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Abstract— Multi-objective optimisation is applied to encour-
age the effective use of state variables in car controlling
programs evolved using Genetic Programming. Three different
metrics for evaluating the use of state within a program are
introduced. Comparisons are performed among multi- and
single-objective fitness functions with respect to learning speed
and final fitness of evolved individuals, and attempts are made
at understanding whether there is a trade-off between good
performance and stateful controllers in this problem domain.

I. INTRODUCTION

An essential component of intelligent behavior is the
ability to extract, store and utilize information about the
environment. Maintaining a mental environmental model
may allow an agent to plan its actions more effectively
by combining immediate sensory information along with
‘memories’ that have been acquired while operating on that
environment. Puzzlingly, evolutionary learning techniques in
general and Genetic Programming (GP) in particular do not
typically utilize this particular type of learning.

The vast majority of evolved programs use a functional
tree representation and while GP has produced some im-
pressive results it has significant problems with scalability.
Most GP evolved programs are simple expression trees that
perform simple mappings from inputs to desired outputs.
Even since the addition of effective storage and retrieval
of arbitrarily complicated state information to GP, limited
research has been devoted to the evolution of programs
that utilize state variables. Many interesting problems re-
quire a program to preserve some sort of state in-between
its computations. The notion of state is a very important
concept used by human programmers as means of naming
semantically important features that can be used multiple
times or that describe a self-contained entity. The use of
state can come in many different incarnations - be it a single
local/global variable, an arbitrary data structure, up to a point
of an encapsulated collection of data that is being exclusively
operated upon by a set of methods, which naturally leads to
data abstraction.

Nevertheless, it seems unlikely that a general-purpose
memory maintenance and manipulation capability will prove
to be advantageous to the evolved solution of an arbitrary
problem. Stated differently, not all programs that use memory

will have a significant advantage over programs that ignore
their memory or that do not have memory, simply because
many problems can be solved without the use of state. GP
is known for exploiting loopholes and thus to realistically
encourage the evolution of effective storage/retrieval of inter-
mediate state information previous experimenters have been
handcrafting the fitness environment in such a way as to
provide an evolutionary selection pressure towards the use
of memory.

In [1] we investigated the evolution of controllers with
internal state for a version of a simulated car racing prob-
lem, using both GP and neuroevolution. The conclusions
were somewhat disappointing, as we found no significant
differences between the final fitnesses of controllers evolved
using representations that allowed for the evolution of stateful
controllers (recurrent networks and GP with state variables),
and those that restricted the evolved controllers to be re-
active. Further, analysis of the evolved GP trees showed a
tendency towards avoiding the use of primitives for setting
and accessing state information.

One possible reason for this result is that the version
of the single car racing problem we were investigating
was too simple. We know from earlier investigations that
adding another car makes the car racing problem much more
challenging, to the point where controller representations
which can easily evolve human-competitive results on single-
car versions of the problem, fail to come anywhere near
human-competitiveness on two-car versions of the problem
[2]. To demonstrate the complexity of this version of the
problem, a controller would need to model the trajectory
of the competing car, and ultimately the behaviour of the
competing driver, in order to win against a really good
competitor.

However, it could also be that the problem of single car
racing in itself is complex enough, but there is something else
about the evolutionary process that prevents the emergence
of stateful controllers. Our intuition suggests that there was
not adequate selection pressure so as to guide the evolving
population of programs towards exploiting the use of state
(see [1] for a discussion) and thus purely reactive controllers
were evolved. In this paper, we introduce simple metrics for
the efficient use of state in a program, make them explicit



objectives for evolution, and use multiobjective optimisation
to understand whether there is a trade-off between good
performance and stateful controllers.

II. EVOLUTIONARY CAR RACING

The problem of racing a simulated car around a track is
interesting from several perspectives. From an applications
perspective, car racing in its myriad of both simulated and
real forms is an ever-popular form of entertainment, and
the problem of getting a vehicle from point A to point
B as fast as possible can hardly be said to be without
practical relevance even outside of entertainment. There thus
exists ample application potential for methods for optimising
various aspects of this approach.

From the perspectives of machine learning, and of evolu-
tionary robotics (ER), the problem of how to win a car race
is far from a solved one and thus the problem of learning
how to win a car race is even further from being solved. The
task has a certain appeal to the evolutionary roboticist, in
that while it is fairly easy to learn to navigate a simple track
by driving slowly and keeping your distance to the walls,
beating good competitors in a multi-car races on a varied
selection of challenging tracks requires considerable training
and a diverse skillset. These skills would have to include
modelling the dynamics of the driver’s and opponents’ cars
in various situations, modelling the competitors’ driving
style and epistemic state, navigating complex environments,
planning (e.g. when to overtake and go for the pit stop)
and other high-level cognitive skills as well as just fast and
accurate reactions.

It has been previously investigated how to best evolve
controllers for single-car, single-track racing [3], how to
generalise controllers to reliable drive on several dissimilar
tracks and specialise them for particular tracks [4] and the
impact of fitness functions on competitive co-evolution of
two cars on the same track [2].

Puzzlingly, very little work in evolutionary robotics seem
to make use of the vast knowledge accumulated in the sister
field of GP, which deals with the evolution of computer
programs represented in some symbolic form. It is not at
all clear why this is so. For one thing, the investigation of
stateful versus stateless controllers in ER is closely mirrored
by the ongoing investigation of how to best evolve programs
with state in GP. We believe there could be much fruitful
interplay between these fields.

III. STATE IN GENETIC PROGRAMMING

The use of memory in GP dates back to the work
of Koza (1992), who used global registers that could be
manipulated with specially built storage operators. Teller
(1994) introduced Indexed Memory to allow a selection
from an arbitrary set of memory cells [5]. Additional read
and write operations are made available in the language
to allow this memory to be accessed and manipulated by
various program parts. Koza (1999) went on and generalised
both the above to the notion of an Automatically Defined
Store [6]. Finally, Kirshenbaum (2000) presented work on

the evolution of programs that use statically scoped local
variables [7]. That is, variables whose visibility is bounded to
a given scope defined by a subtree rooted on a Let construct.

While knowledge and experience of using state variables
in GP was being accumulated, researchers started applying
these ideas to solve interesting problems, and ultimately
introduce a way of making the GP paradigm Turing Complete
(though this required the complementary use of iteration or
recursion constructs). Realistically, it is not possible in a pa-
per of this length to review all previous attempts at evolving
stateful programs and we will restrict our discussion in those
studies that employed an expression-tree representation of the
evolvable individuals. The motivation for doing this stems
from the need to understand how previous experimenters
have been crafting the fitness environment so as to encourage
the use of state.

Teller [5] evolved programs that solve the problem of
pushing blocks up against the boundaries of a world repre-
sented as a toroidal grid. He used a very interesting strategy
to necessitate the use of memory by strictly limiting the
function sets so that the evolved programs could move only
once per evaluation and received very limited sensory feed-
back. Without using state only limited fitness was possible.
Andre [8] tackled the problem of an agent whose task is
to collect all of the gold scattered in a five-by-five toroidal
grid. To encourage the use of memory representation, the
evaluation of an individual occurred in two stages, namely,
map-making and map-using. In the first stage, the agent was
allowed to move around the world and write to a five-by-
five memory, but not pick up any gold. In the second stage,
the agent can access its memory, but is unable to see the
gold. Brave [9] studied a similar problem of an agent that
explores the world and is required to produce a plan for
reaching every arbitrary location in the world from every
arbitrary starting point. He used a dual-phase fitness function
similar to that used in Andre’s experiments. Langdon [10]
and Bruce [11] independently evolved Abstract Data Types
(ADTs) such as stacks, priority queues and linked lists. They
investigated the difficulty of evolving methods that needed
to cooperate such that some shared memory would be used
in a compatible way. For example, when implementing a
stack it is vital that the push and pop methods cooperate
properly. For this purpose the fitness assignment of programs
is performed in a two-pass process where the evaluation
of methods that modify memory precedes the evaluation of
methods that query it. We have previously applied Object
Oriented Evolutionary Programming (OOEP) [15] to the task
of evolving complete classes that implement an interface of
methods that perform statistics on a sample of data. In order
to encourage the use of state variables we employed a similar
multi-phasic fitness assignment process in which input data
is first added to the statistical sample to modify the internal
state of the Statistics object and hence methods for
computing the mean, variance and standard deviation are
evaluated based on that state.

However, a particularly interesting study is the one re-



ported by Spector and Luke [12] on the exploitation of
cultural information. They implemented culture by having
all individuals to share the same memory which is ini-
tialised only at a start of a genetic programming run. In
this way, a program may pass information to itself, to its
contemporaries, to its offspring, and to unrelated members
of future generations. One would expect that the nature
of the symbolic regression problem being tackled and the
typical training process employed would provide no selection
pressure towards programs that are consulted by this pool of
cultural information. Nevertheless, results indicated that GP
combined with culture decreased the computational effort
required to induce target solutions when compared to GP
variants that use no memory or standard indexed memory.

This literature review suggests that traditionally the way
of encouraging the evolution of stateful individuals has been
performed by limiting the sensory input and/or devising a
fitness assignment process that explicitly sets the order in
which a program’s modules are being evaluated. One thing
that has become apparent is that there should be adequate
selection pressure to evolve programs that use memory.

IV. MEASURING THE USE OF STATE VARIABLES IN A
PROGRAM

As discussed in section I it seems unlikely that the inclu-
sion of language primitives for modifying and inspecting a
state space would prove to be advantageous for an arbitrary
problem. Solutions using memory may be less complex than
those not using memory, but may be harder to evolve. A
crucial aspect of state-aware programs is that they often
exhibit time-dependent behavior. That is, the order in which
the program stores and retrieves state information can have
a concomitant impact on its output. This particularity can
introduce many dependencies upon various program parts (i.e
among different modules or even within the same module)
that manipulate state information in an explicit order, and
in our opinion is one of the main reasons that hinders the
evolution of programs that use memory. Very importantly,
the program must evolve to ensure that the storage is written
to before it is read and that the manipulation of state
information by various program parts is performed in a
compatible way.

We devised a set of metrics for measuring the effective
use of state variables within a program. One particular ob-
servation made by analysing the evolved expression-trees in
[1] is that state manipulation and inspection primitives were
hardly used in the best-of-run individuals. We monitored
the evolution of use of such primitives in each generation
simply by counting their instances within the population
expression-trees. We noticed that throughout the evolutionary
runs their number decreased as generations elapsed. Clearly,
on a structural level, if we wish to evolve programs that
use state information we initially need to define a way of
preserving their presence in the population genetic pool.

The first metric is defined as the ratio of the number of
variables used within a program to the number of variables
offered for use by the primitive language. That is,

Metric1 =
variablesUsed

variablesOffered
(1)

A substantial issue about the use of state information
within a program is the interplay between setting and ac-
cessing the value of state variables. Typically, in a human-
written program one would expect the value of a variable
to be set prior its use. Ultimately, it seems at least bizarre
for a program to access state variables that have not been
initialised (most compilers will not accept this) or set to
a particular value during the computation. We wish to
encourage the proper use of state by defining the ratio of
the number of variables being set within the program to the
number of variables being accessed. To calculate this, we first
need to trace the primitives that set specific state variables
and hence map these to primitives that access the very same
state variables. This ratio is presented bellow.

Metric2 =
variablesSet

variablesAccessed
(2)

In the case where the number of primitives that access state
variables is zero we arbitrarily choose to divide by 10−5.

Previous studies have already identified one major trou-
bling aspect of the use of global state variables in GP. Spector
[13] terms this as data dependencies whereas Woodward
[14] as global memory interference and they both refer to
the problem of having functions and terminals to write to
a shared memory mechanism, or take turns manipulating
a global environment in an explicit order. The application
of variation operators can have a concomitant impact (by
destroying these dependencies) on the operations of other
functions and terminals not only in a particular subtree but
throughout an individual. One possible way to counteract
the destructive effects of variation operators, as these are
experienced by destroying dependencies between setting and
getting primitives, would be to request that some form of
distance between these primitives within the expression-
tree is kept at minimum. Intuitively, this could encourage
the formation of fine-grained blocks of code that perform
memory manipulation and limit their destruction via the
variation operators. For this we need to calculate the po-
sitional distance of setter-getter pairs within the individual
and average this over the number of these pairs. This metric
is defined below:

Metric3 =

n∑

i=1

Distance(SetGetPair)

n
(3)

where Distance(SetGetPair) is the positional distance
within the expression-tree of two primitives that set and
access a particular state variable and n is the number of
these pairs.



Fig. 1. The track used in the experiments

V. CAR SIMULATION AND FITNESS MEASURE

This simulation, which is intended to qualitatively model
driving a radio-controlled toy car on a tabletop racing track,
has a car with dimension 20*10 pixels driving on a 400*300
pixels racing track. While the simulation is based on a
reasonably realistic physics model, allowing for momentum,
collisions, and skidding, it does not behave identically to any
particular physical system. At each time step (the simulation
is updated at 20hz in simulated time) a command is sent from
the controller to the simulation, which executes the command
and returns the new state of the car.

Selected elements of the state are available to the controller
via an interface. The available information is all such that it
could in principle have been gathered by sensors places on
the car, and is as such ”first person”: speed of the car, angle
and distance to the next way point and distance to the wall in
a given direction relative to the heading of the car. A small
amount of noise is added to all sensor readings.

As for the outputs of the controller, these are two real
numbers which are interpreted by the simulation as any of
nine possible commands - typical toy cars of the sort that
inspires our simulation have bang-bang control, hence the
discretisation. The first controller output is interpreted as
the command for driving forward if its value is above 0.3,
backward if below -0.3 and neutral otherwise. The second
output is interpreted as steering left, right or centre in the
same manner.

The fitness of a certain controller is given by how far
around a track it manages to travel in 500 time steps. This is
measured by how many way points it manages to pass within
that time. The racing track is defined by a starting position, a
set of walls and a chain of way points. The track used for the
experiments in this paper is depicted in figure 1. The lines
protruding from the car are the visualizations of wall sensors.
In this particular example the car is using 6 sensors whose
angles and ranges are specified by respective parameters (see
later section). A way point is considered to be passed if the
centre of the car is within 30 pixels of the centre of the
way point, and that way point is the next one in the chain
(way points must be passed in order). Passing all way points
within 500 time steps yields fitness of 1, passing fewer way
points leads to lower fitness and completing several laps of
the track within the allotted time gives higher values.

public interface CarController{
public double[] drive(SensorModel sm);

}

Fig. 2. The interface specifying the signature of the driving method

VI. OBJECT-ORIENTED GENETIC PROGRAMMING

A. Evolvable Class Representation

The output of the car controlling program is an array of
two real values, the first being interpreted as the driving
command whereas the second as the steering command.
Figure 2 presents the signature (return type and parameter
types) of the interface method drive() that is used as
a contract between the evolved program and its clients.
The parameter of type SensorModel provides the envi-
ronmental input which is discussed in a later section. As
with most programming problems, there are many possible
implementation routes and we can encourage the EA to
induce a specific implementation by allowing it to work
on a particular programming space. When the program
that implements the CarController interface has been
constructed in an OO programming space, it is allowed state
variables along with methods that inspect and modify this
internal state. Following our previous work on the evolution
of complete classes [15] we decided to represent an evolvable
individual using a syntactic structure that couples a linear
repository of class and instance variables representing the
object state along with a set of evolvable methods (using an
expression tree representation) that are responsible for the
way an object acts and reacts, in terms of state changes and
message passing.

B. State Representation

We employed a simple memory addressing scheme by
combining type information along with the mechanism of
pass by reference [10] in order to operate on the object
state space. The object memory is represented as a linked
list of objects of interface type Settable, reminiscent of
Teller’s indexed memory but uses a different way to store
and read values. References to these Settable objects
are added to the language used to construct programs, and
these represent the available instance variables (object state
space). Within a program structure these language elements
are being passed by reference to specially built primitives that
explicitly set the value of their argument. Once the method
returns, the value of its argument will have been updated.
For our purposes a setValue(Settable s, double
value) primitive method has been defined. Notice that
the use of strong typing for drawing a distinction between
settable variables and their underlying values allows for
the emergence of various sorts of assignment schemes and
obviates the need of devising a strategy to deal with illegal
range of index values, a substantial issue when working with
traditional indexed memory. We follow Teller’s example and
setValue is defined to return the original value held in the
Settable object it has just overwritten.



C. Variation Operators

Our search employs a mutation-based variation scheme.
For our purposes here, subtree macro-mutation (MM) is
applied by substituting a node in the tree with an entirely
randomly generated subtree of the same return type, under
depth or size contraints). In the case of multi-tree programs
the evolutionary algorithm must come to a decision as to
which tree the variation operator will be applied. Each time
the variation operator will be applied to the expression tree
implementing the interface method drive with a probability
of 1.0 and to each supplementary expression tree with a
probability of 0.5. Additionally, other than choosing the tree
node to be replaced at random we devised an additional
simple node selection scheme that allows us to select nodes at
different depth levels using a uniform probability distribution,
with the expectation to render bigger changes more likely.

D. Program Representation Language

We defined a diverse set of language elements to form a
general programming space for the evolutionary algorithm
to work on. This is presented in table I. Standard arithmetic
operators have been provided (add, sub, mul, div) along
with state-manipulation operators (setValue), predicates
(>,>=,=,<,<=) and an IF-Then-Else construct that al-
lows to control the flow of execution within the program
such that every expression tree rooted at that node will be
interpreted using lazy evaluation. The program is required
to return an array of two double values so rootGlue
has been defined as a wrapper that accepts two doubles
and returns a double array populated with these argument
values. The car controller receives environmental input us-
ing four different sensors. These are modeled as method
invocations on a SensorModel object (see figure 2). The
wallSensorReading method requires two parameters
of type double that specify the angle and the range
of the sensor. The range of the sensor is equal to the
range parameter multiplied by 200 pixels; this parameter is
constrained to be within the [0, 1] interval. For example,
wallSensorReading(π/2, 0.75) returns an estima-
tion of the distance to the wall along a line protruding
straight to the left of the car, as a proportion of 150 pixels.
If the first wall to the left of the car is 100 pixels away,
the wallSensorReading method will return around 0.66
in the example given. Method speed returns the driving
behavior and it’s 0.3 for driving forward, 0.0 for neutral and
-0.3 for backwards. The angleToNextWaypoint method
returns the difference between the current orientation of the
car and the angle between the center of the car and the next
waypoint. Similarly, distanceToNextWaypoint returns
the distance between the center of the car and the next
waypoint. All angles are unwrapped and a small amount of
gaussian noise is added to all readings.

E. Evolving Object-Oriented Controllers

The genome representation in the case where we evolve
a complete class has been outlined in section VI-A. During

the generation of the initial population the EA performs a
random sampling of Evolvable Class structures. The gen-
eration of such an individual is analogous to the process
of initialising an individual using the Evolutionary Selection
of Program Architecture method as described in [16] along
with the addition of randomly selecting the number and
type of instance variables. The number of additional instance
methods (ADFs) is set to the random interval of [1, 3] and
the number of the argument that each one may possess is
set to the random interval of [1, 3]. The range of potentially
useful numbers and types of instance variables cannot be
predicted with certainty for an arbitrary problem. Here we
require the number of instance variables to be uniformly
drawn from within the [5, 15] interval. In addition, the type
of information that can be stored in the form of object state
is set to be of type double in order to be compatible
with the numeric input and output types of the primitive
language elements. Notice that once the number and type of
instance variables are specified, they cannot be altered by
the application of variation operators. Similarly to [16], a
simple ADF naming scheme is employed is order to prevent
the emergence of circular calling dependencies among the
functions which can result in non-halting programs. Addi-
tionally, no restrictions were placed upon which primitives
can be used by which function-defining expression tree of a
multi-tree program, thus the function and terminal sets were
identical both for method drive and any supplementary
ADFs. State manipulation is allowed so setValue and a
number of Settable objects are made available in the
primitive language.

The fitness evaluation of state-aware programs begins
with the initialization of object state variables at time step
t0. We do not allow the evolution of explicit constructor
methods. Alternatively, we require that all numeric instance
variables be set to zero. This is in-line with most modern OO
programming languages - Java for example will implicitly
set the values of numeric instance variables to zero in the
absence of a constructor method. Hence, at each time-step
tn the object is being operated upon by invoking the interface
method drive with the state variables being set to the value
that was stored at time-step tn−1. It is noteworthy that the
fitness evaluation simulates the life-cycle of a passive object
that is being born when its state variables are initialised to
zero, it is being acted upon by invocation to the interface
method drive for 500 time-steps, and finally dies along
with the cease of fitness evaluation procedure.

VII. METHODS

A. Experimental Context

We wish to explore the idea of using multi-objective
optimisation to encourage the effective use of state variables
within the evolvable individuals. However, our primary con-
cern is to investigate whether there is a trade-off between
good performance and a stateful controller. Our intuition
suggests that if the evolutionary process finds some workable
representation of the useful environmental features, it may



TABLE I
PRIMITIVE ELEMENTS FOR EVOLVING CAR CONTROLLING PROGRAMS

Method set
Method Argument(s) type Return type
rootGlue double, double double[ ]
State Manipulation
setValue Settable, double double
Sensory input
wallSensorReading double, double double
speed - double
angleToNextWayPoint - double
distanceToNextWayPoint - double
Arithmetic
add double, double double
sub double, double double
mul double, double double
div (protected) double, double double
Predicates
>, >=, =, <, <= double, double boolean
Conditional
IF-Then-Else boolean, double, double double

Terminal set
Terminal Value Type

Constants π, −π, π/6, −π/6, π/12, −π/12 double
−5.0, −4.0, −3.0, −2.0, −1.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0

Parameters subject to environment model of evaluation double

be the case that these can be maintained and manipulated as
state information in order to drive more efficiently. So at any
given time a state-aware controller can use the information
provided by the sensory input and that which builds and
maintains on its own. Other than simply considering the
number of waypoints passed in order to reward an individual,
it is hoped that the various metrics defined in section IV will
provide a selection pressure towards individuals that use state
variables (Metric1) and most importantly will encourage the
interplay between setting and accessing state information to
be performed in a compatible way (Metric2). Finally, we
also wish to reward programs which ‘protect’ the dependency
among setter and getter primitives by keeping their positional
distance minimised.

In our previous paper [1] we observed that most of best-
of-run individuals where exploiting the use of the sensor
that returns the angle to the next waypoint in order to
determine the steering direction. This very simple strategy
proved to be sufficient of obtaining high fitness. Here,
we deliberately avoid the inclusion of such construct in
the primitive language. We defined four different families
of environmental sensors and used each one separately to
populate the method set of a particular evolutionary run.
These sets are the folowing: S1 = {wallSensorReading
(WSR)}, S2 = {wallSensorReading (WSR), distance-
ToNextWayPoint (DNWP)}, S3 = {wallSensorReading
(WSR), speed (SP), distanceToNextWayPoint (DNWP)}, and
S4 = {wallSensorReading (WSR), speed (SP)}. For the
shake of comparison we run the same experiments with two
different GP variants. A first one which allows the use of
state variables but employs a single-objective fitness function
(based on number of way points passed) and a second
one which employs the same fitness function but does not

allow for the involvement of state variables in the primitive
language - a stateless individual (see [1] for details). Finally,
each experiment is performed 10 times.

B. Evolutionary Algorithms

For single-objective optimisation we used a panmictic,
generational genetic algorithm (GA) combined with elitism
(1%). The algorithm uses tournament selection with a tourna-
ment size of 2. In this case, the scalar fitness of an individual
is defined simply as the number of waypoints passed within
500 time steps. For multi-objective optimisation we employ
the Non-Dominated Sorting Genetic Algorithm II (NSGA-
II) as this is presented in Deb (uses binary tournament
selection). The objective vector consists of 4 objectives,
namely: (a) the number of way points passed within 500
time steps (to be maximised), (b) the ratio of variables used
to variables offered (Metric1 - to be maximised), (c) the
ratio of variables set to variables accessed (Metric2 - to
be maximised), and (d) the average positional distance of
setter-getter primitives (Metric3 - to be minimised). To
alleviate the considerable noisiness of the fitness evaluations,
the number of way points passed is calculated as the average
of three independent trials in both evolutionary algorithms.

C. GP Run Parameters

The population size was set to 100 and evolution proceeds
for 100 generations. All initial populations are created using
the Ramped-Half-and-Half algorithm with a maximum initial
depth of 5. Subsequently, expression trees are allowed to
grow up to depth of 10. Here, macro-mutation (MM) is
applied with 100% probability.
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Fig. 3. Best-of-generation individuals using wall sensor reading and distance to next way point as sensory input: (a) multi-objective, (b) single-objective
(c) single-objective with no state variables

VIII. RESULTS AND DISCUSSION

Table II presents the evolution of best-of generation fitness
(as this is measured by the number of waypoints passed)
averaged over 10 independent evolutionary runs. The first
observation on the results is that GP runs that used multi-
objective optimisation to encourage the use of state variables
performed slightly better than those that allowed state vari-
ables but used single-objective optimisation solely based on
the number of way points passed. Ultimately, those runs that
did not allow state variables performed considerably poor.
This justifies our initial hypothesis about not including the
angle-to-next-way-point sensor in the expectation of making
the task more challenging. It seems that the effective use of
state variables is necessary to achieve better performance.

Figures 3(a), 3(b), 3(c) illustrate the evolution of best-of-
generation individuals using (a) multi-objective optimisation
for stateful controllers, (b) single-objective optimisation for
stateful controllers, and (c) single-objective optimisation for
stateless ones. It can be seen that regardless of the fact that
the average fitness of (a) is slightly better than that of (b),
individuals evolved using a Pareto-based fitness function that
considers the evaluation of state use deviate more from that
average as opposed to the ones evolved using a scalar fitness
function - a result that is substantially encouraging. It is
believed that we may be unfair to the NSGA-II algorithm
when we are asking it to compete with a single-objective GA
under the current population size and number of generations.
This can be backed-up by the observation made in regards
to learning speed as this is depicted in figures 3(a) and 3(b).
We note that the single-objective GA (fig. 3(b)) learns
slightly faster than NSGA-II but it seems to be stagnating
at around generation 50 (after gen. 50 there exists only a
slight improvement). On the other hand NSGA-II seems to be
learning more smoothly up until the last generation. Given an
increase on the number of generations, one would expect that
a multi-criterion fitness function might very well outperform
the one based solely on the number of way points passed.

Finally, we note that there is no significant performance
difference among the experiments that use different families
of sensory inputs. However, it is worth noting that all of

these sets of primitive elements include the wall-sensor-
reading (WSR). An early suspicion is that the GP trees
evidently make use of much fewer sensor readings than those
supplied in the method set. The use of wall-sensor-reading
is necessary to decide upon the steering direction at any
point in time and is believed that this sensory input can be
adequate to achieve good driving performance even in the
case where the car is always driving forward at a constant
speed. This is in line with the results reported in [1] where
we observed that most of best-evolved-controllers presented
a tendency towards avoiding the use of most sensors. It
was hard to reason with the evolved controllers as their
convoluted nature was opaque to human understanding (given
also the lazy evaluation of the If-Then-Else construct).
A static analysis in terms of the primitives residing in the
evolved individuals is currently under way.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we attempted to use multi-objective optimi-
sation to encourage the emergence of stateful car controlling
programs. Three different metrics for evaluating the use of
state within a program were introduced and fed as objectives
in a Pareto-based fitness function used by NSGA-II along
with the ultimate objective of racing performance (as defined
by the number of way points passed). By optimising the
objectives defined by the state-use-metrics we expected to
provide an evolutionary selection pressure towards the ef-
fective use of state variables both in terms of compatibility
between setting and getting a specific state variable and also
in terms of structure by requesting that setting and getting
primitives lie close to each other. The current simulated car
racing environment, as this is perceived by the sensory inputs,
necessitates the use of state information. In this environ-
ment we performed a comparison between the evolution of
programs that are allowed state variables but are rewarded
only for racing performance and those programs that allow
state variables but are also rewarded for the way in which
they utilise this state information. Results were encouraging,
and the optimization of both racing performance and state-
variables-use (using NSGA-II) turned out to achieve better



TABLE II
AVERAGE FITNESS OF BEST CONTROLLER FOR GENERATIONS 10, 50, 75, 100 (AVERAGED OVER 10 INDEPENDENT EVOLUTIONARY RUNS - STD.

DEVIATION IN PARENTHESES)

Method 10 50 75 100
Multiobjective/WSR 0.26 (0.11) 0.37 (0.21) 0.5 (0.2) 0.8 (0.32)
Multi-objective/WSR, DNWP 0.25 (0.14) 0.55 (0.28) 0.76 (0.43) 0.83 (0.38)
Multi-objective/WSR, SP, DNWP 0.21 (0.11) 0.39 (0.24) 0.41 (0.29) 0.68 (0.22)
Multi-objective/WSR, SP 0.22 (0.15) 0.59 (0.24) 0.75 (0.37) 0.78 (0.27)

Single-objective/WSR 0.4 (0.14) 0.56 (0.26) 0.7 (0.36) 0.74 (0.35)
Single-objective/WSR, DNWP 0.33 (0.11) 0.65 (0.35) 0.68 (0.34) 0.77 (0.36)
Single-objective/WSR, SP, DNWP 0.31 (0.11) 0.61 (0.14) 0.67 (0.18) 0.76 (0.29)
Single-objective/WSR, SP 0.29 (0.1) 0.6 (0.31) 0.71 (0.47) 0.75 (0.46)

Single-objective (no state vars)/WSR 0.44 (0.07) 0.62 (0.25) 0.64 (0.23) 0.65 (0.23)
Single-objective (no state vars)/WSR, DNWP 0.33 (0.11) 0.51 (0.13) 0.57 (0.29) 0.59 (0.2)
Single-objective (no state vars)/WSR, SP, DNWP 0.42 (0.08) 0.54 (0.08) 0.56 (0.08) 0.59 (0.14)
Single-objective (no state vars)/WSR, SP 0.37 (0.12) 0.56 (0.17) 0.65 (0.15) 0.67 (0.29)

performance.
This investigation can hardly be said to be without prac-

tical interest even outside of this evolutionary robotics ap-
plication. Searched-based Software Engineering is a newly
coined term and is concerned with embodying all knowledge
accumulated about designing and implementing complex
software artifacts into evolvable software systems. State is
an absolute requirement for certain computations and its
effective use by the GP paradigm could yield great benefits.
However, more applications of our methodology need to take
place in order to evaluate its breadth of efficiency.

For future work, we plan to investigate the use of multiob-
jective optimisation for evolving populations of behaviourally
different controllers. One of the motivations for this is that
we want to map the space of viable behaviours on the current
problem - how many different ways are there of achieving
good driving skills? Another motivation is to explore a
potential method of generating sets of interesting opponents
for computer games. In many games, the challenge for
artificial intelligence is not so much to make the computer-
controlled agents behave as well as possible (as in driving as
fast as possible, or killing the player as quickly as possible)
but to make the agents behave in an interesting way. The
way multiobjective optimisation could help us with this is
by evolving pareto fronts of agents in several behavioural
dimensions, letting us automatically pick agents that perform
especially well in some dimension and at least decently
well in others. For example, we could have car drivers that
driver very fast on their own but are bad at overtaking cars
and blocking other cars from overtaking them, and other
drivers that are experts on out-maneuvering competitors in
close interactions but less good at taking corners. Of course,
this requires that we can measure relevant aspects of the
behaviour of the car, an issue which is currently under
investigation.
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