
Murder Mystery Generation from Open Data

Gabriella A. B. Barros1, Antonios Liapis2 and Julian Togelius1
1: Tandon School of Engineering, New York University, New York, USA

2: Institute of Digital Games, University of Malta, Msida, Malta
gabriella.barros@nyu.edu, antonios.liapis@um.edu.mt, julian@togelius.com

Abstract
This paper describes a system for generating murder
mysteries for adventure games, using associations be-
tween real-world people mined from Wikipedia arti-
cles. A game is seeded with a real-world person, and
the game discovers suitable suspects for the murder of
a game character instantiated from that person. More-
over, the game discovers characteristics of the suspects
which can act as clues for the player to narrow down
her search for the killer. The possible suspects and
their characteristics are collected from Wikipedia arti-
cles and their linked data, while the best combination
of suspects and characteristics for a murder mystery is
found via evolutionary search. The paper includes an
example murder mystery generated by the system re-
volving around the (hypothetical) death of a contempo-
rary celebrity.

Introduction
Computational creativity focuses on discovering artifacts in
creative domains such as art, music and digital games, or
even mathematics and engineering. Sometimes, the results
of creative processes are created in vitro, without a basis
in the real world. This is possible, for instance, in au-
tomated theorem discovery (Colton 2002) where a model
of finite algebra suffices for proving a generated theorem.
However, the real world often influences the creative pro-
cess in some way, acting as a training set (Eigenfeldt and
Pasquier 2012), as a seed (Krzeczkowska et al. 2010;
Hoover et al. 2012), as an evaluation (Correia et al. 2013;
Martins et al. 2015) or as a mapping between dissimilar
modalities (Johnson and Ventura 2014; Veale 2014). There
is interesting research in transforming textual data into im-
ages (Krzeczkowska et al. 2010), poems (Colton, Jacob, and
Veale 2012) or even games (Cook and Colton 2014).

This paper describes a system for creating digital adven-
ture games using open data (primarily Wikipedia articles).
Starting from a designer- or player-specified real-world per-
son, the game produces a murder mystery where said person
has been killed and the player must find the killer among
several suspects. The player can pinpoint the killer by elim-
inating suspects based on certain characteristics they do not
share with the killer. Suspects and their characteristics are
collected from Wikipedia articles; the suspects are associ-
ated with the victim, while the characteristics may be shared

among some but not all of the suspects. From this broad
range of suspects and types of characteristics (e.g. date of
birth, affiliation, awards), the best combination for use in a
murder mystery is discovered via evolutionary search, which
ensures that the mystery is solvable while the characteristics
are diverse within the chosen set of suspects.

The WikiMystery system described here is the next step
from our previous work on “Data Adventures”, i.e. generat-
ing adventure games from open data (Barros, Liapis, and To-
gelius 2015; 2016). The system presented hereby enriches
the experience by adding multiple paths between a victim
and possible culprits (thus allowing the player to explore the
game in a non-linear fashion). Moreover, the addition of
clues (which help the player eliminate suspects) and puzzles
(which block progression on specific plot lines) increases the
richness of interaction. More importantly, WikiMystery is
unique among attempts to generate games from data in that
the storyline and affordances (possibly even the difficulty in
terms of solvability) are affected directly by the data.

Related Work
As a highly creative domain, storytelling has received
considerable attention in computational creativity research.
Such research has often focused on generating complete sto-
ries in textual form: examples include stories written around
a specific theme such as betrayal in BRUTUS (Bringsjord
and Ferrucci 2000), a specific caste of heroes such as the
Knights of the Round Table in MINSTREL (Turner 1993),
or whether the story achieves an intended goal state (Riedl
and Young 2010). On the other hand, games as interactive
media (Aarseth 1997) can do away with several of the re-
quirements of full story generation and the challenges posed
e.g. by the natural language processing needed for narra-
tion (Montfort and Pérez y Pérez 2008). Examples of a nar-
rative structure transformed (computationally) to and from
interactive experiences include the work of Laclaustra et al.
(2014) which uses a game map and game characters to cre-
ate a story from their interactions, and the work of Robertson
and Young (2015) which transforms a story plan into a level
structure, instantiates game characters and creates actions
for the player to issue to their avatar.

Automatically transforming stories into games and vice
versa is an example of computational creativity used for
transformation or reinterpretation of data from one medium

to another. Other examples include the transformation of
images (Johnson and Ventura 2014), game levels (Lopes,
Liapis, and Yannakakis 2015), or text (Thorogood and
Pasquier 2012) into soundscapes, news articles into games
(Cook and Colton 2014) or collages (Krzeczkowska et al.
2010), etc. For the purpose of conciseness, we will focus on
how data has been transformed into playable experiences.

The automated game creator Angelina is a prime exam-
ple of a system transforming data into games: Angelina
(Cook, Colton, and Pease 2012) generates platformer lev-
els and decorates them in an audiovisual theme. The theme
is derived from the text body of news articles, while the
sounds, images, backgrounds are derived from parsing the
text and searching online databases using these keywords.
Game-o-matic (Treanor et al. 2012) uses human-authored
concepts and their associations to generate consistent games
and their rules, while relying on web-based images of the
authored concepts for their in-game visual representation.
Open data, on the other hand, have also been transformed
into playable experiences: examples include the simple
physics game BarChartBall (Togelius and Friberger 2013)
which uses UK census information to form the terrain of
a ball-rolling game, or OpenTrumps (Cardona et al. 2014)
which instantiates Top Trumps (Winning Moves 1999) card
decks with countries’ statistics (from United Nations and
World Development Indicator databases). Games that fea-
ture content generated from open data are often referred to
as Data Games (Friberger et al. 2013).

Similarly to the aforementioned projects, WikiMystery
and its overarching project of “Data Adventures” (Bar-
ros, Liapis, and Togelius 2015) use online data to produce
playable games featuring real-world people (both alive and
dead) and locations. Similar to Angelina and Game-O-
Matic, they decorate the game’s visuals with images col-
lected from Wikimedia Commons. Unlike some other data
games, however, the data form a core part of the gameplay
and deeply affect the experience. Compared to Game-O-
Matic or Angelina where the online data is used to theme
an already playable game, WikiMystery relies on the data
to form the plot of the game, the locations the player
can visit, the non-player characters (NPCs) and their re-
lationships (which act as clues in the mystery). This re-
liance on data (which, due to the crowd-sourced nature of
Wikipedia and human fallibility can be erratic or incom-
plete) poses a grand challenge to Data Adventures. To guar-
antee playable adventure games relying exclusively on such
data requires an almost human-like intelligence and creativ-
ity. The current steps taken by the authors with this pa-
per and its predecessors (Barros, Liapis, and Togelius 2015;
2016) can — and often do — create absurd storylines and
unintuitive associations between non-player characters. It
should be noted, however, that absurdity is inherent to the
grounding of data (and a desirable artifact of freedom of on-
line speech) and hiding or curating it would remove the core
strength (and evidence) of the open data-driven nature of the
game. The world is absurd, and this is reflected in some of
the results of a data-based game generator.

Overview of WikiMystery
WikiMystery draws inspiration from several adventure
games, a broad and rich genre that has gained a resurgence
of popularity over the past years. Due to the diversity of
games within this genre, there is a large variety of mechan-
ics and gameplay styles in adventure games that can also be
found in other genres. In this work, we refer to adventure
games as games with the following characteristics: they are
story-driven, their core mechanics revolve around puzzle-
solving, interaction with the game world is mostly done
through object manipulation, the player controls a charac-
ter in the world and is motivated to explore the interactions
that the space around her provides (Fernández-Vara and Os-
terweil 2010).

The plot of the game revolves around a crime: someone
was killed and it is up to the player, a detective, to find out
who did it by gathering clues to arrest the culprit. The plot
is constructed from Wikipedia articles and their links. The
player begins in the house of the deceased, knowing who
died and finding a list of possible suspects. With this list,
the detective can travel between locations, talk to NPCs and
interact with items. Her goal is to pinpoint who, within that
list, is the culprit and prove so by selecting the right options
in an arrest warrant template. This template has a series of
possible characteristics, such as “residence”, “nationality”
or “awards received”, and each characteristic type has a se-
ries of possible values. By selecting the right combination
of values, the player can differentiate between suspects.

Initially, the user inputs a person’s name to the system,
(“Justin Bieber” in this paper’s example) who will be, for
plot purposes, killed. The system queries DBpedia (Auer et
al. 2007), a structured version of Wikipedia, to find possible
suspects: people linked to the victim. A genetic algorithm
evaluates possible suspects and the relations between them,
to optimize the suspect pool and guarantee playability. In
other words, to guarantee that it is possible to pinpoint the
culprit among the suspects, by assigning characteristics such
as “genre: Trip hop” or “homeTown: Stratford”.

Once suspects are selected, the system finds a path be-
tween the victim and each suspect. These paths are used
to populate the system with game objects: cities, buildings,
NPCs, items and dialogue. The process of selecting sus-
pects and paths is exemplified in Figures 1 and 2. Finally,
for each object in the game, images are obtained from Wiki-
media Commons using Spritely (Cook and Colton 2014).

Choosing Suspects and their Characteristics
In a crime-based story, such as the Sherlock Holmes series
(BBC 1965) or the game “Where in the world is Carmen
Sandiego?” (Brøderbund 1985), the hero/player is often
asked to identify the culprit of a crime by solving puzzles
and finding clues. In a game where characters and puz-
zles are created from open data, the challenge of selecting
data suitable for suspect and clue creation arise. In a design
sense, we want suspects that are related to the victim so that
we can establish a motive. Additionally, we want the game
to be solved by eliminating suspects when the player dis-
covers that the killer does not have characteristics possessed

Justin
Bieber

Bobby
Andonov

Haruka
Ishida

Dazzer
Scott

Flume
(musician)

Felipe
Suau

Canadian
Drummers

Started career in 2008 Started career in 2008

Born
in 1994

Started career
in 2008

Figure 1: Simple representation of the process of selecting
suspects and finding relations between the victim and the
suspects. Initially, the system only has a single node: the
victim (white node). Suspects related to the victim are se-
lected with a genetic algorithm (black nodes), and paths be-
tween the victim and the suspects are created from DBpedia
(see Fig. 2). All suspects share common characteristics with
the victim, shown on the arrows: in this example three of the
suspects started their careers on the same year as the victim.

by other suspects. The killer must therefore have enough
unique characteristics not shared by at least one other sus-
pect. In the current design paradigm, each clue should suf-
fice to eliminate one innocent suspect: thus for X suspects
(among which one is the culprit), X−1 clues (and therefore
types of characteristics) are needed.

Creating a pool of possible suspects: It is necessary to
create a pool of possible suspects for the genetic algorithm
to choose from throughout evolution. To do this, we use
DBPedia, which structures information from Wikipedia in
the form of tuples1. All suspects must share a direct link
to the victim based on DBPedia: i.e. suspects must have
one or more common characteristic types (predicates) and
characteristic value (object) with the victim. For instance,
both the victim and a suspect may have lived in the same
town, or have the same age (see Fig. 1 for sample shared
characteristics). Given these suspects, we generate a list of
all possible characteristics types (e.g. “homeTown”, “asso-
ciatedBand”, etc.) that one or more suspects have. We omit
the value “Living People”, which simply indicates that the
person is alive, as well as website-related types (e.g. thumb-
nails, links for redirected pages, etc) in order to avoid highly
abstract relationships as well as a vast, unmanageable search
space for the genetic algorithm.

Evolving combinations of suspects: Once we collect all
possible suspects, we need to select a number of X suspects
among those and X− 1 types of characteristics (e.g. “place-
OfBirth” or “yearsActive”), used to pinpoint the culprit. The
suspects’ types of characteristics must be varied but com-
mon among most suspects; each suspect however must have

1An article in Wikipedia may be represented in DBpedia by a
collection of 〈Subject,Predicate,Object〉 tuples (e.g. 〈Nikola Tesla,
Birth Date, 1856-07-10〉).

a unique combination of characteristic values so that we can
identify the culprit. A genetic algorithm (GA) is used to
find this combination of suspects and types of characteris-
tics. Mutation alone is used as a genetic operator, and in our
experiments evolution runs for 100 generations on a popu-
lation of 100 individuals. The genotype is a vector of size
2X − 1 (X suspects and X − 1 characteristics). The ini-
tial population is generated by selecting random suspects,
without repetition, and selecting characteristics within the
sub-pool of these suspects’ characteristics. The mutation
operator changes a few of these elements (i.e. suspects and
characteristics). Since we do not have a crossover operation,
mutation is mandatory: it will always change at least a few
elements. Additionally, if the element mutated is a person,
then all types of characteristics undergo a validation check:
any characteristic type not possessed by at least one suspect
is replaced by a new one.

Fitness function: Our fitness function takes two major
concerns into account: diversity and solvability. Diversity
measures the distribution of characteristics’ types and values
for all suspects, and favors characteristics for which values
differ more between suspects. For example, a set of sus-
pects living in the same city and owning the same kind of
car is less diverse than a set where most suspects live in dif-
ferent cities and drive different cars (but still have the “city”
and “car” characteristics). The diversity fitness (fD) is cal-
culated as the total entropy of each type, multiplied by the
number of suspects that have that characteristic type:

fD =

P∑
i=0

Qi ×

− Vi∑
j=0

pij (log2pij)

 (1)

where P is the number of characteristic types, Vi is the num-
ber of values for type i, and Qi is the number of people that
have type i. We multiply Qi to encourage that more suspects
have that type. pij is calculated as the number of people that
have a certain value j in characteristic i, divided by Qi.

Solvability, on the other hand, guarantees that it is pos-
sible to pinpoint the killer among the suspects. As dis-
cussed above, WikiMystery operates under the assumption
that each discovered clue should eliminate one suspect: the
clue in this case specifies which value of a characteristic
does not belong to the culprit, but belongs to an innocent
individual instead. To do so, we need to pair the suspects
and types uniquely, such that each suspect can be identified
from the killer. This fitness is calculated via a form of Depth-
First Search (DFS): for each person in a genome, we choose
a potential culprit and let the remaining people be suspects.
For each one of the X − 1 characteristic types in the gene,
add that type to a ‘clue’ list, if and only if: 1) the killer
has a value for that type of characteristic; 2) at least one of
the suspects has that type of characteristic; 3) the value of
the killer for that characteristic is different than that of the
suspect. This is done to avoid characteristic types that can,
single-handedly, allow the player to pinpoint the culprit.

Having chosen a potential culprit, the algorithm creates a
‘clue’ list for each innocent suspect (s). For each character-
istic type in the pool, if s has a different value from that of

Figure 2: All major and minor paths between the victim and each suspect. Major paths are denoted with dotted arrows, minor
paths have black arrows. Locations are represented as hexagons, NPCs as circles and items (books) as squares.

the culprit, then the characteristic is added to the list. The al-
gorithm also inserts an empty symbol in each list, allowing
a suspect to remain without any clue. At this point, the algo-
rithm recursively pairs suspects and characteristic types (or
empty values), so that each type cannot be used more than
once (i.e. if a suspect is paired to a type, this type cannot
be assigned to any other suspect). The algorithm backtracks
if it does not find the optimal solution, similarly to a DFS,
and stops only if it finds the maximum possible fitness or
exhausts the search space. If the algorithm did not find the
maximum fitness, it will select the next suspect as the po-
tential culprit and restart the process, until it iterates through
all X suspects or finds the optimal solution. The fitness is
the number of successfully paired types, and the maximum
fitness is X − 1 (when each type is paired to one suspect).

The GA uses cascading elitism (Togelius, De Nardi, and
Lucas 2007) to ensure both fitnesses are optimized: first, the
population is sorted using the solvability fitness, and half
of the population is eliminated. The remaining population
is sorted by diversity, and half of those individuals are re-
moved. The remaining ¼ of the original population is cloned
and mutated until the population reaches its original size.

Finding relations between Wikipedia articles
An adventure game can be viewed as a series of linked, con-
currently or sequentially, challenges and events. As such,
they may be represented as a directed graph, starting at the
game’s initial state/event, and leading to possible endings. If
we identify the victim as the initial node in our graph, and
each suspect as a potential ending, we can generate a path
between the victim and each suspect, which would essen-

tially amount to the game itself. To generate this graph, our
system calculates paths from the victim to each suspect us-
ing DBpedia. In this context, a path represents the relations
between a sequence of Wikipedia articles, and consists of
nodes (articles) and edges (the links between them).

The system queries DBpedia multiple times for possible
paths between two individuals. At first, we select a “ma-
jor path”, a longer path between any given two articles that
models the general relations between these two. Secondly,
for each pair of articles in the major path, we select another
“minor path”, a shorter, more refined path that expands on
the general idea. It provides a longer gameplay and a differ-
ent, more indirect relation between the victim and the sus-
pect. Figure 2 shows all five paths obtained for a set of
suspects: major paths are represented with dotted arrows,
and minor paths with black arrows. Paths are evaluated with
a weighted sum based on their uniqueness and length. To
evaluate uniqueness, we calculate the entropy of the nodes
and of the edges of a path in relation to all nodes/paths found
in that query: the more uncommon the nodes/edges, the bet-
ter the path is evaluated. More details on the generation of
major and minor paths are provided by Barros, Liapis, and
Togelius (2016).

Data transformation
The previous step has secured a set of suspects and a set
of characteristic types. This section describes how these
DBpedia entries are transformed into playable, interactable
game objects, and describes how these objects are placed in
the gameworld based on their relationship with the victim.
Game objects are divided into three groups: locations, items

Initialize empty stack elements;
for i← 1 to depth-1 do

if elements not empty then
Choose an empty node n at depth i;
Pop top of elements stack and assign to n;

else if rolled the chance for adding a puzzle then
Create a random SOLUTION/BLOCK pair;
Choose an empty node n at depth i;
Assign SOLUTION to n;
Push BLOCK to elements stack;

while elements not empty do
Choose an empty node n at depth depth;
Pop top of elements stack and assign to n;

Algorithm 1: Pseudocode for puzzle placement, for a set
of paths of maximum depth depth. Empty nodes are nodes
with no blocks or solutions assigned to them.

and NPCs. To create them, we use the following guidelines:

• Any article tagged with type “Person” (real or fictional)
is instantiated as an NPC. An image of the person is ob-
tained from Wikimedia Commons2. If no image is found,
a random image of a person of the same sex is used.

• Any article that contains a geographic coordinate and is
tagged with type “Place” in DBpedia is transformed into
a city or a state. Information about this location is added
to the game object created. Locations can be accessed in-
game through the world-map. A map of this place is ob-
tained through JMapViewer3 and OpenStreetMaps (Hak-
lay and Weber 2008).

• If an article has a geographic position, but is not tagged as
a “Place” in the DBpedia ontology, it becomes a building:
a location within a city/state where the player can interact
with NPCs or items. It can be accessed in-game by click-
ing on the building icon while the player is viewing the
map of a city/state.

• If the article does not follow any of the rules above, a
game item is created with information on this article. At
this point, the game items include only books.

Once all game objects within a path are created, we have
something resembling a tree, with the victim as the root, and
the suspects at the leaves. However, it is still necessary to
add a set of clues and conditions between them, so that each
object appears in the path in the correct order. Clues for
items include text (e.g. if the next node in the path is a
location, the book item will have some text indicating that
this location is interesting), and for NPCs they will include
dialogue sub-trees. For locations and buildings, however,
it is necessary to create either a random NPC or a random
item, and set the clue as above. Once all the clues are ready,
the algorithm creates conditions between each object, so the
player cannot interact with a game object or visit a location
before they have seen the previous clue in that path.

2Wikimedia Commons: http://commons.wikimedia.org/
3JMapViewer: http://wiki.openstreetmap.org/wiki/JMapViewer

(a) Initial state of the plot graph
and of the elements stack.

(b) At depth 1: A purple key is
attached to a node, and a purple
lock is pushed to the stack.

(c) At depth 2: The purple lock
is popped from the stack and at-
tached to a node.

(d) At depth 4: A new set of or-
ange key/lock is created and at-
tached to different nodes.

Figure 3: Example of position of pairs of solutions (keys)
and blocks (locks). In Fig. 3d both the key and the lock are
placed at the same depth (as it is the maximum depth).

Finally, additional puzzle elements (keys for locks, flash-
lights for dark rooms, tickets for private events) are included
in the path. The path can be represented as a tree, therefore it
is possible to group nodes by their depth, and add such puz-
zle elements while traversing the tree from the root to all leaf
nodes. By always generating pairs of elements in order (SO-
LUTION: e.g. keys, tickets; BLOCK: locks, private event),
we guarantee that the node will be reachable by placing the
solution (on any path) at a lower depth than the block. For
this, our algorithm works as shown in Algorithm 1. Figure
3a shows the initial state of a tree with three branches and
maximum depth 4. At depth 1, the algorithm adds a solu-
tion (key) to a random plot node and a block object (lock) to
the stack, as seen in Figure 3b. At the next depth, the lock
is popped from the stack and added to a random node. At
the maximum depth the chance for adding a new puzzle is
rolled, so the key is placed in a random node at depth 4 and
consecutively, since we are at the maximum depth, the lock
is placed at the same depth in a random empty node.

Results
While our system can, theoretically, create mysteries for any
given victim, our tests focused on a single subject. The
reasoning behind this mainly involved query limitations im-
posed by DBpedia. To test our suspect and clue selection
algorithm, it was necessary to run an enormous amount of
queries, which could quickly become a problem for a non-

Average (sd)
Number of cities 19.33 (5.07)
Number of buildings 50.60 (3.04)
Number of NPCs 31.00 (8.57)
Number of items 29.60 (5.21)
Ratio of real NPCs (over all NPCs) 82% (6%)
Average path length per suspect 11.93 (1.03)

Table 1: Average and standard deviation (in parentheses) of
game objects generated and average length of paths selected
by the crawler for each suspect. Results are collected from
50 independent runs of the generator with Justin Bieber as a
hypothetical victim.

dedicated server. To avoid this, we limited our search to
Justin Bieber (according to Wikipedia, “a Canadian singer
and songwriter”) as the hypothetical victim of the murder
mystery; as a contemporary celebrity figure, it was expected
that he would have many connections in Wikipedia. The sys-
tem queried DBpedia for every possible article about a per-
son that had some non-trivial characteristic type and value
in common with Justin Bieber. As described above, charac-
teristics that were too broad were excluded (e.g. “category:
Living people”, which includes every person currently alive,
and hardly an indicative motive for a crime).

In order to assess, quantitatively, the types of games gen-
erated by WikiMystery, the full generative process was exe-
cuted 50 times, with Justin Bieber as the hypothetical victim
and five suspects required (X = 5). Table 1 shows the av-
erage and standard deviation of the number of game objects
created, as well as the average path length per suspect. All
of these metrics are indicative of the game’s playtime: there
are apparently many cities and buildings for the player to
visit; however, most locations contain items (books) which
provide information and far fewer contain NPCs which the
player can talk to. This indicates that discovered paths rely
more on categories (e.g. Saturday Night Live, see Fig. 2)
rather than people. It should be noted, however, that most
NPCs represent real-world people (since less than a fifth of
the NPCs are random, and therefore less interesting).

Example Game
An indicative run is included in Fig. 1 which shows the real
people chosen as suspects, Fig. 2 which shows the paths
between victim and suspects, and Table 2 which describes
the characteristic types and values of the suspects. Table 2
shows, in bold, the clue that will be used to prove the inno-
cence of each of the suspects. For instance, Haruka Ishida
is eliminated as a possible culprit when the player discovers
a clue that the culprit was not born in 1993: since Haruka
Ishida is born in 1993, he can not be the culprit. Note that
some values are shared between more than one suspects (e.g.
both the culprit and Flume were born in 1991) and thus can
not be used to rule out that particular innocent suspect.

When the game described in the above Figures and Tables
is played, the player starts at the city “London, Ontario”. In
the city map, she can find the house of a dead fictional Justin
Bieber and come upon objects that indicate the existence of

Figure 4: Screenshot of a ‘planetarium’ building location
with a random NPC and a book containing clues.

Figure 5: Screenshot of the ‘house of Bobby Andonov’ lo-
cation with the NPC Bobby Andonov.

the suspects and the next clue in each path: e.g. for Haruki
Ishida, a book on “Saturday Night Live (season 35)”. The
player can then travel to places (including Omaha and Santi-
ago), talk to various NPCs (some based on real people, such
as Jennifer Lopez, others randomly generated) and search
for clues (pieces of text in books, letters, etc). At one point,
the player stumbles upon a locked house in Toronto, where a
fictional Ethan Kath resides. To enter this house, she needs
to go to a theatre in Concepción, Chile, where she will find
a key. Eventually, the player can find the location of each
suspect and, based on the clues gathered along her journey,
identify the culprit: (fictional) Felipe Suau. Figure 4 shows
a screenshot of a moment in the game, where the player is in
a planetarium in the city of London, and can talk to a random
NPC named John, or inspect a book she finds nearby. The
book is titled “Membre du Parlement provincial” (author’s
note: Member of Provincial Parliament) and mentions the
NPC of Kathleen Wynne and the place of Ontario (which
can now be interacted with and visited respectively). Fig-
ure 5 shows a building quoted as being the ‘House of Bobby
Andonov’ (the background image is one of a random house),
where the suspect NPC instantiated from Bobby Andonov
can be found (his image from the Wikipedia article is used,
shown at the bottom of the screen).

Characteristics
Innocent Suspects Genre Occupation Birth year Background
Flume (musician) Electronica Producer 1991 Non vocal instrumentalist
Haruka Ishida J-pop Singing 1993 Solo singer
Bobby Andonov Pop music Singing 1994 Solo singer
Dazzer Scott Electronica Singing 0025 Solo singer
Culprit
Felipe Suau Electronic music PUNCHI PUNCHI Director 1991 Non vocal instrumentalist

Table 2: Solution found by the solver for five individuals. Each suspect is paired to one attribute (marked in bold) that will
differentiate him from the killer. Note that Dazzer Scott’s birth year is not a typo; 0025 is the value returned by DBPedia.

Discussion
The main purpose of the overarching Data Adventures
project is to create a generator capable of producing com-
plete adventure games from open data, such as Wikipedia
and OpenStreetMaps. The version of the system presented
in this paper is able to generate complete adventures with
multiple paths. It differs from other approaches which use
data to create gameplay because, in this case, the data influ-
ences the gameplay directly: if we select a different starting
point (i.e. the victim), we obtain a different story, characters,
dialogues and general playable paths. Examples of different
playthroughs when the starting point is different have been
showcased by Barros, Liapis, and Togelius (2016), for a sim-
pler adventure game generator using the same techniques.

The system is capable of evolving an interesting set of
suspects, one of which is the killer. It can also successfully
map suspects to predicates in such a way that the culprit can
be pinpointed among innocents, thus guaranteeing that the
game can be won. An interesting note is that the algorithm
seems able to cluster suspects within certain domains (e.g.
choosing only artists, or only sport-related people), which
emerge from the fitness function’s attempts at maximizing
characteristic types shared among all suspects (musicians
will have the same characteristic types such as “associated-
Band” or “producer”).

At the moment, our system still has limitations. The
dialogues, items and puzzles are created from a limited
set of templates, which we intend to expand in the fu-
ture. The latest results also show flaws in the calcula-
tion of uniqueness while searching for paths. Our evalu-
ation is based on comparing nodes and edges, which can
be represented with words (e.g. “residence”, “New York”
or “20th Century Mathematicians”). Our current method
compares two words with a hard comparison, i.e. if they
have one character different, they are different nodes/edges.
This implies that nodes like “Pop singers by nationality” and
“Pop musicians by nationality” are considered as different
as “Canada” and “Misia”. Further work should improve
this by using a word comparison algorithm, such as Jaro-
Winkler (Winkler 1999). We also evaluate the paths sepa-
rately, not accounting for similarities between paths (Fig. 2
includes paths with many similar or identical nodes among
them such as “Band” or “Saturday Night Live”). Measuring
how different the paths are to one another is an important
step to avoid repetitiveness. Another issue with the paths is
the occurrence of very general categories, such as “person”

and “musical artist” (see Fig. 2). We are working on heuris-
tics for excluding such categories.

Finally, an important limitation of the current system is
that data collection for generating games when seeded with
an individual (e.g. Justin Bieber) takes considerable time.
This is due to the very large number of database requests
needed and the nature of network communications. A pri-
ority for further development is therefore to create a version
working from a local database.

Conclusion
This paper described a system for generating murder myster-
ies from open data, which can be used as the basis for gener-
ating adventure games. The methods presented here primar-
ily revolve around the collection of appropriate data from
Wikipedia articles, and the selection of the best suspects and
their characteristics based on criteria of diversity (via data
uniqueness) and value (via solvability) for a playable adven-
ture game. Moreover, the paper outlined the necessary first
steps for a fully generated adventure game which features
the exploration of open data and the transformation of real-
world frames and associations into playable experiences.

Acknowledgments
The NPCs discussed in the generated adventures are instan-
tiated from real people, but it should be obvious that the
similarities end there. The actions of NPCs in the adven-
ture (as victims or culprits) in no way reflect the real-world
people they are based on. The output of the generator in no
way accuses or misrepresents these real-world individuals.
WikiMystery creates fictional counterparts of public figures
who have a presence in Wikipedia: any similarity between
the (fictional) NPCs in the game and real-world people is
therefore due to the data available in these open, freely ac-
cessible, online repositories.

We thank Ahmed Khalifa and Scott Lee for all fruitful
and helpful discussions. Gabriella Barros acknowledges fi-
nancial support from CAPES and Science Without Borders
program, BEX 1372713-3.

References
Aarseth, E. 1997. Cybertext: Perspectives on Ergodic Liter-
ature. Johns Hopkins University Press.

Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak,
R.; and Ives, Z. 2007. Dbpedia: A nucleus for a web of open
data. Springer.
Barros, G. A. B.; Liapis, A.; and Togelius, J. 2015. Data
adventures. In Proceedings of the FDG workshop on Proce-
dural Content Generation in Games.
Barros, G. A. B.; Liapis, A.; and Togelius, J. 2016. Playing
with data: Procedural generation of adventures from open
data. In Proceedings of the International Joint Conference
of DiGRA and FDG.
Bringsjord, S., and Ferrucci, D. A. 2000. Inside the mind of
brutus, a storytelling machine. In Artificial Intelligence and
Literary Creativity. Lawrence Erlbaum Associates.
Cardona, A. B.; Hansen, A. W.; Togelius, J.; and Friberger,
M. G. 2014. Open trumps, a data game. In Proceedings of
the International Conference on the Foundations of Digital
Games.
Colton, S.; Jacob, G.; and Veale, T. 2012. Full-face poetry
generation. In Proceedings of the International Conference
on Computational Creativity.
Colton, S. 2002. Automated theorem discovery: A future
direction for automated reasoning. In Proceedings of the
IJCAR Workshop on Future Directions for Automated Rea-
soning.
Cook, M., and Colton, S. 2014. A rogue dream: Automati-
cally generating meaningful content for games. In Proceed-
ings of the AIIDE workshop on Experimental AI & Games.
Cook, M.; Colton, S.; and Pease, A. 2012. Aesthetic consid-
erations for automated platformer design. In Proceedings of
the Artificial Intelligence for Interactive Digital Entertain-
ment Conference.
Correia, J.; Machado, P.; Romero, J.; and Carballal, A. 2013.
Evolving figurative images using expression-based evolu-
tionary art. In Proceedings of the International Conference
on Computational Creativity.
Eigenfeldt, A., and Pasquier, P. 2012. Considering vertical
and horizontal context in corpus-based generative electronic
dance music. In Proceedings of the International Confer-
ence on Computational Creativity.
Fernández-Vara, C., and Osterweil, S. 2010. The key to
adventure games design: Insight and sense-making. In Pro-
ceedings of the Meaningful Play Conference.
Friberger, M. G.; Togelius, J.; Cardona, A. B.; Ermacora,
M.; Mousten, A.; Jensen, M. M.; Tanase, V.; and Brøndsted,
U. 2013. Data games. In Proceedings of the FDG Workshop
on Procedural Content Generation.
Haklay, M., and Weber, P. 2008. Openstreetmap: User-
generated street maps. Pervasive Computing, IEEE 7(4):12–
18.
Hoover, A. K.; Szerlip, P. A.; Norton, M. E.; Brindle, T. A.;
Merritt, Z.; and Stanley, K. O. 2012. Generating a complete
multipart musical composition from a single monophonic
melody with functional scaffolding. In Proceedings of the
International Conference on Computational Creativity.
Johnson, D., and Ventura, D. 2014. Musical motif discovery

in non-musical media. In Proceedings of the International
Conference on Computational Creativity.
Krzeczkowska, A.; El-Hage, J.; Colton, S.; and Clark, S.
2010. Automated collage generation – with intent. In Pro-
ceedings of the International Conference on Computational
Creativity.
Laclaustra, I. M.; Ledesma, J. L.; Mendez, G.; and Gervas,
P. 2014. Kill the dragon and rescue the princess: Designing
a plan-based multi-agent story generator. In Proceedings of
the International Conference on Computational Creativity.
Lopes, P.; Liapis, A.; and Yannakakis, G. N. 2015. Tar-
geting horror via level and soundscape generation. In Pro-
ceedings of the Artificial Intelligence for Interactive Digital
Entertainment Conference.
Martins, T.; Correia, J.; Costa, E.; and Machado, P. 2015.
Evotype: Evolutionary type design. In Proceedings of the
International Conference on Evolutionary and Biologically
Inspired Music, Sound, Art and Design.
Montfort, N., and Pérez y Pérez, R. 2008. Integrating a
plot generator and an automatic narrator to create and tell
stories. In Proceedings of the International Joint Workshop
on Computational Creativity.
Riedl, M. O., and Young, R. M. 2010. Narrative planning:
balancing plot and character. Journal of Artificial Intelli-
gence Research 39(1):76–99.
Robertson, J., and Young, M. 2015. Automated gameplay
generation from declarative world representations. In Pro-
ceedings of the Artificial Intelligence and Interactive Digital
Entertainment Conference.
Thorogood, M., and Pasquier, P. 2012. Computationally
created soundscapes with audio metaphor. In Proceedings of
the International Conference on Computational Creativity.
Togelius, J., and Friberger, M. G. 2013. Bar chart ball, a data
game. In Proceedings of Foundations of Digital Games.
Togelius, J.; De Nardi, R.; and Lucas, S. M. 2007. Towards
automatic personalised content creation for racing games.
In Proceedings of the Symposium on Computational Intelli-
gence and Games, 252–259. IEEE.
Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I.
2012. Game-o-matic: Generating videogames that represent
ideas. In Proceedings of the FDG Workshop on Procedural
Content Generation.
Turner, S. R. 1993. MINSTREL: A computer model of cre-
ativity and storytelling. Ph.D. Dissertation, University of
California Los Angeles.
Veale, T. 2014. Coming good and breaking bad: Generating
transformative character arcs for use in compelling stories.
In Proceedings of the International Conference on Compu-
tational Creativity.
Winkler, W. E. 1999. The state of record linkage and cur-
rent research problems. In Statistical Research Report Series
RR99/04. U.S. Bureau of the Census.

