
Autoencoder-augmented Neuroevolution for Visual Doom Playing

Samuel Alvernaz and Julian Togelius
Department of Computer Science and Engineering

New York University, NY, USA
sja353@nyu.edu, julian@togelius.com

Abstract—Neuroevolution has proven effective at many re-
inforcement learning tasks, including tasks with incomplete
information and delayed rewards, but does not seem to scale
well to high-dimensional controller representations, which are
needed for tasks where the input is raw pixel data. We propose
a novel method where we train an autoencoder to create a
comparatively low-dimensional representation of the environment
observation, and then use CMA-ES to train neural network
controllers acting on this input data. As the behavior of the
agent changes the nature of the input data, the autoencoder
training progresses throughout evolution. We test this method in
the VizDoom environment built on the classic FPS Doom, where
it performs well on a health-pack gathering task.

I. INTRODUCTION

When learning a policy for playing a game, it helps im-
mensely if the representation of the game state (the input to
the controller) is low-dimensional and structured in such a way
that it can easily be processed by the controller. However, if
the controller does not have access to the internal state of the
game, it is forced to rely on the same information a human
would have when playing the game, primarily the visual feed.
This makes the learning task much harder, as we need to learn
to transform the high-dimensional visual input to information
that the controller can act on while learning the actual policy.

In general, working in three-dimensional environments, with
solely visual input and no easy backend into a high-level
representation of the game state, brings us closer to non-game
(“real-world”) applications of these AI methods, such as robot
control. This is seen by many as a more relevant task for
testing general intelligence in AI agents, which is why we
have seen much work on learning from visual input recently.

So far, methods such as Deep-Q learning [21] have seen
success while working with large-scale visual input, while we
have not seen successful applications of evolution to large-
scale visual problems, though it has been suggested that
evolutionary methods may provide better results in partially-
observable environments [29]. In other contexts, evolutionary
algorithms have proven effective in generating interesting,
unique strategies to succeed in difficult environments, and are
capable of coming up with multiple solutions to the same
problem; they have also performed well on tasks with delayed
rewards and imperfect information [25]. However, usually such
algorithms require a pre-processed, high level representation of
the environment, since raw visual data is too high-dimensional
for evolutionary algorithms to effectively improve. (the larger
the input, the larger the networks to process them must be,
and the larger the networks, the larger the genome, and

the larger the genome, the slower the evolution). Gradient-
based deep learning methods, however, excel at compressing
high-dimensional data and extracting relevant high-level, low-
dimensional representations [10]. Using these methods to
create a compressed representation of the visual data of an
environment, and then training a smaller network off of this
compressed representation to generate agent behavior, could
make it possible to enjoy the advantages of evolutionary
algorithms when working with raw visual information.

In this paper, an autoencoder - a particular network architec-
ture described in further detail below - is used to create a com-
pressed representation of a a three-dimensional video game
environment, namely Doom. This compressed representation
is then fed into a separate, smaller behavior-generating neural
network, optimized via evolutionary methods, to demonstrate
that the level of compression achieved by the autoencoder
is sufficient to enable evolutionary optimization. It should be
noted, however, that evolutionary methods are not necessarily
vital to this method. For example, evolutionary optimization
could be switched out for Deep-Q learning off of the com-
pressed inputs.

A. Autoencoders

An autoencoder is a network composed of three basic
parts: The encoder, the chokepoint, and the decoder [19].
These networks are trained to reproduce their own input as
their output, the idea being that the chokepoint will force
the network to learn patterns in the data that allow it to be
compressed to fit the chokepoint—because the decoder will
have to reconstruct the input, after all, from all the information
that something as small as the chokepoint can represent.

In a videogame environment, we can usually depend on a
certain uniformity in the environment; different frames look
somewhat like each other (the environment will usually be
constructed of similar elements, just viewed from different
angles). If an autoencoder can successfully encode a single
image frame from the environment, perhaps it could generate
a diversity of representations of any image frame from the
environment, so that it could represent the entire environment
in a highly compressed manner. And if we’re able to train
an autoencoder to compress all frames from a video game
environment (even if the decoder’s reconstruction of these
images is foggy and incomplete), then we could train a smaller
network off of the autoencoder’s chokepoint compression of
these frames, and use it to generate behavior in the gameplay
environment. If the resulting chokepoint was low-dimensional



Fig. 1. Simple autoencoder diagram

enough, we could use standard neuroevolutionary techniques
to optimize the weights for this smaller network to play the
game well. A simple, high-level way to think of this is that the
autoencoder will be converting the raw pixel data from game
images into a high-level representation of the environment,
like having a picture of how the world looks in your head.
Even if the picture is fuzzy or incomplete, it’s easier to make
decisions based off that small picture rather than by simply
considering the large arrays of raw visual information.

II. PREVIOUS WORK

The idea of compressing visual input so that evolutionary
algorithms may be used has been demonstrated before in fairly
simple two-dimensional environments [3]. In addition, it has
been previously shown that autoencoders can reduce high-
dimensional visual input to a very small representation at its
chokepoint, reducing a simple visual environment down to as
small as two values representing the x and y position of the
agent in the environment [1]. Autoencoder compression of the
environment has been shown to be successful when combined
with Q-learning, as well, for successful results in simple
Atari environments before the current popularity of Deep-Q
learning[16], as well as on simple real-world applications such
a slot car control [17]. Work has also been done in evolving
neural network agents in a more complex 3-dimension FPS
environments such as Quake by Parker et al [24], though this
was done by first preprocessing the raw visual input into a
much smaller array of pixel values by averaging the value of
pixels over a pre-defined block.

A similar method to the one presented in this paper was
effective in the TORCS (The Open Racing Car Simulator)
environment, demonstrated by Koutnik et al. [14]. However,
rather than training their compressor through backpropagation
(as in this paper), the weights for the compressing network
were evolved to maximize diversity in the feature vector
representation of the environment. Success was demonstrated
in generating an agent that could remain on a track in a car-
driving environment.

While most work with vision-based AI training has taken
place in simpler, two-dimensional environments, there have
been forays into three-dimensional games, particularly in the
Doom environment, using Deep-Q learning methods [15], [2],
[4]. Common to all these approaches is that they supplement
visual information about the environment with other variables
taken from a backend into the game, whether it is information
about health, ammo, a depth buffer, etc. While these methods
have achieved impressive results, information such as this is
not necessarily always something that would be available to a
real-world controller.

Outside of the realm of generating agents to play in game
environments, combining autoencoders with neuroevolution
has been shown to generate interesting results with content
creation by Liapis et al with their system DeLeNoX [18]. Au-
toencoders were used to characterize two-dimensional space-
ship designs as a low-dimensional array, which was used
to refine the exploration of a possibility space for designs
of believable-looking spaceships. In addition, the hierarchal
representational capabilities of classifier networks have been
used in cooperation with neuroevolution to provide a measure
of fitness when generating new, unique images, evolving
networks to generate images that match the classifier’s labels,
resulting in interesting representations of various classes that
are completely artificially generated [22].

Evolution strategies are a class of evolutionary algorithms
that are particularly well suited to optimization in real-valued
space. The weights of a neural network can be seen as a
real-valued vector, and optimized with evolution strategies or
other similar algorithms; the training of neural networks with
evolutionary algorithms is often called neuroevolution [6],
[25]. Neuroevolution has long been known to be an effective
reinforcement learning method, in particular when training
comparatively small networks [11], [7]. Methods for scaling
up neuroevolution to apply them to larger networks have been
developed, focusing on encoding or compressing the genome
of the network in lower-dimensional space [13], [27]. Recently,
neuroevolution has also been shown to be a highly scalable al-
ternative to more mainstream reinforcement learning methods
when training networks for behavior in high-dimensional envi-
ronments such as Atari games, achieving competitive results
when compared to methods such as Deep-Q learning [26].
In addition, it was demonstrated that evolution strategies can
also be successful in constructing the topology of deep neural
nets as well, with an extension of the popular NEAT [28]
(Neuroevolution of Augmenting Topologies) method into the
realm of deep learning [20].

This work distinguishes itself by taking raw visual input,
with no preprocessing, and using an autoencoder trained
via backpropagation to compress this input to a size more
manageable for evolutionary methods. The training set of
images for the autoencoder is obtained while playing the
game with evolved agents that require no manual coding for
the environment, minimizing the amount of necessary human
input into the system.



Fig. 2. Simple diagram of the method used in this paper. Image from the game environment is fed into the autoencoder. The autoencoder generates two
outputs: The lower-dimensional representation of the image from the chokepoint, and the reconstructed image at the output layer. The lower-dimensional
representation of the image is fed into the behavior-generating network, which generates an action in response to take within the game environment. Once
the action step is taken in the game environment, a new image is generated, which is fed back into the autoencoder to generate the next action. In addition,
each image input into the autoencoder is compared to its own reconstruction from the output layer. If the reconstruction of the input image isn’t very good,
the image is added to the training set for the autoencoder. Training of the autoencoder takes place between generations.

III. METHOD

Our experiments were carried out using VizDoom [12], a
platform that supports agents in various environments based
on the popular 1993 ”Doom” video game. VizDoom was
chosen because it is a popular implementation of the FPS
Doom, a three-dimensional game that provides arrays of RGB
visual information every frame, and which implements several
different scenarios that concentrate on different goals, such
as health-gathering, monster-killing, or navigation through the
environment. The autoencoder was created using Keras, a
high-level deep learning package for python that can run
off of either theano or tensorflow. Weights for the behavior-
generating network were evolved using a python implemen-
tation of CMA-ES [8], [9] (Covariance Matrix Adaptation
Evolution Strategy). CMA-ES was chosen as a popular, readily
available evolutionary method with broad application, and the
purpose of evolution was to demonstrate that the autoencoder
had sufficiently compressed the visual input so that evolution-
ary optimization could be possible. Other evolutionary meth-
ods could be substituted in to evolve the behavior-generating
network.

In this paper, experiments were run in the VizDoom ”health
gathering” environment. In this environment, the player is
in a room that is filled with acid, slowly deteriorating their
health, and must move about to gather health packs to prevent
themselves from dying. Small red jars act as mines, and if
picked up, will damage the player. The objective is to survive
for as long as possible. Three actions are available: turn left,
turn right, and move forward. There is a certain element of
luck to the environment: health packs spawn randomly, and
the player is spawned at random locations in the map.

To generate behavior, an autoencoder is trained to reproduce
input images of the environment (environment represented by
120x160x3 RGB images.) Table 1 shows the topology of the
autoencoder network. All layers used ReLU (rectified linear
unit) activation. ReLU is a simple activation function, where
ReLU(x) = x if x is greater than 0, and 0 if x is less than zero.
A small fixed-topology network is then fed the input from the
autoencoder’s chokepoint (fc2 in the table, 128 float values).
All layers in the behavior-generating network used sigmoid
activation.

The behavior network was asked for a behavior decision
every five frames of gameplay. In the final layer of the behavior
network, the first three values were used to indicate which
actions to take, with a sigmoid activation of greater than 0.5
being used to indicate that the action should be taken. The final
value was multiplied by 5 and rounded up to the nearest integer
to indicate how many times the action should be repeated.
So, for example, if the network was asked to generate an
action, and returned the array [0.2, 0.7, 0.7, 0.6], it would
repeat action 1 and action 2 (assuming that the first action,
represented here by the value 0.2, was referred to as action 0)
three times, and then do nothing for the remaining two frames
before it was asked for a behavior decision again. There were
2208 weights total being optimized in the behavior-generating
network.

The autoencoder network was trained through backpropa-
gation on the images generated by gameplay. The behavior-
generating network was trained by evolutionary methods,
specifically CMA-ES, as mentioned previously. For the first
30 generations, the behavior-generating network was rewarded
for maximizing novelty, where novelty was defined as seeing



Layer Filter dim. Stride Filters Input Output
conv1 8x8x3 4 32 120x160x3 30x40x32
conv2 4x4 3 64 30x40x32 10x14x64
conv3 4x4 3 64 10x14x64 4x5x64

fc1 1280 512
fc2 512 128
fc3 128 512
fc4 512 1024
fc5 1024 120x160x3

TABLE I
TOPOLOGY OF THE AUTOENCODER NETWORK. EACH ROW REPRESENTS A

LAYER IN THE NETWORK. THE OUTPUTS FROM ONE LAYER FEED INTO
THE INPUTS OF THE NEXT. THE FIRST LAYER IS FED THE 120X160X3

ARRAY OF PIXEL INFORMATION REPRESENTING THE GAME
ENVIRONMENT. fc REFERS TO ’FULLY CONNECTED’ LAYERS, conv REFERS

TO TWO-DIMENSIONAL CONVOLUTIONAL LAYERS.

Layer Input Output
fc1 128 16
fc2 16 8
fc3 8 4

TABLE II
TOPOLOGY OF THE BEHAVIOR-GENERATING NETWORK. TABLE FOLLOWS
SIMILAR CONVENTIONS TO TABLE 1. THE FIRST LAYER IS FED THE 128

FLOAT VALUE REPRESENTATION OF THE ENVIRONMENT FROM THE
CHOKEPOINT OF THE AUTOENCODER NETWORK.

images that the autoencoder could not accurately reproduce, by
comparing the reproduced images to the actual images taken
fromt he environment. More specifically, it was calculated
by taking the average of the absolute difference between
the two image’s pixel values. This was done to ensure that,
through gameplay in the early stages of training, the images
delivered to the autoencoder for training by backpropagation
would be a diverse representation of the environment, training
the autoencoder to reproduce as much of the environment as
possible.

After approximately 1,000,000 frames of gameplay, the
autoencoder could reconstruct the environment to a sufficient
degree that gameplay decisions could be made from the
chokepoint values, so after 30 generations, the fitness function
for the behavior-generating network was switched to reward
it for actual fitness in gameplay (the number of frames the
agent manages to survive in the hostile environment). The
autoencoder continues to be trained by backpropagation along
with the behavior-generating network after the first 30 genera-
tions. The training set for the autoencoder was generated from
the actions the behavior-generating network took in the game
environment. A simple filtering process was done on these
images: Reconstructed images were compared to their input
images (by calculating a simple absolute difference between
their values) and if the average difference of the pixel values
was below a threshold (.05) then the image was not included
as part of the training set for the autoencoder to train on. Or,
in other words, if the autoencoder already did a good job of
reconstructing the input image, that image was excluded from
the training set.

IV. ENVIRONMENT RECONSTRUCTION AND
PERFORMANCE RESULTS

A. Autoencoder compression of environment

Below are a couple of images demonstrating the quality
achieved by the autoencoder in reconstructing the environment
from the chokepoint input. Both of these images are taken from
networks that have been trained for at least 300 generations.

In Figure 4, the original input image is on the left, and the
autoencoder reconstruction of the input image is on the right.
You can see the network does a decent job of reproducing the
walls, floor, and multiple medkits at varying distances - so it
would seem that the 128 floating points at the chokepoint can
contain enough information to fairly accurately reproduce the
images they are fed (composed of 57600 pixel values) even if
the images are a bit fuzzy and ghostly.

Figure 5 demonstrates a weakness of the autoencoder’s
reconstruction of the environment. It has difficulty properly
reproducing the red jars. As mentioned above, the red jars act
as a sort of mines - if they are picked up they damage the
player. In this image, you can see the red mine closer to the
player does seem to be detected by the network - but when
reproducing it, it almost seems as if the network is trying to
reproduce it as a health pack in the reconstructed image. And
the red jar in the background, much further away, doesn’t seem
to be reproduced by the network at all, even when health packs
the same distance away are. The simplest explanation for this
is that the red jars are simply seen much less often than the
health packs are, so the network has fewer examples to learn
from to reproduce them properly.

B. Performance summary

All of the following networks refer to behavior-generating
networks, which use the CMA-ES evolutionary algorithm to
optimize their weights. All of these networks (where appli-
cable) used a compressed representation of the environment
provided by the same autoencoder, which was trained via
backpropagation. So what we have here are multiple behavior-
generating networks that were trained off of input from the
same autoencoder providing compressed representations of the
environment.

A couple of different trials were run as a baseline.
First, a network that was evolved off of input from the

autoencoder (identical to Network A, described below) was fed
random input. We will call this Network 1. (the idea being that
if Network A showed no difference between being fed random
input or input from the autoencoder, then obviously it was not
successfully gaining useful information from the compressed
input from the autoencoder.)

In addition, a behavior-generating network was evolved off
random input. We will call this Network 2. (the idea being
that if Network 2 reached the same level of performance
while being evolved off of random input as networks that
were evolved off of autoencoder input, then obviously the
networks were not necessarily gaining any benefit by using
the autoencoder input.)



Fig. 3. Evolutionary progress of agents trained off of alternative autoencoder structure chokepoint output. Left: Network A. Center: Network B. Right:
Network C.

Fig. 4. Sample of autoencoder reconstruction of input image, generation 330

Fig. 5. Sample of autoencoder reconstruction of input image, generation 312

There were a few different networks evolved off of autoen-
coder input:

Network A, whose fitness function was a simple average of
its score over 10 games,

Network B, which was fed an additional piece of informa-
tion in addition to the autoencoder’s chokepoint compression
- the player’s current health, normalized over a value of 0-1.

Network C, which operated in an environment where the
red jars were much more deadly (usually resulting in instant
death if they were picked up.) This was done to see if the
autoencoder could actually distinguish between health kits and
mines.

All scores in the below table were calculated over 1000
games, for networks evolved for 400 generations. ’Solved’
is defined as a score of 2000 (at which point the environ-
ment times out.) ’Good’ is defined as a score of 1000-2000.
’Mediocre’ is defined as a score of 500-1000. ’Bad’ is defined

as a score of 0-500 (and is defined because this ’Bad’ score
basically falls into the range of what we’d expect from a
random network.) The score is defined as the number of frames
an agent survives within the environment.

TABLE III
PERFORMANCE RESULTS

Network Mean std dev Solved Good Mediocre Bad
1 376.16 151.95 0 1 113 886
2 362.7 139.69 0 0 108 892
A 515.97 288.8 1 64 328 607
B 466.2 265.2 1 48 242 709
C 563.3 329.8 3 74 360 563

V. ALTERNATIVE CONVOLUTION

While training the autoencoder to compress the environ-
ment, an alternative topology was accidentally stumbled upon
that yielded some interesting results.

As described in Section 3, in the first layer, 8x8x3 filters
were used on the image on the first layer. This is typically how
2D convolutional nets are used on color images - convolved
over the image, looking for patterns in all three RGB channels.

During a couple of the experiments being run, the images
were fed into the autoencoder incorrectly. Specifically, the
width value was put in place of the channel value. The specific
effect this had was, instead of the first convolutional layer
being constructed from 8x8x3 filters an 8x8 filter over the
’depth’ of the three RGB channels), it was constructed from
3x8x160 filters (so each filter was looking for patterns in a
very large space of 3840 pixel values. In other words, the
width value was being treated as the channel value, so we had
3x8 size filters convolved over a ’depth’ of 160 pixels.)

What was interesting about this mistake was not only
did this odd network architecture manage to reconstruct the
environment fairly well, it actually seemed to give better
results when it came to evolving behavior networks.



Fig. 6. Evolutionary progress of agents trained off of alternative autoencoder structure chokepoint output. Left: Network D. Right: Network E.

TABLE IV
AUTOENCODER ALTERNATIVE STRUCTURE

Layer Filter dim. Stride Filters Input Output
conv1 3x8x160 4 64 120x160x3 1x30x64
conv2 1x4 2 128 1x30x64 1x15x128
conv3 1x4 2 256 1x15x128 1x8x256

fc1 2048 512
fc2 512 128
fc3 128 512
fc4 512 1024
fc5 1024 120x160x3

Fig. 7. Sample of alternative autoencoder reconstruction of input image,
generation 374

A. Alternative Autoencoder Compression of the Environment

Here, in Figure 7, we see the alternative autoencoder’s re-
construction of the gameplay environment, including a couple
of health packs at varying distances. Again, original image
is on the left, reconstruction is on the right. Compare to
figure 2: we can see that this alternative structure is capable
capturing the walls, floor, and the health packs. However,
the reconstruction of the health packs is a bit less detailed
than they are in the normal autoencoder’s reconstruction in
Figure 4, mostly being presented as white blobs. Nonetheless,
they’re still there, so the behavior generating network should

be able to make decisions taking them into account.

Fig. 8. Sample of alternative autoencoder reconstruction of input image,
generation 418

On the other hand, in Figure 8, we can see that the
alternative autoencoder structure actually fails to reproduce
the red jars at all. Generally, this particular network topology
could not reproduce the red jars unless they were very close
to the screen, and then only very faintly. This could have
implications for performance - if the network cannot reproduce
them, they may not be reflected at all in the chokepoint
compression of the environment, and the network may not
be able to make decisions taking their existence into account.

B. Performance Summary

As with the normal autoencoder structure detailed in section
IV, Network 1 in the table below is a baseline network,
detailing the results of a behavior generating network that was
trained on autoencoder input when it was fed random input.
Network 2 is the results of a network trained to optimize on
random input. Network D is a behavior generating network
trained on top of the alternative autoencoder compression
whose fitness function is average performance over 10 games.
Because Network D had such a high standard deviation,
Network E was also trained, whose fitness function can be
described by the following equation:



5α/3− β

Where alpha is the network’s score over 10 games, and beta
is the standard deviation over those 10 games (so the network
was punished for inconsistent performance).

TABLE V
ALTERNATIVE PERFORMANCE RESULTS

Network Mean std. dev Solved Good Mediocre Bad
1 369.19 147.93 0 0 110 890
2 364.2 137.97 0 1 103 896
D 646.58 397.93 12 162 360 466
E 657.1 397.05 12 170 374 444

VI. VIDEO RESULTS AND BEHAVIOR DISCUSSION

Fig. 9. Clip from video of generated agent play. Bottom left: Actual gameplay
footage. Top left: autoencoder reconstruction of the environment. Right: Visual
representation of chokepoint activation for this frame.

Figure 9 is a video clip visualizing the network behavior1.
The evolution of networks A and B generated mostly

disappointing behavior. While they do manage to navigate
and pick up health packs, they evolved to only be able to
turn left and right, respectively. This means that sometimes,
they get stuck in uninteresting loops around empty rooms and
die. Network B is interesting in that its information about the
current state of its health seems to provide it an ability to break
out of these loops. Networks C, D and E, however, were much
more interesting. They all demonstrated an ability to navigate
the environment and seek out health packs, to varying degrees
of competence. Network C, by being trained in an environment
where picking up a mine could immediately kill it, may have
been bumped out of a local maxima that A and B fell into.

1Videos can be found here: https://tinyurl.com/m4df7rn

But why did networks trained on the alternative autoencoder
topology get better results, and much faster, than networks
trained on an autoencoder doing typical convolution? If we
compare the chokepoint activation of the two networks, we
can see that the alternative autoencoder had a much sparser
activation. Taking the sum of every activation of the choke-
point (so, for an individual frame, the maximum activation
would be 128), we see that normal convolution yields an
average chokepoint activation sum of 24.3 over 1000 frames
of gameplay, while the average sum for the alternative convo-
lution is 12.7. Information about the environment, then, was
compressed into fewer values. While the model generated
by the unusual convolution wasn’t as accurate as the one
generated by normal convolution (the red jars in the envi-
ronment were almost invisible to it) the higher compression
allowed evolution to take place at a much faster pace. This
suggests that, perhaps, the environment could be compressed
even further by normal convolution, down to something less
than 128 values. This could aid evolutionary methods by
necessitating smaller behavior-generating networks.

VII. CONCLUSION

Deep-Q learning off of the raw visual data in this envi-
ronment outperforms the method presented here, learning to
achieve a score between 1000-1500 after 500,000 steps of
gameplay [12]. However, while it would have been nice to
create a method that outperformed Deep-Q, the focus of this
paper was on demonstrating that the hierarchal representation
capabilities of deep-learning networks could compress the
representation of raw visual data in a 3d environment to the
degree that evolutionary methods could be effective. Such a
compressed representation could be useful in other contexts:
as suggested before, Deep-Q learning could be trained off of
the compressed inputs as well, and perhaps training off of the
compressed data would yield some advantage over training
off of the raw visual data. Having a low-dimensional, internal
representation of the environment, however fuzzy, could also
enable other training methods beyond Deep-Q.

While the results from evolution in this paper do not
demonstrate a mastery of learning strategy for playing in a
three dimensional environment, it has been shown that au-
toencoder compression can build an internal, low-dimensional
model of a three-dimensional FPS environment from the high-
dimensional visual data. Moreover, it is not necessary to have
a preset database comprising a balanced representation of the
environment, as the autoencoder can be trained as the game is
played. Evolutionary methods can be used on this compressed
representation to improve agent behavior.

ACKNOWLEDGEMENTS

Thanks to to Christopher Dimauro for keeping the machines
running and to Gabriella Barros and Christoph Salge for their
advice. We also thank Nvidia for their generous hardware
donation to the NYU Game Innovation Lab which made this
project possible.



REFERENCES

[1] Gabriel Barth-Maron. Learning deep state representations with convo-
lutional autoencoders. Master’s thesis, Brown University.

[2] Shehroze Bhatti, Alban Desmaison, Ondrej Miksik, Nantas Nardelli,
N Siddharth, and Philip HS Torr. Playing doom with slam-augmented
deep reinforcement learning. arXiv preprint arXiv:1612.00380, 2016.

[3] Giuseppe Cuccu, Matthew Luciw, Jürgen Schmidhuber, and Faustino
Gomez. Intrinsically motivated neuroevolution for vision-based rein-
forcement learning. In Development and Learning (ICDL), 2011 IEEE
International Conference on, volume 2, pages 1–7. IEEE, 2011.

[4] Alexey Dosovitskiy and Vladlen Koltun. Learning to act by predicting
the future. arXiv preprint arXiv:1611.01779, 2016.

[5] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-
training help deep learning? Journal of Machine Learning Research,
11(Feb):625–660, 2010.

[6] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from
architectures to learning. Evolutionary Intelligence, 1(1):47–62, 2008.

[7] Faustino Gomez, Jürgen Schmidhuber, and Risto Miikkulainen. Efficient
non-linear control through neuroevolution. In European Conference on
Machine Learning, pages 654–662. Springer, 2006.

[8] Nikolaus Hansen. The cma evolution strategy: a comparing review. In
Towards a new evolutionary computation, pages 75–102. Springer, 2006.

[9] Nikolaus Hansen and Andreas Ostermeier. Completely derandom-
ized self-adaptation in evolution strategies. Evolutionary computation,
9(2):159–195, 2001.

[10] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimen-
sionality of data with neural networks. science, 313(5786):504–507,
2006.

[11] Christian Igel. Neuroevolution for reinforcement learning using evolu-
tion strategies. In Evolutionary Computation, 2003. CEC’03. The 2003
Congress on, volume 4, pages 2588–2595. IEEE, 2003.

[12] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and
Wojciech Jaśkowski. Vizdoom: A doom-based ai research platform for
visual reinforcement learning. In IEEE Conference on Computational
Intelligence and Games, 2016.

[13] Jan Koutnı́k, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino
Gomez. Evolving large-scale neural networks for vision-based rein-
forcement learning. In Proceedings of the 15th annual conference on
Genetic and evolutionary computation, pages 1061–1068. ACM, 2013.

[14] Jan Koutnı́k, Jürgen Schmidhuber, and Faustino Gomez. Evolving deep
unsupervised convolutional networks for vision-based reinforcement
learning. In Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pages 541–548. ACM, 2014.

[15] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with
deep reinforcement learning. arXiv preprint arXiv:1609.05521, 2016.

[16] Sascha Lange and Martin Riedmiller. Deep auto-encoder neural net-
works in reinforcement learning. In Neural Networks (IJCNN), The
2010 International Joint Conference on, pages 1–8. IEEE, 2010.

[17] Sascha Lange, Martin Riedmiller, and Arne Voigtlander. Autonomous
reinforcement learning on raw visual input data in a real world ap-
plication. In Neural Networks (IJCNN), The 2012 International Joint
Conference on, pages 1–8. IEEE, 2012.

[18] Antonios Liapis, Héctor P Martınez, Julian Togelius, and Georgios N
Yannakakis. Transforming exploratory creativity with delenox. In
Proceedings of the Fourth International Conference on Computational
Creativity, pages 56–63. AAAI Press, 2013.

[19] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber.
Stacked convolutional auto-encoders for hierarchical feature extraction.
In International Conference on Artificial Neural Networks, pages 52–59.
Springer, 2011.

[20] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan
Fink, Olivier Francon, Bala Raju, Arshak Navruzyan, Nigel Duffy,
and Babak Hodjat. Evolving deep neural networks. arXiv preprint
arXiv:1703.00548, 2017.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[22] Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Innovation engines:
Automated creativity and improved stochastic optimization via deep
learning. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, pages 959–966. ACM, 2015.

[23] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and
Satinder Singh. Action-conditional video prediction using deep networks
in atari games. In Advances in Neural Information Processing Systems,
pages 2863–2871, 2015.

[24] Matt Parker and Bobby D Bryant. Backpropagation without human
supervision for visual control in quake ii. In Computational Intelligence
and Games, 2009. CIG 2009. IEEE Symposium on, pages 287–293.
IEEE, 2009.

[25] Sebastian Risi and Julian Togelius. Neuroevolution in games: State
of the art and open challenges. IEEE Transactions on Computational
Intelligence and AI in Games, 2015.

[26] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution
strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864, 2017.

[27] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A
hypercube-based encoding for evolving large-scale neural networks.
Artificial life, 15(2):185–212, 2009.

[28] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary computation, 10(2):99–
127, 2002.

[29] Julian Togelius, Tom Schaul, Daan Wierstra, Christian Igel, Faustino
Gomez, and Jürgen Schmidhuber. Ontogenetic and phylogenetic rein-
forcement learning. Künstliche Intelligenz, 23(3):30–33, 2009.


