig. 4. Regular CRF structure (A) and wih added virtual evidence (B).

Figure 4 shows a regular CRF in (A) and the converted
structure after adding virtual evidence in (B). The idea of
VEB complements our model for adaptation in a computa-
tional level and we can indicate the past context that might
matter for the situation in terms of past states distribution.

V. ACTIVITY LEARNING MODELS

This section presents our proposed learning models that
incorporate evidential features to help address dependencies



between hidden states. For joint labelled actions, we first con-
struct three different sub-models with added virtual evidence
(ve). This approach extends VEB in two ways:

1) It is used for the learning of multiple joint actions.
2) It is used in dynamic CRF structures (multi-chained

CRFs).
Activities can be modelled in different ways in the CRF

framework. The VEB approach in [10] was tested on a
single sequence of activities. In our approach for multiple
concurrent activities, we extend the VEB to cover joint-
actions and experiment with three models in order to find
the best performing construction:
• Model A: Union joint labelling of multiple actions

structured in a linear chain CRF with added virtual
evidence from neighbour states as presented in figure 5.

• Model B: Team-based joint labeling where multiple
actions of each team are modelled in parallel CRF
chains with same set of observations for each state
but separated virtual evidence. The model is shown in
figure 6. Each chain is trained individually on the same
data but they run in parallel to make inference on the
test data. The results are then combined.

• Model C: Team-based joint labeling where multiple
actions of teams are modelled in a coupled-chain CRF
with same set of observations and virtual evidence for
each state. This model addresses dependencies within
and between teams (figure 7).

· · · st−1 st st+1 · · ·

vet−1 ot−1 vet ot+1 vet+1 ot+1

Fig. 5. Model A

· · · s1t−1 s1t s1t+1 · · ·

ve1t−1 ve1t ve1t+1

· · · s2t−1 s2t s2t+1 · · ·

ve2t−1 ot−1 ve2t ot+1 ve2t+1 ot+1

Fig. 6. Model B

· · · s1t−1 s1t s1t+1 · · ·

· · · s2t−1 s2t s2t+1 · · ·

ot−1 ot+1 ot+1

vet−1 vet vet+1

Fig. 7. Model C

VI. COLLABORATIVE ACTIVITIES IN SURGICAL ROOMS

Our general observations of surgical operations in
different Danish hospitals reveal that in a typical surgery at
least 6 clinicians with different specializations participate.
The team includes at least one anaesthesia nurse mainly
responsible for patient monitoring during the operation, an
anaesthesiologist, a surgeon, a surgical assistant, a surgical
nurse assisting with instruments, and a circulating nurse for
general help and communication between inside and outside
of the room. The surgical activity follows a temporal and
sequential pattern:

The procedure usually starts with the anaesthesia team
preparing devices, drugs and instruments followed by
preparation of the patient for anesthaetization. While the
patient is being anesthaetized, the surgical instruments and
devices are prepared by surgical- and circulating nurses.
After the patient is anesthaetized, he is prepared for the
incision process. During the surgical execution, the patient’s
condition is monitored by the anesthaesia nurse. The
procedure is finished after the cut is closed which means
that the instruments and devices can be removed from the
patient’s body. The operation is considered as ended when
the patient wakes up and is transferred to the recovery
department.

Based on what distinguishes surgical actions from each
other and allows them to be detected individually, we have
identified a set of 17 main tasks which we refer to as base-
actions. These base-actions are listed in Table I.

The surgical team members collaborate in parallel to carry
out an overall task which entails performing a series of
actions. Some of these actions can be done by only one
clinician, such as monitoring the vital signs of the patient
during surgery, while others involve several people, like the
surgical procedure which at minimum involves the surgeon
and the assisting surgical nurse.



Action Label
a1 Checking the anesthesia machine
a2 Anesthetic preparation
a3 Anesthesia-instrument preparation
a4 Patient preparation for anesthesia
a5 Surgical-instrument preparation
a6 Anesthetization
a7 Intubation
a8 Preparing the patient for operation
a9 Incision
a10 Main procedure
a11 Patient monitoring
a12 Collecting surgical instruments
a13 Waking the patient
a14 Closing
a15 Cleaning up
a16 Extubation
a17 Recovery ready

TABLE I
THE LIST OF BASE-ACTION TYPES IN AN OR

A. Data Collection Using a Sensor Platform

Based on our detailed study, the following parameters were
important to track:

• The location of clinicians
• The location of objects on different tables
• The use of objects and instruments by the clinicians

We created a sensor platform with three sub-sensor sys-
tems sensing each of the items listed above, and a central
server for collecting, filtering, time stamping, synchronizing,
and storing sensor readings [22]. The setup included palm-
based sensors, table-based sensors, and the Ubisense location
tracking system. We tagged real surgical instruments and
performed the operations on a fictive patient.

The scenarios were based on the video recorded operations
and designed in close collaboration with domain experts, i.e.
surgeons, anaesthesiologists, and nurses. We annotated data
from 10 simulated laparoscopic operations. The total length
of the dataset was 11823 instances which were created once
a second.

B. Feature extraction and labeling

A preliminary step was to convert sensor inputs to binary
values and subsequently make a feature instance based on all
relations acquired at a time stamp. The raw sensor readings
were sampled, synchronized and transformed into feature
instances by the sensor platform on the fly. We used an
annotation and verification tool to annotate the data and also
to check the sensor readings. By applying the Apriori on
our data, we identified the pattens of joint-actions. The joint
cardinality which is the length of possible joint-activities
observed in the data ranged from 1 to 5. The results showed
that more than 70% of the instances have a joint-label of
length ¿2, i.e., at least 70% of the time, more than one activity
occurs in the OR and at each time stamp t up to 5 concurrent
activities can be observed.

PM1 (accuracy) PM2 (time taken)
Dataset A B C A B C
1 19,0 45,7 46,8 370 44,5 108
2 44,2 69,2 62,8 591 55,5 480
3 36,7 61,2 54,2 324 56 184
4 43,2 65,9 66,5 404 56,5 495
5 40,5 59,5 49,4 288 76,5 468
6 66,0 77,8 78,5 316 34 130
7 62,0 75,9 80,4 361 39,5 75
8 44,4 50 58,7 362 29,5 197
9 48,0 68,5 68,5 416 36 960
10 31,2 57,7 54,5 352 27 220

43,1 63,1 61,9 378,4 45,5 331,7

TABLE II
PERFORMANCE RESULTS OF TRAINING AND TEST IN DIFFERENT

MODELS WITH PAIRWISE RELATIONS BETWEEN NEIGHBORS. FOR EACH

PERFORMANCE MEASURE (1 AND 2) ALL THREE MODELS (A, B AND C)
ARE TESTED. THE HIGHEST ACCURACY AND SHORTEST INFERENCE

TIME IS OBTAINED IN MODEL B.

VII. THE LEARNING PROBLEM

We were interested in evaluating the performance of the
proposed techniques both in terms of the accuracy of the
inferred labels and the inference time. The latter is important
as the activity recognition is expected to be done in real-time.
Hence, the learning problem is defined as:

Task T: Recognition of concurrent team actions in an OR
Performance measure PM1: Correctly classified actions
Performance measure PM2: The inference time
Training Experience E: Using data from surgical operations

As is common in machine learning, we divided datasets
into a training part and a testing part. The training dataset is
used for building the classifier, and the testing dataset is used
for accuracy evaluation. We used the leave-one-out cross
validation method on 10 datasets (10 operations), where we
each time trained the classifier on 9 operations and tested
on the last one. The final result is the average from 10
experiments. The main metric in our evaluation is accuracy
which is defined as the number of testing instances accurately
classified divided by the number of testing instances.

The primary CRF structure covered pairwise relations
between two neighbors of each node, i.e., the previous
and the immediate next node. We experimented with three
construction models described in the last section 1. Table II,
figures 8, and 9 summarize performance results of different
models. In the following, we describe the details of applying
each model on the data.

A. Model A – Union Joint Labeling and Union Training

In model A (figure 5), the total number of labels was
65 which is quite high compared to the size of datasets, so
this setting did not scale. As shown in table 8, this model
performs slowly and the accuracy is lowest.

1The CRF was implemented in C++



Fig. 8. Comparing accuracy measure for models A, B, and C during cross
validation on 10 datasets.

Fig. 9. Comparing differences in the inference time in models A, B, and
C during cross validation on 10 datasets.

B. Model B – Team Based Labeling and Individual Training

The scalability problem in model A led to building model
B, where we divided the actions of the anesthesia and
operating team and did the joint labelling on each team’s
actions. We then instantiated a CRF for each team based on
the data. In model A, the number of joint labels was large
and it caused the model to perform slowly and less accurate.
Individual labelling of team actions decreased the number of
labels and hence improved the inference time as well as the
accuracy (see table II). On average, the accuracy increased
by 20% to 63% compared to model A and the inference time
fell from 378 seconds to 45 seconds.

C. Model C – Team Based Labeling and Coupled Training

As mentioned earlier, there is temporal dependencies be-
tween OR actions both within and across teams. Separate
training of two team actions only models the dependencies
within each team. In order to capture pairwise relations
across teams, we built a coupled (two-chains) CRF model
of team actions (see figure 7), where the set of observable
features was shared between the chains and pairwise rela-
tions between nodes were specified. Three types of pairwise
relations were defined:
• Anesthesia - Anesthesia
• Surgical - Surgical
• Anesthesia - Surgical
As shown in table II, the average accuracy is about 62

percent which is almost as high as with model B, but the
average inference time (' 332 seconds) is almost seven
times longer which is caused by a double number of nodes
and more complex pairwise relations. However, this model
outperforms the model A in both measures.

D. A note on accuracy

While an accuracy of 63%, it should be noted that the
baseline obtained from majority guess (a dumb classifier
that always outputs the most common joint activity) is 22%;
Given the very high number of classes, the random guess
baseline is 100/65 = 1.53%. As the intended application for
the activity recognition performed here is recommender sys-
tems, very high accuracy is not necessary, though obviously
desirable.

VIII. DISCUSSION AND CONCLUSION

This paper presented our approach to sequential and mul-
tiple concurrent activity recognition. We discussed existing
machine learning methods, especially the two most widely
used methods in sequence classification for ubiquitous com-
puting, HMM and CRF. We chose the CRF framework to
experiment with due to its flexibility in addressing pairwise
relations between states and features. We extended the VEB
approach with three models to be used for recognition
of multiple concurrent activities. We found that model B
achieved both the best classification accuracy and the short-
est inference time. The accuracy is acceptable for issuing
meaningful recommendations. However, the performance of
the models suffers from the iterative boosting steps where the
virtual evidence is computed by the BP method. Especially
in cases of a long sequence and a large number of hidden
states the computational time for sending messages increases
which results in a long learning and inference time. As a
remedy, we propose historical evidence which is extracted
from observable features as well as neighbor labels using
aggregate functions. The aggregated values are stored as
evidence features and then included in the classification.

Future research includes using historical evidence markers
as a complement or alternative to virtual evidence, and using
the activity recognition techniques and models presented here
to recommend relevant information and activities for clinical
teams in real-time; initial work on this is presented in [23].
To the extent possible, the techniques should also be tested on
more diverse clinical data obtained from embedded sensors
during real surgical operations. Another future study will be
to apply our method using HMMs and compare the results
with CRFs.

The data used in this experiment was collected in a
simulated setup which raises the question of whether or not
this data represents the real world scenarios in an operating
room. Although most operations share common types of
activities and tasks, such as anesthaetization and incision, we
agree that some unique activities might be required in some
operations and unexpected critical situations might arise.
However, the focus of this study has been on recognition
of general concurrent activities in the OR, and in that sense,
we think the data used in this experiment is generic enough
to address the problem.

For more technical details on the current study, including
parameter studies, please see the first author’s PhD the-
sis [24].
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